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About OSU EECS

OSU EECS

1 Oregon State University is the flagship and the largest public
university in Oregon.

2 OSU is located in the west coast (one hour’s drive to the gorgeous
Oregon Coast and Portland).

3 Corvallis ranks the top 5 safest and nicest college town in the U.S.

4 OSU is celebrating its 150th anniversary; OSU is known for its strong
engineering programs.

5 The school of EECS is the home of more than 60 faculty members,
covering most areas in EE and CS.

6 OSU’s CS program ranks 37 of the United States according to
CSrankings.

7 The Artificial Intelligence (AI) program ranks 21 all over the country.
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Introduction

Hyperspectral Imaging

1 Hyperspectral sensor records EM scattering patterns of distinct
materials over hundreds of spectral bands (from visible to
near-infrared wavelength) [Keshava et al. ’02].
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Introduction

Hyperspectral Pixels

1 Every pixel of a hyperspectral image is a high-dimensional vector:

y` ∈ RKH , ` = 1, . . . , LH ,

where

` is the pixel index
KH is the number of frequency bands
ym,` is the spectral intensity of pixel ` at frequency m
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Introduction

Hyperspectral Cube

1 Hyperspectral images come as cubes:

2 Why is this important?
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Introduction

1 Spectral information is rich.
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† the spectra are from the U.S.G.S. library.
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Introduction

1 greatly helps material identification on the ground.

Alunite Alunite Andradite 1 Andradite 1 Buddingtonite

Desert varnish Dumortierite Kaolinite Montmorillonite 1 Montmorillonite 1

Muscovite Nontronite 1 Nontronite 1 Nontronite 2 Nontronite 2

Nontronite 3 Paragonite Pyrope

† figure from [Chan et al. ’11].
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Introduction

Who’re interested in HSI?

2/19/2018 Hyperspectral Systems Increase Imaging Capabilities

https://spinoff.nasa.gov/Spinoff2010/hm_4.html 1/3

The Hyperion instrument onboard the Earth
Observing-1 spacecraft obtained these images of
Iceland’s Eyjafjallajökull volcano. The left-hand
image was created with visible wavelengths; the
right-hand picture is an infrared image.

Hyperspectral Systems Increase  

Imaging Capabilities

Space Technology Hall of Fame icon 
Health and Medicine 

Originating Technology/NASA Contribution 

While the human eye can see a range of
phenomena in the world, there is a larger
range that it cannot see. Without the aid of
technology, people are limited to seeing
wavelengths of visible light, a tiny range
within the electromagnetic spectrum.
Hyperspectral imaging, however, allows
people to get a glimpse at how objects look in
the ultraviolet (UV) and infrared wavelengths
—the ranges on either side of visible light on
the spectrum.

Hyperspectral imaging is the process of
scanning and displaying an image within a
section of the electromagnetic spectrum. To
create an image the eye can see, the energy
levels of a target are color-coded and then mapped in layers. This set of images provides specific information about the way an
object transmits, reflects, or absorbs energy in various wavelengths.

Using this procedure, the unique spectral characteristics of an object can be revealed by plotting its energy levels at specific
wavelengths on a line graph. This creates a unique curve, or signature. This signature can reveal valuable information
otherwise undetectable by the human eye, such as fingerprints or contamination of groundwater  
or food.

Originally, NASA used multispectral imaging for extensive mapping and remote sensing of the Earth’s surface. In 1972, NASA
launched the Earth Resources Technology Satellite, later called Landsat 1. It had the world’s first Earth observation satellite
sensor—a multispectral scanner—that provided information about the Earth’s surface in the visible and near-infrared regions.
Like hyperspectral imaging, multispectral imaging records measurements of reflected energy. However, multispectral imaging
consists of just a few measurements, while hyperspectral imaging consists of hundreds to thousands of measurements for
every pixel in the scene.
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MISSIONS
Current, future, past
missions & launch dates

MULTIMEDIA
Images, videos, 
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NASA apps
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Introduction

Who’re interested in HSI?

2/19/2018 Hyperspectral sensor lets drones see through camouflage, spot explosives -- Defense Systems

https://defensesystems.com/articles/2014/02/25/air-force-aces-hy-hyperspectral.aspx 1/6

Search

BATTLEFIELD INTELLIGENCE

Hyperspectral sensor lets drones see
through camouflage, spot explosives
BY JOEY CHENG FEB 25, 2014

The Air Force is planning to test a high-powered spectral sensor for
unmanned aerial vehicles capable of spotting such things on the ground
as improvised explosives or camou�aged targets by identifying what those
objects are made of.

The Air Force Life Cycle Management Center has announced plans to
negotiate a contract with Raytheon Co. to test a podded version of the
Airborne Cueing and Exploitation System-Hyperspectral (ACES-HY) on the
Predator UAV.

