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Abstract

We give the first correct O(n log n) algorithm for finding a maximum
st-flow in a directed planar graph. After a preprocessing step that consists
in finding single-source shortest-path distances in the dual, the algorithm
consists of repeatedly saturating the leftmost residual s-to-t path.

1 Introduction

Informally, the maximum st-flow problem is as follows: given a graph with
positive arc-capacities, and given a source vertex s and a sink vertex t, the
goal is to find a way to route the maximum amount of a single commodity
along s-to-t paths in such a way that the amount of commodity passing through
an arc is at most the capacity of the arc. In the minimum st-cut problem, the
goal is to find a minimum-capacity set of arcs such that each s-to-t path includes
at least one arc in the set. Formal definitions will be given in Section 4.5.

The history of maximum-flow and minimum-cut problems [32] is tied closely
to planar graphs. During the height of the cold war, the United States spent con-
siderable effort analyzing the Soviet rail network: “The success of interdiction
depends largely on [the] interdiction-program efforts on the enemy’s capability
to move men and supplies.” [16] Modeling the Soviet rail network as a planar
graph (by taking the dual of the planar graph composed of boundaries of ad-
ministrative districts with edges representing transportation capacity between
these districts), Harris and Ross, as members of the RAND corporation, studied
the problem of determining the best way to interdict the Soviet rail network.
That is, they found the minimum number of rail lines that must be cut in order
to stop movement of supplies and men between tactically important locations:
they found a minimum cut in the graph. Ford and Fulkerson picked up on this
line of research, leading to their landmark paper proving the max-flow, min-cut
theorem and formulating the augmenting-path algorithm [11].

∗A preliminary version of this paper was published as [4].
†Department of Combinatorics and Optimization, University of Waterloo. Work done while

at the Department of Computer Science, Brown University. Partially supported by the Rosh
foundation, a PGS-D fellowship from NSERC, and NSF Grant CCF-0635089.

‡Department of Computer Science, Brown University. Partially supported by NSF Grant
CCF-0635089.

1



Theorem 1.1 (Max-Flow Min-Cut). The value of the maximum st-flow is equal
to the capacity of the minimum st-cut.

The Max-Flow Min-Cut Theorem was discovered independently by Ford and
Fulkerson [11], Kotzig [28], and Elias et al. [8].

2 Maximum flow algorithms

In the same paper that proved the Max-Flow Min-Cut Theorem, Ford and
Fulkerson suggested an algorithm (actually, a paradigm) for finding a maximum
flow called the augmenting path algorithm. The algorithm is iterative: find a
path P from the source to the sink and push flow on this path. The residual
capacity of an arc is the capacity less the flow on the arc. That is, the value of
the flow for each dart in P is increased by an amount ∆ that does not exceed
the residual capacity of any arc on P . A formal description will be given in
Section 4.5.

Dinitz [5] and Edmonds and Karp [7] showed that if the shortest (with
respect to number of arcs) augmenting path is chosen then there are at most
nm iterations. Dinitz gave an O(n2m) analysis for this using the notion of a
blocking flow. In [14], Goldberg and Rao gave a clever implementation resulting

in an O(min(n2/3, m1/2)m log n2

m log U)-time algorithm (where U is the largest
integral capacity) by using a different, adaptive notion of distance that is related
to the residual capacities. This is the fastest known algorithm for maximum flow
in a general graph and results in an O(n3/2 log n log U)-time algorithm for planar
graphs. For a more detailed survey see [13].

We briefly mention another type of maximum flow algorithm: the push-
relabel algorithm, alternatively known as the preflow-push algorithm [15]. Rather
than pushing flow along paths, flow is pushed on individual arcs. This algorithm
does not maintain a feasible flow during its execution; it augments arcs in order
to bring the flow closer to feasibility.

3 History of planar maximum flow

In [11], Ford and Fulkerson gave a particular augmenting-path algorithm for
the case of finding the maximum st-flow in a planar graph in which the source
and the sink are on the boundary of a common face, the infinite face. Such a
graph is termed st-planar. With the graph viewed with the source embedded
on the left and the sink on the right, the algorithm iteratively augments (in
fact, saturates) the uppermost residual path. This algorithm has the property
that the flow on an arc is never decreased. Since each augmentation makes at
least one arc non-residual, the algorithm requires at most m augmentations,
where m is the number of arcs. In 1979, Itai and Shiloach [22] showed that each
iteration of the uppermost path algorithm could be implemented in O(log n)
time, where n is the number of vertices, using a priority queue of the residual

2



darts. Consequently, the algorithm can be carried out in O(n log n) time (using
the fact that a simple planar graph with n vertices has at most 3n arcs).

