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Oregon State University is the flagship and the largest public
university in Oregon.

OSU is located in the west coast (one hour's drive to the gorgeous
Oregon Coast and Portland).

o
(2]
© Corvallis ranks the top 5 safest and nicest college town in the U.S.
o

OSU is celebrating its 150th anniversary; OSU is known for its strong
engineering programs.

@ The school of EECS is the home of more than 60 faculty members,
covering most areas in EE and CS.

@ OSU's CS program ranks 37 of the United States according to
CSrankings.

@ The Artificial Intelligence (Al) program ranks 21 all over the country.



© Hyperspectral sensor records EM scattering patterns of distinct
materials over hundreds of spectral bands (from visible to
near-infrared wavelength) [Keshava et al. '02].




© Every pixel of a hyperspectral image is a high-dimensional vector:

yeeRKH 1 =1,... Ly,

where
e /[ is the pixel index
e Ky is the number of frequency bands
® Ym.¢ is the spectral intensity of pixel £ at frequency m



© Hyperspectral images come as cubes:




© Hyperspectral images come as cubes:

@ Why is this important?



© Spectral information is rich.
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t the spectra are from the U.S.G.S. library.
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NASA TECHNOLOGY
TRANSFER PROGRAM

Hyperspectral Systems Increase
Imaging Capabilities

[+2Space Technology Hall of Fame icon

Health and Medicine

Originati

While the human eye can see a range of
phenomena in the world, there is a larger
range that it cannot see. Without the aid of
technology, people are limited to seeing
wavelengths of visible light, a tiny range
within the electromagnetic spectrum
Hyperspectral imaging, however, allows
people to get a glimpse at how objects look in
the ultraviolet (UV) and infrared wavelengths
—the ranges on either side of visible light on
the spectrum.

imago was croa
right-hand picture is an i

Hyperspectral imaging is the process of
scanning and displaying an image within a
section of the electromagnetic spectrum. To




BATTLEFIELD INTELLIGENCE

Hyperspectral sensor lets drones see
through camouflage, spot explosives

BY JOEY CHENG 2014

The Air Force is planning to test a high-powered spectral sensor for
unmanned aerial vehicles capable of spotting such things on the ground
as improvised explosives or camouflaged targets by identifying what those
objects are made of.

The Air Force Life Cycle Management Center has announced plans to
negotiate a contract with Raytheon Co. to test a podded version of the
Airborne Cueing and Exploitation System-Hyperspectral (ACES-HY) on the
Predator UAV.



@ many applications in

Geology

outer space exploration
agriculture/forest inspection
mine detection
food/medicine security



@ What we do not like about hyperspectral images is ...

Band 30 (wavelength A = 647.7 nm)




@ What we do not like about hyperspectral images is ...

Band 30 (wavelength A = 647.7 nm)
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@ The spatial resolution is really NOT eye-pleasing.
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© Measuring hyperspectral pixels is a very complicated process and
many factors play role [Akgun et al. '05]:
e optics
o EM reflection mechanism
o hardware limitations, e.g., sampling strategy and sensor dynamic range.
]

@ directly improving the sensors could be very costly.

@ the spectral and spatial resolutions pose an (inevitable) trade-off in
sensor manufacturing [Yokoya et al., '17].



© The so-called multispectral images (MSls) have very good spatial
resolution, but every pixel is only measured at several bands (single
digits).
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Natural idea: how about fusing HSI and MSI?
Consider co-registered HSI Y, € RM*JnxKn and MSI
XM c RIMXJMXKM_

Note that we have InJy < IyJdym and Ky > Ky,

Assume there is a super-resolution image (SRI) Y ¢ € RM>*JmxKu
and the MSI and HSI are degraded from the SRI.

band-average relative
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© lllustration of spatial degradation (SRI==-HSI): 2-D blurring and
downsampling.

SRS S ]




@ lllustration of spectral degradation (SRI==MSI): spectral
aggregation.
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@ The hyperspectral Super-Resolution (HSR) problem: given the
HSI and MSI, recover the SRI that has the spatial resolution of the
MSI and the spectral resolution of the HSI.