The ACES-HY hyperspectral sensor can detect re�ections from hundreds of
bands in the electromagnetic spectrum. While humans can only detect
visible light, the sensor will be able to see a breadth of infrared
wavelengths to determine what an object is made out of, according to
Popular Mechanics. The information collected would then be compared to
a database of known signatures in order to determine what an object is.

One application for the sensor is its ability to detect improvised explosive
devices by detecting disturbed dirt. Other military uses could include
detecting camou�aged targets, chemicals and gasses, explosives, and

Share ShareShare Tweet

CONNECTED WARRIOR
  MENU
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Introduction

Other Application Domains

1 many applications in

Geology
outer space exploration
agriculture/forest inspection
mine detection
food/medicine security
...
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Problem Statement

What We Do Not Like ...

1 What we do not like about hyperspectral images is ...
FU et al.: ROBUST VOLUME MINIMIZATION-BASED MATRIX FACTORIZATION FOR REMOTE SENSING AND DOCUMENT CLUSTERING 6263

TABLE III
THE MSES OF THE PROPOSED ALGORITHM WITH AND WITHOUT

NONNEGATIVITY CONSTRAINT ON B UNDER VARIOUS SNRS.
(M, K ) = (50, 5); L = 1000; No = 20; SOR = 5 DB.

Fig. 12. MSE of the proposed algorithm with different p’s under various
SORs. (M, K ) = (50, 5); L = 1000; No = 20; SNR = 20 dB.

subproblem w.r.t. B is convex and can be solved in closed form.
When vol(B) = det(BT B), the algorithm requires much more
time compared to that of the other two regularizers. This is be-
cause the Armijo rule has to be implemented at each iteration.
In terms of accuracy, using the log det(BT B) regularizer gives
the lowest MSEs when SOR ≤ −5 dB. Using det(BT B) also
exhibits good MSE performance when SOR ≥ 0 dB. Using
Tr(GBBT ) performs slightly worse in terms of MSE, since it
is a coarse approximation to simplex volume. Interestingly, al-
though our proposed log-determinant regularizer is not an exact
measure of simplex volume as the determinant regularizer, it
yields lower MSEs relative to the latter. Our understanding is
that the performance gain results from the ease of computation.

Table III presents the MSE of the proposed algorithm with
and without nonnegativity constraint on B, respectively. We
see that the MSEs are similar, with those of the nonnegativity-
constrained algorithm being slightly lower. This result validates
the soundness of our update rule for the constrained case, i.e.,
(18). In terms of speed, the unconstrained algorithm requires
less time. We note that the nonnegativity constraint seems to
only bring marginal performance gain in this simulation. This
might be because the data are generated following the model
in (1) and (2), and under this model VolMin identifiability does
not depend on the nonnegativity of B. However, when we are
dealing with real data, adding nonnegativity constraints makes
much sense, as will be shown in the next section.

Fig. 12 shows the effect of changing p. When SOR = −10 dB,
we see that using p ∈ [0.25, 0.75] gives relatively low MSEs.
This is because using a small p is more effective in fending
against outliers that largely deviate from the nominal model.

Fig. 13. The considered subimage of the Moffet data set.

It is interesting to note that using p = 0.1 gives slightly worse
result compared to using p ∈ [0.25, 0.75]. Our understanding
is that using a very small p may lead to numerical problems,
since the weights {w�}L

�=1 can be scaled in a very unbalanced
way in such cases, resulting in ill-conditioned optimization sub-
problems. For the cases where SOR = −5 dB and 5 dB, a
similar effect can be seen. In addition, a larger range of p, i.e.,
p ∈ [0.25, 1.5], can result in good performance when SOR =
5 dB. The results suggest a strategy of choosing p: When the
data is believed to be badly corrupt, using p around 0.5 is a good
choice; and when the data is only moderately corrupted, using
p ∈ [1, 1.5] is preferable, since such a p gives good performance
and can better avoid numerical problems.

V. REAL DATA VALIDATION

In this section, we validate the proposed algorithm using two
real data sets, i.e., a hyperspectral image dataset with known
outliers and a document dataset.

A. Hyperspectral Unmixing

Hyperspectral unmixing (HU) is the application where
VolMin-based factorization is most frequently applied; see [3].
As introduced before, HU aims at estimating A, i.e., the spectral
signatures of the materials that are contained in a hyperspectral
image, and also their proportions s[�] in each pixel. It is well-
known that there are outliers in hyperspectral images, due to the
complicated reflection environment, spectral band contamina-
tion, and many other reasons [17]. In this experiment, we apply
the proposed algorithm to a subimage of the real hyperspectral
image that was captured over the Moffett Field in 1997 by the
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)1; see
Fig. 13. We remove the water absorption bands from the original
224 spectral bands, resulting in M = 200 bands for each pixel
x[�]. In this subimage with 50 × 50 pixels, there are three types
of materials–water, soil, and vegetation. In the areas where dif-
ferent materials intersect, e.g., the lake shore, there are many
outliers as identified by domain study. Our goal here is to test

1Online available http://aviris.jpl.nasa.gov/data/image_cube.html.