In 1981, Hassin demonstrated that a maximum st-flow in an st-planar graph
G could be derived from shortest-path distances in the planar dual G∗ (see Sec-
tion 4.3) of G where capacities in G are interpreted as lengths in G∗. With this
insight, it can be seen that the uppermost-path algorithm can be interpreted
in the planar dual as Dijkstra’s algorithm. The fact that the uppermost path
algorithm can be implemented to run in O(n log n) time corresponds to the ob-
servation, due to Johnson [23], that Dijkstra’s algorithm could be implemented
to run in O(n log n) time by using a priority queue. Frederickson showed later
that shortest-path distances in a planar graph with nonnegative lengths could
be computed in O(n

√
log n) time [12], and Henzinger et al. showed subsequently

that the same problem could be solved in O(n) time [21]. Combining this with
Hassin’s result yields an O(n)-time algorithm for maximum st-flow in st-planar
graphs.

There remained, however, the more general and more natural problem of
st-flow in a planar graph in which s and t need not be on the boundary of
a common face. In 1983, Reif [30] showed that the minimum st-cut (and so,
via the Max-Flow Min-Cut Theorem, also the value of the max st-flow) could
be found in O(n log2 n) time for the special case of undirected planar graphs.
This algorithm uses the observation that the edges crossing a min st-cut form a
minimum length cycle C that separates s from t in the planar dual graph (where
s and t are faces). The algorithm finds a shortest path P in the planar dual from
a vertex incident to s to a vertex incident to t. Reif proves that C only crosses P
once. A divide-and-conquer algorithm is given in which a minimum separating
cycle is found that contains the middle edge e of P : this cycle corresponds
to a min cut in the primal separating the endpoints of e. This results in an
O(n log2 n)-time algorithm, using the aforementioned O(n log n) st-planar flow
algorithm of Itai and Shiloach. In 1985, Hassin and Johnson [18] drew on Reif’s
technique to show that the flow assignment could also be found within the same
time bound, again for undirected planar graphs. The shortest-path algorithms of
Henzinger et al. [21] or Klein [27] can be used to re-implement these algorithms
in O(n log n) time.

Still the more general problem of st-flow in a planar directed graph remained
open. This problem is more general since the problem of maximum st-flow in
an undirected graph can be converted to a directed problem by introducing two
oppositely oriented arcs of equal capacity for each edge. In 1982, Johnson and
Venkatesan gave a divide-and-conquer algorithm that finds a flow of input value
v in a directed planar graph in O(n1.5 log n) time [24]. The algorithm divides
the graph using an O(

√
n)-balanced separator, and recursively finds a flow in

each side of value v. The flow on the O(
√

n)-boundary edges of each subproblem
might not be feasible; each boundary edge is made feasible via an st-planar flow
computation.

In 1989, Miller and Naor [29] showed that finding a maximum st-flow can
be reduced to a sequence of shortest-path computations in a graph with pos-
itive and negative lengths. In 2001, Fakcharoenphol and Rao [10] presented
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an O(n log3 n) algorithm for the latter problem, implying an O(n log3 n logC)
bound on maximum flow where C is the sum of the integral capacities.

Year Restriction Time Reference

1956 st-planar O(n2) Ford and Fulkerson [11]
1979 st-planar O(n log n) Itai and Shiloach [22]
1982 fixed value O(n

√
n log n) Johnson and Venkatesan [24]

1983 value

undirected O(n log2 n) Reif [30]

1985 undirected O(n log2 n) Hassin and Johnson [18]
1987 st-planar O(n

√
log n) Hassin [17] using

Frederickson [12]
1997 st-planar O(n) Hassin [17] using

Henzinger et al. [21]
1997 undirected O(n log n) Hassin and Johnson [18] using

Henzinger et al. [21]

2001 O(n log3 n log C) Miller and Naor [29] using
Fakcharoenphol & Rao [10]

Table 1: Planar Maximum-Flow and Minimum-Cut Algorithms

3.1 Toward an O(n log n) algorithm

In 1994, Weihe [36] published an O(n log n) algorithm for planar directed maxi-
mum st-flow. The algorithm, though perhaps influenced by Ford and Fulkerson’s
uppermost-path algorithm, is quite different. From the example included in his
paper, it is clear that an augmenting path is not necessarily an uppermost path
(as generalized to non-st-planar graphs). The algorithm and proof of correctness
are quite complicated.