@ Much effort has been invested to this research area:

o early methods based on component substitution [Carper et al. '90];
cumbersome and unreliable.

o multi-resolution analysis [Vivone et al. '14]; advanced version of
component substitution.

o state-of-art: coupled matrix factorization [Wei et al. '17, Simoes et
al. '15, Yokoya at al '12, Wei et al. '15]



@ The linear mixture model (LMM) of hperspectral pixels:

R
Yo = Za,s,,g = AHSg, = 1, cey LH(: /HJH)
r=1
where Ay = [a1,...,aR] € RAHXR is the spectral signature matrix
and s; = [s14,...,5r¢] " is the abundance vector.
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R

Yo~ Zarsr,Z =Apsp, L=1,...,Ly(= Indn)
r=1
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..., ag|] € RKvXR is the spectral signature matrix
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© Note that R < min{Ky, Ly} and thus the matrix has low rank.



@ The linear mixture model (LMM) of hperspectral pixels:

R

Yo~ Zarsr,Z =Apsp, L=1,...,Ly(= Indn)
r=1

where Ay = [ay,

..., ag|] € RKvXR is the spectral signature matrix
and sp = [s1, .

..,sry]" is the abundance vector.
@ Putting all pixels into a matrix Yy = [y1,...,y1,] € RK#xLu:
Y ~ AnSu,
where Sy = [s1,. .., S[_H] e RRxLu,
© Note that R < min{Ky, Ly} and thus the matrix has low rank.
@ Kpy: number of bands of HSI; Ly = IyJy: number of pixels of HSI.



@ The MSI admits a similar model
Yv =~ AySy, € RKm*Lm

@ This time R can be larger than min{Kpy, Ly }.
© Ky number of bands of MSI; Ly, = IyyJy: number of pixels of MSI.

@ We also have a virtual matricized version of the SRI:

YS = AHSM c RKHXIMJM



© In the matrix form, the degradation model can be written as

Yy =YsPy, Yu=PuYs,

where Py = P; ® P>, and ® denotes the Kronecker product.
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© In the matrix form, the degradation model can be written as

Yy =YsPy, Yu=PuYs,

where Py = P; ® P>, and ® denotes the Kronecker product.

@ One possible formulation:
minimize || Yy — YsPyl2 + || Ym — PuYs|2
S

© What's the problem here?



© The coupled matrix factorization idea [Wei et al. '17, Simoes et al.
'15, Yokoya at al '12, Wei et al. '15]:

2 2

minimize YH — AHSM PH + YM — PM AHSM
Ay,Su S—— N~——
Ys F Ys F



© The coupled matrix factorization idea [Wei et al. '17, Simoes et al.
'15, Yokoya at al '12, Wei et al. '15]:

2 2

minimize YH — AHSM PH + YM — PM AHSM
Ay,Su S—— N~——
Ys F Ys F

@ was to recover Iy Jy Ky unknowns from IgJu Ky + Iy Km
equations; becomes recovering (IyyJv + Ky)R unknowns after
low-rank parametrization.



© The coupled matrix factorization idea [Wei et al. '17, Simoes et al.
'15, Yokoya at al '12, Wei et al. '15]:

2 2

minimize YH — AHSM PH + YM — PM AHSM
Ay,Su S—— N~——
Ys F Ys F

@ was to recover Iy Ky unknowns from IyJy Ky + IJdvKm
equations; becomes recovering (IyyJv + Ky)R unknowns after
low-rank parametrization.

© the workhorse in this area; a large amount of variants exist.



The coupled matrix factorization idea [Wei et al. '17, Simoes et al.
'15, Yokoya at al '12, Wei et al. '15]:

2 2

minimize YH — AHSM PH + YM — PM AHSM
Ay,Su S—— N~——
Ys F Ys F

was to recover Iy Jy Ky unknowns from IyJy Ky + IyJdvKm
equations; becomes recovering (IyyJv + Ky)R unknowns after
low-rank parametrization.

the workhorse in this area; a large amount of variants exist.

makes sense: a special case of low-rank matrix sensing.



The coupled matrix factorization idea [Wei et al. '17, Simoes et al.
'15, Yokoya at al '12, Wei et al. '15]:

2 2

minimize YH — AHSM PH + YM — PM AHSM
Ay,Su S—— N~——
Ys F Ys F

was to recover Iy Jy Ky unknowns from IyJy Ky + IyJdvKm
equations; becomes recovering (IyyJv + Ky)R unknowns after
low-rank parametrization.

the workhorse in this area; a large amount of variants exist.
makes sense: a special case of low-rank matrix sensing.

works to a certain extent, but many issues exist.



© Fundamentally, the matrix factorization based super-resolution is an
inverse problem:

YH ~ (AHSM)PH, YM ~ PM(AHSM),

where Py and Py are structured compressing matrices.
@ There is no guarantee that Ys can be found this way.