2 The spatial resolution is really NOT eye-pleasing.
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Problem Statement

Spatial-Spectral Resolution Trade-Off

1 Measuring hyperspectral pixels is a very complicated process and
many factors play role [Akgun et al. ’05]:

optics
EM reflection mechanism
hardware limitations, e.g., sampling strategy and sensor dynamic range.
...

2 directly improving the sensors could be very costly.

3 the spectral and spatial resolutions pose an (inevitable) trade-off in
sensor manufacturing [Yokoya et al., ’17].
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Problem Statement

1 The so-called multispectral images (MSIs) have very good spatial
resolution, but every pixel is only measured at several bands (single
digits).

WEI et al.: HYPERSPECTRAL AND MULTISPECTRAL IMAGE FUSION BASED ON A SPARSE REPRESENTATION 3663

vectorized column of P∗(Ui) is denoted by pi,j , the vector
composed of the K nonzero elements of the jth column of
Ai is denoted by aΩ̄j

i
, and the corresponding column of D̄i

is denoted by D̄Ω̄j
i
. Then, the m̃λ problems in (17) reduce to

m̃λ × npat subproblems

âΩ̄j
i

= arg min
a
Ω̄

j
i

∥∥∥pi,j − D̄Ω̄j
i
aΩ̄j

i

∥∥∥
2

F

= (D̄T
Ω̄j

i

D̄Ω̄j
i
)−1D̄T

Ω̄j
i

pi,j

for i = 1, . . . , m̃λ; j = 1, . . . , npat (18)

which can be computed in parallel. The corresponding patch
estimate is

p̂i,j �Ti,jpi,j

Ti,j = D̄Ω̄j
i
(D̄T

Ω̄j
i

D̄Ω̄j
i
)−1D̄T

Ω̄j
i

.

These patches are used to build Ū (i.e., equivalently,
P

(
D̄iAi

)
) required in the optimization w.r.t. U (see

Section IV-A). Note that Ti,j is a projection operator, and hence
is symmetric (TT

i,j = Ti,j) and idempotent (T2
i,j = Ti,j). Note

also that Ti,j needs to be calculated only once, given the
learned dictionaries and associated supports.

C. Complexity Analysis

The SALSA algorithm has the order of complexity
O (nitm̃λn log(m̃λn)) [31], where nit is the number of
SALSA iterations. The computational complexity of the patch-
wise sparse coding is O (Knpnpatm̃λ). Conducting the fusion
in a subspace of dimension m̃λ instead of working with the
initial space of dimension mλ greatly decreases the complexity
of both SALSA and sparse coding steps.

V. SIMULATION RESULTS ON SYNTHETIC DATA

This section studies the performance of the proposed sparse
representation-based fusion algorithm. The reference image
considered here as the high spatial and high spectral image is
a 128 × 128 × 93 HS image with a spatial resolution of 1.3 m
acquired by the reflective optics system imaging spectrometer
optical sensor over the urban area of the University of Pavia,
Italy. The flight was operated by the Deutsches Zentrum für
Luft- und Raumfahrt (DLR, the German Aerospace Agency) in
the framework of the HySens project, managed and sponsored
by the European Union. This image was initially composed of
115 bands, which have been reduced to 93 bands after removing
the water vapor absorption bands (with spectral range from
0.43 to 0.86 m). It has received a lot of attention in the remote
sensing literature [50]–[52]. A composite color image, formed
by selecting the red, green, and blue bands of the reference
image, is shown in the left panel of Fig. 2.

A. Simulation Scenario

We propose to reconstruct the reference HS image from two
lower resolved images. A high spectral low spatial resolution
HS image has been constructed by applying a 5 × 5 Gaussian
spatial filter on each band of the reference image and down-

Fig. 2. (Left) Reference image. (Middle) HS image. (Right) MS image.

Fig. 3. IKONOS-like spectral responses.

sampling every four pixels in both horizontal and vertical
directions. In a second step, we have generated a four-band
MS image by filtering the reference image with the IKONOS-
like reflectance spectral responses depicted in Fig. 3. The HS
and MS images are both contaminated by zero-mean additive
Gaussian noises. Our simulations have been conducted with
SNR1,· = 35 dB for the first 43 bands and SNR1,· = 30 dB for
the remaining 50 bands of the HS image. For the MS image,
SNR2,· is 30 dB for all bands. The noise-contaminated HS and
MS images are depicted in the middle and right panels in Fig. 2
(the HS image has been interpolated for better visualization).

B. Learning the Subspace, Dictionaries, and Code Supports

1) Subspace: To learn the transform matrix H, we used
the PCA as in [16]. Note that PCA is a classical dimension-
ality reduction technique used in HS imagery. The empirical
correlation matrix Υ = E[xix

T
i ] of the HS pixel vectors is

diagonalized, leading to

WT ΥW = Γ (19)

where W is an mλ × mλ unitary matrix (WT = W−1), and Γ
is a diagonal matrix whose diagonal elements are the ordered
eigenvalues of Υ denoted by d1 ≥ d2 ≥ · · · ≥ dmλ

. The top
m̃λ components are selected, and the matrix H is constructed
as the eigenvectors associated with the m̃λ largest eigenvalues
of Υ. In practice, the selection of the number of principal com-
ponents m̃λ depends on how many materials (or endmembers)
the target image contains. If the number of truncated principal
components is smaller than the dimension of the subspace
spanned by the target image vectors, the projection will lead
to a loss of information. On the contrary, if the number of
principal components is larger than the real dimension, the
overfitting problem may arise, leading to a degradation of the
fusion performance. As an illustration, the eigenvalues of Υ
for the Pavia image are displayed in Fig. 4. For this example,
the m̃λ = 5 eigenvectors contain 99.9% of the information and
have been chosen to build the subspace of interest. A more
detailed discussion can be found in [45] with regard to the
choice of parameter m̃λ.
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Problem Statement

Typical Hyperspectral/Multispectral Sensors

june 2017    ieee Geoscience and remote sensinG maGazine                                                        31 

Those missions are designed and ex-
pected to enhance our understand-
ing, possibilities, and capabilities in 
a wide range of applications, such as 
the monitoring and management 
of natural resources, ecosystems, bio-
diversity, and disasters. Due to the 
inevitable tradeoff among spatial res-
olution, spectral resolution, and sig-
nal-to-noise ratio (SNR), spaceborne 
imaging spectrometers are usually 
designed to provide data with a 
moderate ground sampling distance 
(GSD) [e.g., 30 m; see the illustration 
in Figure 1(a)], limiting the range of 
 potential applications.

If higher spatial resolution (pos-
sibly MS) data of the scene of inter-
est are available, data fusion can be 
performed to generate high spatial 
resolution HS data [see Figure 1(c)]. 
These data can be thought of as the 
product of a synthetic sensor featur-
ing the high spatial resolution of the 
MS sensor and the high spectral resolution of the HS sen-
sor. They allow for various new applications, potentially 
conducted on a global scale, that, to date, have only been 
possible locally with high spatial resolution airborne-im-
aging  systems. Such applications include high spatial reso-
lution ecosystem monitoring or the high spatial resolution 
mapping of minerals, urban surface materials, and plant 
species, among many others. 

Although the number of available satellite platforms 
mounting both HS and MS imaging sensors is, to date,  lim-
ited [6], the increasing number and availability of high-res-
olution optical satellites [7]–[9] as well as ever-improving 
revisit cycles allow for the acquisition of complementary 
HS and MS images during the same season and possibly 
under similar atmospheric and illumination conditions. 
Figure 2 shows a scatter plot of selected currently opera-
tional MS satellite missions and operating and upcoming 
HS satellites over the GSD (y  axis) and the number of spec-
tral bands between 0.4 and 2.5 mn  (x  axis). Considering 
the currently available (or soon to be available) satellite pair 
constellations, the potential synthesized high-resolution 
HS sensors would fall within the purple area in the lower 
right corner in Figure 2.

A variety of HS–MS data-fusion techniques have been de-
veloped in the last decade to enhance the spatial resolution of 
HS imagery, as detailed in the “Development in Hyperspec-
tral and Multispectral Data Fusion” section. Because most in-
vestigators used limited data sets with slightly different eval-
uation methodologies, the generalizability and versatility of 
various HS–MS fusion methods remain unknown. Loncan 
et al. presented a comparative study of HS pan sharpening, 
which is a special case of HS–MS fusion [10]. Mookambiga 

and Gomathi [11] and Palubinskas [12] reported reviews of 
resolution enhancement of HS data, including HS–MS fu-
sion; however, no comparative experiment was provided. To 
the best of our knowledge, there is no study comparing dif-
ferent state-of-the-art HS–MS fusion methods with extensive 
experiments sufficient to draw meaningful conclusions.

In this article, we compare ten state-of-the-art HS–MS 
fusion methods on a variety of data sets of different nature 
and characteristics. The main contributions of this article 
are as follows:

 ◗ An objective and fair comparison. To conduct an objec-
tive and fair comparison, a total of eight data sets with 
diversity in scenes and fusion scenarios, including but 
not limited to various resolution ratios and spectral 
overlap between the two input images, were used. Pub-
licly available source codes are used for the experiments. 
All methods are optimized for maximum  individual 
performance in every experiment by extensive param-
eter tuning and optimal algorithm setting.

 ◗ A comprehensive evaluation methodology. Quantita-
tive and visual assessments of all fusion results are con-
ducted. A complementary selection of well-established 
evaluation metrics ensures an objective comparison of 
the resolution enhancement power of all investigated 
algorithms and reveals individual drawbacks and ad-
vantages relative to the other methods. Furthermore, 
application-driven evaluation of the fused data is per-
formed by examining the impact of all fusion results on 
pixel-wise classification tasks.