© Performance heavily relies on initialization, prior information, and
regularization, and it varies significantly from case to case.

@ has to assume knowledge of Py and Py;—hardly available in practice.
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@ Our approach [Kanatsoulis, Fu, Sidiropoulos and Ma '18]:
o tensor-based: no matricization.
o identifiability-guaranteed: Y ¢ is provably identifiable under certain

conditions.
o (semi-)blind: no need to know the spatial degradation operator.
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@ The proposed method (STEREO) looks very promising.




(a) SRI (b) HSI

(e) CNMF

(g) FUSE (h) FUSE-SPARSE

@ The proposed method (STEREO) looks very promising.
@ But what is a tensor?




O A tensor X is a multi-way array whose elements are indexed by
(i,j,k,2,...), i.e., more than two indices.

@ A third-order tensor X € R'*/*K is a3 “shoe box":

© Tensors have many similarities of matrices but also striking
differences.



@ matrix rank: the minimum number R such that
R
X =Y A(:;r)oB(:,r)=ABT,
r=1

where o denotes the outer product, A € R/*R B ¢ R/*R.

@ tensor rank: the minimum number R such that
R
X = ZA(:, r)oB(:;,r)o C(:,r)=[A,B,C]
r=1

where A € R'*R B e R/*R and C € RK*R,






@ for matrices:

o The rank decomposition is very nonunique: X = ABT = AQQ'BT.
o R < min{/,J}: the rank has to be < the outer dimensions.

@ for tensors:

e The rank decomposition is essentially unique under mild conditions.
e R can largely exceed /, J, K.



@ For example:

Theorem (Chiantini et al. 2012)

Let X =[A,B,C] withA: I xR, B:Jx R, and C: K x R. Assume that A, B and C
are drawn from from a jointly continuous distribution (over RUTHKIR) = Also assume

| > J > K without loss of generality. If R < %JK, then the decomposition of X in
terms of A, B, and C is essentially unique, almost surely.

Q essential uniqueness means that if A, B, € also satisfy
X = [[A, B, C']] we can only have A = AIIA;, B = BITA,, and
C = CIIA3, where IT is a permutation matrix and A; is a full rank
diagonal matrix such that AjAyAz = 1.

© How mild the condition is? / = J = K =100 and R < 625.
Q bottom line: R < O(JK) [Sidiropoulos, De Lathauwer, Fu et al. '17].



@ Two basic operations:
e Matricization:

X(l) _ (C ® B)AT c RKJXI
X® =(CoA)BT e RK*/

X(3) — (B@A)CT c ]RIJXK

where © denotes the Khatri-Rao product.
e Mode product:

X =X x1 Py x5 P, x3 P3 =[P1A, P,B, P;C]

- o8 IF-»




- S o

@ Let Y, € R/W*JuxKu denote the HSI cube and Y, € R/m>JmxKu
the MSI cube. (/HJH < Iydm, Ky < KH)

@ SRI=MSI: Y, =Yg X3 Py.
© SRI=HSI: XH = XS X1 P1 X9 P2.
Q Let Y = [A, B, C] for some unknown A, B, C and rank R.

Yyu=Ysx3Py=][AB,PyC]
Y u=Ysx1P1x2P,=[PA P;B,C]



@ Major insight:
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@ Major insight:

o If Y, =[A B,PyC] and Y = [P:A, P,B, C] are unique
decompositions, then A and B can be identified from Y,, and C can
be identified from Y, respectively.

@ The “compressed tensors” admit unique rank decomposition under
mild conditions.

@ If Py and P, are not known, it does not hurt the identifiability.

@ more good news: if one tensor is identifiable, it is enough to identify A,
B, C under mild conditions, if P;, P> and Py, are known.



© Consider an estimator of A, B, C:

minimize ||Y; — [P1A, P2B, Cl|[z + [ Y — [A B, PuCl]%

Theorem (Kanatsoulis, Fu, Sidiropoulos and Ma '18)

Let Y, = [P:A,P,B,C] and Y,, = [A, B, PuC]. Assume without loss of generality
that Iy > Jy > K. Also assume that A, B and C are drawn from some continuous
distribution, that P, P, and Py have full rank, and that (A*, B*, C*) is an optimal
solution to the above problem. Then, Y (i,j, k) = SE_ A*(i, f)B*(j, f)C*(k, f)
recovers the ground-truth Y ¢ almost surely if R < min(2m_2, I4Jn), where

v = logy(JmKm).