 ◗ Analysis of algorithm characteristics. The characteristics, 
strengths, and drawbacks are identified and discussed 
for both individual algorithms and algorithm categories  
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† [Yokoya et al., ’17]; GSD: ground sampling distance
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Problem Statement

The Fusion Problem

1 Natural idea: how about fusing HSI and MSI?

2 Consider co-registered HSI Y H ∈ RIH×JH×KH and MSI
YM ∈ RIM×JM×KM .

3 Note that we have IHJH � IMJM and KH � KM .

4 Assume there is a super-resolution image (SRI) Y S ∈ RIM×JM×KH ,
and the MSI and HSI are degraded from the SRI.

MS imageSR image SR image HS image

downsampling

2-D point-spread response
band-average relative
spectral response
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Problem Statement

Spatial Degradation

1 Illustration of spatial degradation (SRI=⇒HSI): 2-D blurring and
downsampling.

Hyperspectral Superresolution

A hyperspectral image (HSI) and multispectral image (MSI) are
space-space-spectrum cubes and can be naturally represented as
three-way tensors.
Tradeoff between spatial resolution and spectal resolution, due to
multiband sensor limitations!
Hyperspectral Superresolution refers to the problem of fusing a
HSI and a MSI to produce a super-resolution image (SRI) that admits
high spatial and spectral resolutions.

PM

P2T
P1

Charilaos I. Kanatsoulis Proposal slides January 15, 2018 19 / 43
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Problem Statement

Spectral Degradation

1 Illustration of spectral degradation (SRI=⇒MSI): spectral
aggregation.

Hyperspectral Superresolution

A hyperspectral image (HSI) and multispectral image (MSI) are
space-space-spectrum cubes and can be naturally represented as
three-way tensors.
Tradeoff between spatial resolution and spectal resolution, due to
multiband sensor limitations!
Hyperspectral Superresolution refers to the problem of fusing a
HSI and a MSI to produce a super-resolution image (SRI) that admits
high spatial and spectral resolutions.

PM

P2T
P1

Charilaos I. Kanatsoulis Proposal slides January 15, 2018 19 / 43
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Problem Statement

Problem Statement

MS imageSR image SR image HS image

downsampling

2-D point-spread response
band-average relative
spectral response

1 The hyperspectral Super-Resolution (HSR) problem: given the
HSI and MSI, recover the SRI that has the spatial resolution of the
MSI and the spectral resolution of the HSI.
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Prior Art

Prior Art

1 Much effort has been invested to this research area:

early methods based on component substitution [Carper et al. ’90];
cumbersome and unreliable.
multi-resolution analysis [Vivone et al. ’14]; advanced version of
component substitution.
state-of-art: coupled matrix factorization [Wei et al. ’17, Simoes et
al. ’15, Yokoya at al ’12, Wei et al. ’15]
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Prior Art

The LMM

1 The linear mixture model (LMM) of hperspectral pixels:

y` ≈
R∑

r=1

ar sr ,` = AHs`, ` = 1, . . . , LH(= IHJH)

where AH = [a1, . . . , aR ] ∈ RKH×R is the spectral signature matrix
and s` = [s1,`, . . . , sR,`]

> is the abundance vector.

2 Putting all pixels into a matrix YH = [y1, . . . , yLH ] ∈ RKH×LH :

YH ≈ AHSH ,

where SH = [s1, . . . , sLH ] ∈ RR×LH .

3 Note that R � min{KH , LH} and thus the matrix has low rank.

4 KH : number of bands of HSI; LH = IHJH : number of pixels of HSI.
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Prior Art

1 The MSI admits a similar model

YM ≈ AMSM , ∈ RKM×LM

2 This time R can be larger than min{KM , LM}.
3 KM : number of bands of MSI; LM = IMJM : number of pixels of MSI.

4 We also have a virtual matricized version of the SRI:

YS = AHSM ∈ RKH×IMJM

X. Fu (EECS, OSU) Tensor-Based HSR UESTC, June 13, 2018 22 / 46



Prior Art

Matrix Factorization-Based HSR: Main Idea

1 In the matrix form, the degradation model can be written as

YH = YSPH , YM = PMYS ,

where PH = P1 ⊗ P2, and ⊗ denotes the Kronecker product.

2 One possible formulation:

minimize
YS

‖YH − YSPH‖2
F + ‖YM − PMYS‖2

F

3 What’s the problem here?
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Prior Art

Matrix Factorization-Based HSR: Main Idea

1 The coupled matrix factorization idea [Wei et al. ’17, Simoes et al.
’15, Yokoya at al ’12, Wei et al. ’15]:

minimize
AH ,SM

∥∥∥∥∥∥
YH − AHSM︸ ︷︷ ︸

YS

PH

∥∥∥∥∥∥

2

F

+

∥∥∥∥∥∥
YM − PM AHSM︸ ︷︷ ︸

YS

∥∥∥∥∥∥

2

F

2 was to recover IMJMKH unknowns from IHJHKH + IMJMKM

equations; becomes recovering (IMJM + KH)R unknowns after
low-rank parametrization.

3 the workhorse in this area; a large amount of variants exist.

4 makes sense: a special case of low-rank matrix sensing.

5 works to a certain extent, but many issues exist.
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Prior Art

Issues

1 Fundamentally, the matrix factorization based super-resolution is an
inverse problem:

YH ≈ (AHSM)PH , YM ≈ PM(AHSM),

where PH and PM are structured compressing matrices.

2 There is no guarantee that YS can be found this way.

3 Performance heavily relies on initialization, prior information, and
regularization, and it varies significantly from case to case.

4 has to assume knowledge of PH and PM—hardly available in practice.
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Proposed Approach

Proposed Approach

1 Our approach [Kanatsoulis, Fu, Sidiropoulos and Ma ’18]:

tensor-based: no matricization.
identifiability-guaranteed: Y S is provably identifiable under certain
conditions.
(semi-)blind: no need to know the spatial degradation operator.
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Proposed Approach

Sneak Peek
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gives the flexibility to the proposed model to work under
scenarios when the spatial degradation operator is unknown
or poorly estimated. The purely blind approach could be of
great importance in fusing real HSI and MSI images.

VIII. CONCLUSION

In this work we proposed a novel coupled tensor factor-
ization framework to tackle the hyperspectral super-resolution
problem. To the authors knowledge this is the first provably
identifiable model to handle the HSI-MSI fusion task. Identi-
fiability is pivotal both from a theoretical and practical view-
point. It allows practitioners to experimentally design systems

that provably recover a super-resolution image. Compared to
the existing matrix based approaches, the proposed scheme
does not rely on unmixing initialization and proves robust
to different noise levels. Furthermore, it easily accommodates
scenarios where the spatial degradation operator is unknown
or inaccurately estimated, which is usually the case in practice.
Simulations using synthetically generated and real hyper-
spectral images showcase the effectiveness of the proposed
approach in reconstructing a SRI under different settings and
scenarios.

1 The proposed method (STEREO) looks very promising.

2 But what is a tensor?
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Proposed Approach Tensor Preliminaries

Tensor Preliminaries

1 A tensor X is a multi-way array whose elements are indexed by
(i , j , k, `, ...), i.e., more than two indices.

2 A third-order tensor X ∈ RI×J×K is a “shoe box”:

3 Tensors have many similarities of matrices but also striking
differences.
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Proposed Approach Tensor Preliminaries

Tensor Preliminaries

1 matrix rank: the minimum number R such that

X =
R∑

r=1

A(:, r) ◦ B(:, r) = AB>,

where ◦ denotes the outer product, A ∈ RI×R , B ∈ RJ×R .

2 tensor rank: the minimum number R such that

X =
R∑

r=1

A(:, r) ◦ B(:, r) ◦ C (:, r) = [[A,B,C ]]

where A ∈ RI×R , B ∈ RJ×R , and C ∈ RK×R .
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Proposed Approach Tensor Preliminaries

Tensor Preliminaries: Rank Decomposition
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Proposed Approach Tensor Preliminaries

Tensor Preliminaries

1 for matrices:

The rank decomposition is very nonunique: X = AB> = AQQ−1B>.
R ≤ min{I , J}: the rank has to be ≤ the outer dimensions.

2 for tensors:

The rank decomposition is essentially unique under mild conditions.
R can largely exceed I , J,K .
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Proposed Approach Tensor Preliminaries

Tensor Preliminaries - Uniqueness

1 For example:

Theorem (Chiantini et al. 2012)

Let X = JA,B,CK with A : I × R, B : J × R, and C : K × R. Assume that A, B and C
are drawn from from a jointly continuous distribution (over R(I+J+K)R). Also assume
I ≥ J ≥ K without loss of generality. If R ≤ 1

16
JK , then the decomposition of X in

terms of A,B, and C is essentially unique, almost surely.

2 essential uniqueness means that if Ã, B̃, C̃ also satisfy
X = JÃ, B̃, C̃K, we can only have A = ÃΠΛ1, B = B̃ΠΛ2, and
C = C̃ΠΛ3, where Π is a permutation matrix and Λi is a full rank
diagonal matrix such that Λ1Λ2Λ3 = I .

3 How mild the condition is? I = J = K = 100 and R ≤ 625.

4 bottom line: R ≤ O(JK ) [Sidiropoulos, De Lathauwer, Fu et al. ’17].
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Proposed Approach Tensor Preliminaries

1 Two basic operations:
Matricization:

X(1) = (C� B)A> ∈ RKJ×I

X(2) = (C� A)B> ∈ RKI×J

X(3) = (B � A)C> ∈ RIJ×K

where � denotes the Khatri-Rao product.
Mode product:

X̃ = X ×1 P1 ×2 P2 ×3 P3 = JP1A,P2B,P3CK
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Proposed Approach Insights and Algorithms

1 Let Y H ∈ RIH×JH×KH denote the HSI cube and YM ∈ RIM×JM×KM

the MSI cube. (IHJH � IMJM ,KM � KH)