@ Consider an estimator of A, B, C when the spatial degradation
operators are unknown:

. - 2
minimize HXH— [[A, B, C]]H + ALYy - [A, B, PuC]|7 .
AB,AB,C F

Theorem (Kanatsoulis, Fu, Sidiropoulos and Ma '18)

Let Y, =[A B,C] and Y,, = [A, B, PuC]. Assume without loss of generality that

Iy > Ju > Ku and Iy > Ju > Kum. Also assume that A, B and C are drawn from some
continuous distribution, that P, P> and Py have full rank, and that

([\*, B*, A", B*, C™) is an optimal solution to the above. Then, Xs = [A*,B*,C"]
recovers the ground-truth Y g almost surely if R < min{2171J=2 2002)=2} "\here

v = log,(JmKm) and 72 = log,(JnKn).




@ take-home: if the HSI and MSI are low-rank tensors, we have a
decent chance for establishing identifiability of the SRI.



@ take-home: if the HSI and MSI are low-rank tensors, we have a
decent chance for establishing identifiability of the SRI.
@ and real HSIs and MSiIs are indeed with low tensor rank.

Table: The NMSE of using a low-rank tensor model to approximate a
subimage of the AVIRIS Cuprite data of size 512 x 614 x 187 (identifiable
when R < 5,984).

rank 300 400 500 600 700 800
NMSE | 0.019 | 0.016 | 0.0142 | 0.0131 | 0.0123 | 0.0116
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@ cyclically update until convergence.
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squares) and can be solved in closed-form.



make use of the matricizations:

A  argmin| Y) —(CoP.B)ATP |} + AV — (PuC @ B)AT|}
B« argmin| Y —(CoPA)B Pt +A|YP - (PuC®A)BT|}

C «argmin|| Y — (P:B© PLACT [ + AV, — (B ACT Pyl

cyclically update until convergence.
every subproblem is an unconstrained quadratic program (least
squares) and can be solved in closed-form.

the ‘(semi-)blind case’ can be solved in a similar fashion, with two
more blocks (w.r.t. A and B).



@ the first identifiability-guaranteed HSR approach.
@ identifiability holds under mild conditions.

© does not need the knowledge of the spatial degradation operator.
© challenges:

@ nonconvexity
o determining the tensor rank (NP-hard in theory)



© Salinas scene was downloaded from the AVIRIS platform. It
represents a field, consisting of 6 different agricultural products.

Q@ Ysc R80x84x204 is 3 subimage of the Salinas scene.

© The HSI Y, € R20%21%204 i5 generated after blurring by a 9 x 9
Gaussian Kernel and downsampling by a factor of 4 (choose 1 out of
16 pixels).

Q the MSI Y, c R80x84x6 is generated according to specs of the
LANDSAT multispectral sensor.

@ R =100.

@ State of Art Baselines: FUMI [Wei et al., '17], HySure [Simoes et al.,
'15], CNMF [Yokoya at al, '12], FUSE, FUSE-Sparse [Wei et al. '15].



Evaluation metrics: Reconstruction Signal-to-Noise ratio (R-SNR), Cross
Correlation (CC), runtime.

_ Sl YsCoh)liE
° RSNR = 10log (zf=1|| Vs(:,:,k>—vs(:,:,k>||%>

0 CC= 51 p (Vs k), Vs, k)

Table: SALINAS scene

Algorithm | RSNR | CC | runtime (sec)
STEREO 39.39 | 0.9864 15
FUSE 28.71 | 0.9174 0.07
FUSE-Sparse | 28.71 | 0.9173 69.7
FUMI 29.40 | 0.9126 1.56
HySure 26.86 | 0.8981 1.6
CNMF 25.48 | 0.9013 1.7
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(a) SRI (b) HSI

(e) CNMF

(g) FUSE (h) FUSE-SPARSE

1 STEREO does not assume knowledge of Py and P;.




(d) HySure (e) CNMF (g) FUSE

T STEREO does not assume knowledge of P; and Ps.




© The problem of hyperspectral super-resolution has been introduced.

@ The idea behind state-of-the-art methods has been introduced.
@ A tensor based approach (and tensor preliminaries) has been
introduced
e which provides the only theoretical identifiability support among
existing methods and
e can work without the spatial degradation info.
@ Take-home: tensor is a powerful tool that has many good properties
that can be leveraged in signal processing and machine learning.
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