2 SRI⇒MSI: YM = Y S ×3 PM .

3 SRI⇒HSI: Y H = Y S ×1 P1 ×2 P2.

4 Let Y S = JA,B,CK for some unknown A,B,C and rank R.

YM = Y S ×3 PM = JA,B,PMCK
Y H = Y S ×1 P1 ×2 P2 = JP1A,P2B,CK

X. Fu (EECS, OSU) Tensor-Based HSR UESTC, June 13, 2018 34 / 46



Proposed Approach Insights and Algorithms

1 Major insight:

1 If YM = JA,B,PMCK and Y H = JP1A,P2B,CK are unique
decompositions, then A and B can be identified from YM and C can
be identified from Y H , respectively.

2 The “compressed tensors” admit unique rank decomposition under
mild conditions.

3 If P1 and P2 are not known, it does not hurt the identifiability.
4 more good news: if one tensor is identifiable, it is enough to identify A,

B, C under mild conditions, if P1, P2 and PM are known.
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Proposed Approach Insights and Algorithms

Identifiability: Formal Result

1 Consider an estimator of A,B,C :

minimize
A,B,C

‖Y H − JP1A,P2B,CK‖2
F + λ ‖YM − JA,B,PMCK‖2

F ,

Theorem (Kanatsoulis, Fu, Sidiropoulos and Ma ’18)

Let Y H = JP1A,P2B,CK and Y M = JA,B,PMCK. Assume without loss of generality
that IM ≥ JM ≥ KM . Also assume that A, B and C are drawn from some continuous
distribution, that P1, P2 and PM have full rank, and that (A?,B?,C?) is an optimal
solution to the above problem. Then, Ŷ S(i , j , k) =

∑F
f =1 A?(i , f )B?(j , f )C?(k, f )

recovers the ground-truth Y S almost surely if R ≤ min(2bγc−2, IHJH), where
γ = log2(JMKM).
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Proposed Approach Insights and Algorithms

Identifiability: The Semi-Blind Case

1 Consider an estimator of A,B,C when the spatial degradation
operators are unknown:

minimize
A,B,Ã,B̃,C

∥∥∥Y H −
r
Ã, B̃,C

z∥∥∥
2

F
+ λ ‖YM − JA,B,PMCK‖2

F .

Theorem (Kanatsoulis, Fu, Sidiropoulos and Ma ’18)

Let Y H = JÃ, B̃,CK and Y M = JA,B,PMCK. Assume without loss of generality that
IH ≥ JH ≥ KH and IM ≥ JM ≥ KM . Also assume that A, B and C are drawn from some
continuous distribution, that P1, P2 and PM have full rank, and that
(Ã?, B̃?,A?,B?,C?) is an optimal solution to the above. Then, Ŷ S = [[A?,B?,C?]]
recovers the ground-truth Y S almost surely if R ≤ min{2bγ1c−2, 2bγ2c−2}, where
γ1 = log2(JMKM) and γ2 = log2(JHKH).
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Proposed Approach Insights and Algorithms

Remarks

1 take-home: if the HSI and MSI are low-rank tensors, we have a
decent chance for establishing identifiability of the SRI.

2 and real HSIs and MSIs are indeed with low tensor rank.

Table: The NMSE of using a low-rank tensor model to approximate a
subimage of the AVIRIS Cuprite data of size 512× 614× 187 (identifiable
when R ≤ 5, 984).

rank 300 400 500 600 700 800

NMSE 0.019 0.016 0.0142 0.0131 0.0123 0.0116
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Proposed Approach Insights and Algorithms

Algorithm

1 make use of the matricizations:

A← argmin
A
‖Y (1)

H − (C� P2B)A>P>1 ‖2
F + λ‖Y (1)

M − (PMC � B)A>‖2
F

B ← argmin
B
‖Y (2)

H − (C � P1A)B>PT
2 ‖2

F + λ‖Y (2)
H − (PMC � A)B>‖2

F

C ← argmin
C
‖Y (3)

H − (P2B � P1A)C>‖2
F + λ‖Y (3)

M − (B � A)C>P>M ‖2
F ;

2 cyclically update until convergence.

3 every subproblem is an unconstrained quadratic program (least
squares) and can be solved in closed-form.

4 the ‘(semi-)blind case’ can be solved in a similar fashion, with two
more blocks (w.r.t. Ã and B̃).

X. Fu (EECS, OSU) Tensor-Based HSR UESTC, June 13, 2018 39 / 46



Proposed Approach Insights and Algorithms

Algorithm

1 make use of the matricizations:

A← argmin
A
‖Y (1)

H − (C� P2B)A>P>1 ‖2
F + λ‖Y (1)

M − (PMC � B)A>‖2
F

B ← argmin
B
‖Y (2)

H − (C � P1A)B>PT
2 ‖2

F + λ‖Y (2)
H − (PMC � A)B>‖2

F

C ← argmin
C
‖Y (3)

H − (P2B � P1A)C>‖2
F + λ‖Y (3)

M − (B � A)C>P>M ‖2
F ;

2 cyclically update until convergence.

3 every subproblem is an unconstrained quadratic program (least
squares) and can be solved in closed-form.

4 the ‘(semi-)blind case’ can be solved in a similar fashion, with two
more blocks (w.r.t. Ã and B̃).
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X. Fu (EECS, OSU) Tensor-Based HSR UESTC, June 13, 2018 39 / 46



Proposed Approach Insights and Algorithms

Remarks

1 the first identifiability-guaranteed HSR approach.

2 identifiability holds under mild conditions.

3 does not need the knowledge of the spatial degradation operator.
4 challenges:

nonconvexity
determining the tensor rank (NP-hard in theory)
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Experiments

Experiments - Semi-Real Data

1 Salinas scene was downloaded from the AVIRIS platform. It
represents a field, consisting of 6 different agricultural products.

2 Y S ∈ R80×84×204 is a subimage of the Salinas scene.

3 The HSI Y H ∈ R20×21×204 is generated after blurring by a 9× 9
Gaussian Kernel and downsampling by a factor of 4 (choose 1 out of
16 pixels).

4 the MSI YM ∈ R80×84×6 is generated according to specs of the
LANDSAT multispectral sensor.

5 R = 100.

6 State of Art Baselines: FUMI [Wei et al., ’17], HySure [Simoes et al.,
’15], CNMF [Yokoya at al, ’12], FUSE, FUSE-Sparse [Wei et al. ’15].
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Experiments

Numerical Results

Evaluation metrics: Reconstruction Signal-to-Noise ratio (R-SNR), Cross
Correlation (CC), runtime.

RSNR = 10 log

( ∑K
k=1‖YS (:,:,k)‖2

F∑K
k=1‖ŶS (:,:,k)−YS (:,:,k)‖2

F

)

CC =
∑K

k=1 ρ
(
YS(:, :, k), ŶS(:, :, k)

)

Table: SALINAS scene

Algorithm RSNR CC runtime (sec)

STEREO 39.39 0.9864 1.5

FUSE 28.71 0.9174 0.07
FUSE-Sparse 28.71 0.9173 69.7

FUMI 29.40 0.9126 1.56

HySure 26.86 0.8981 1.6

CNMF 25.48 0.9013 1.7
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Experiments

Illustration
Illustration
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Figure: SALINAS HSI
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Experiments

Blind Reconstruction
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Fig. 8: Indian Pines

gives the flexibility to the proposed model to work under
scenarios when the spatial degradation operator is unknown
or poorly estimated. The purely blind approach could be of
great importance in fusing real HSI and MSI images.

VIII. CONCLUSION

In this work we proposed a novel coupled tensor factor-
ization framework to tackle the hyperspectral super-resolution
problem. To the authors knowledge this is the first provably
identifiable model to handle the HSI-MSI fusion task. Identi-
fiability is pivotal both from a theoretical and practical view-
point. It allows practitioners to experimentally design systems

that provably recover a super-resolution image. Compared to
the existing matrix based approaches, the proposed scheme
does not rely on unmixing initialization and proves robust
to different noise levels. Furthermore, it easily accommodates
scenarios where the spatial degradation operator is unknown
or inaccurately estimated, which is usually the case in practice.
Simulations using synthetically generated and real hyper-
spectral images showcase the effectiveness of the proposed
approach in reconstructing a SRI under different settings and
scenarios.

† STEREO does not assume knowledge of P1 and P2.
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Experiments

Blind Reconstruction
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TABLE IX: Performance of the algorithms when the spatial
degradation model is not accurately known

Algorithm NMSE CC SAM ERGAS runtime (sec)
STEREO 29.59 0.96 1.3278 0.8708 32.5
TenRec 29.49 0.9586 1.2891 0.8810 27.8

FUSE-Naive 19.03 0.7495 4.9744 2.8474 1.4
FUSE-Sparse o.o.m. - - - -

FUMI 21.91 0.8272 3.4842 2.0726 695.1
HySure 27.12 0.9333 1.9194 1.1606 146.3
CNMF 26.21 0.9263 2.1805 1.3171 68.2

importance but it can also play a significant role in practice.
In particular, identifiability renders the dependence on ini-
tialization less important. LMM coupled matrix factorization

techniques are in general non-identifiable so they heavily rely
on good initial points, which are mainly given by applying
state of the art unmixing algorithms on the HSI. However

† STEREO does not assume knowledge of P1 and P2.
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Conclusion

Conclusion

1 The problem of hyperspectral super-resolution has been introduced.

2 The idea behind state-of-the-art methods has been introduced.
3 A tensor based approach (and tensor preliminaries) has been

introduced

which provides the only theoretical identifiability support among
existing methods and
can work without the spatial degradation info.

4 Take-home: tensor is a powerful tool that has many good properties
that can be leveraged in signal processing and machine learning.
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