In a preprocessing step of the algorithm, the input graph is transformed into
one satisfying the following three requirements.

1. Each vertex but the source and sink has degree exactly three;

2. there are no clockwise cycles; and

3. each arc uv belongs to a simple s-to-v path and a simple u-to-t path.

Satisfying Requirement 1 involves: splicing together every two successive arcs
sharing an endpoint of total degree two; and replacing each vertex of high degree
by a cycle, increasing the number of vertices to 2m, which is at most 6n. Re-
quirement 2 can be satisfied by using a reduction of Khuller, Naor, and Klein [26]
to computing shortest-path distances in the dual (and so can be computed in
O(n) time using the algorithm of Henzinger et al. [21]). Details of this step will
be given in Section 5.1.

Requirement 3 is problematic. Weihe states “To satisfy this assumption,
simply remove all arcs that violate it. None of these arcs will help us solve
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our problem.” However, as pointed out by Biedl, Brejová, and Vinař [3], there
is no known O(n log n)-time algorithm to delete all such arcs. They give the
best known algorithm to date, which runs in O(n2) time. To our knowledge,
the dependence of Weihe’s proof of correctness on Requirement 3 has not been
resolved. Although Weihe has claimed that his algorithm can be corrected, this
has not been verified.

4 Preliminaries

4.1 Graphs

Let G be a directed graph with arc-set A. For each arc a ∈ A, we define two
oppositely directed darts, one in the same orientation as a (which we sometimes
identify with a) and one in the opposite orientation.

We define rev (·) to be the function that takes each dart to the correspond-
ing dart in the opposite direction. Formally, the dart set is A × {±1}, and
rev (〈a, i〉)) = 〈a,−i〉. The head and tail of a dart d in a graph G (written
headG(d) and tailG(d)) are such that the dart is oriented from tail to head. We
may omit the subscript when doing so introduces no ambiguity. We may use
uv to indicate a dart d such that u = tail(d) and v = head(d) when there is no
ambiguity due to parallel darts.

Walks, Paths and Cycles

A nonempty x-to-y walk is a nonempty sequence of darts d1 . . . dk such that
headG(d1) = x, tailG(dk) = y and, for i = 2, . . . , k, headG(di−1) = tailG(di).
The walk is said to contain a vertex if the vertex is the head or tail of one of the
darts making up the walk. The start vertex of the walk is defined to be the tail
of d1, and the end vertex is defined to be the head of dk. We denote the start
and end vertices of a walk W by start(W ) and end(W ), respectively. An empty
walk W is specified by a single vertex v such that start(W ) = end(W ) = v.

A walk in which no dart appears more than once is a path. If in addition
headG(dk) = tailG(d1) then the path is a cycle. A path/cycle of darts is simple
if no vertex occurs twice as the head of a dart in the path/cycle. A path/cycle
is said to be directed if each of its darts has the same orientation as the corre-
sponding arc. We use the term undirected when we wish to emphasize that a
path/cycle need not be directed. A graph or subgraph is connected if for every
pair u, v of vertices it contains an undirected u-to-v path.

Subpaths and path concatenation

For a walk W containing vertices u and v, W [u, v] denotes the u-to-v subwalk
of W . (If u or v occurs more than once in W , we will use this notation only
when it is clear which occurrence is intended.) If W is a cycle, W [u, v] denotes
a subpath of the cycle.
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W [·, v] is shorthand for W [start(W ), v], and W [u, ·] is shorthand for W [u, end(W )].
We use W [u, v) to denote the walk obtained from W [u, v] by deleting the last
dart; W (u, v] and W (u, v) are defined similarly. The reverse of W = d1 . . . dk,
denoted by rev (W ), is the walk rev (dk) rev (dk−1) . . . rev (d1).

If P = d1 . . . dk and Q = e1 . . . eℓ are walks such that end(P ) = start(Q), we
use P ◦ Q to denote the walk d1 . . . dke1 . . . eℓ.

Subgraphs

A subgraph H of a graph G is identified with a subset of arcs.
A spanning tree T of G is a connected subgraph of G that contains all

vertices of G and contains no undirected simple cycle. For vertices u and v,
T [u, v] denotes the unique (undirected) u-to-v path through T .

If a vertex of T is designated as a root, we use T [u] to denote the u-to-root
path in T . Let xy be an edge of T where T [x] includes y. Then the corresponding
dart, oriented from x to y, is called the parent dart of x in T .

For a graph G and a set S of vertices of G, δ+

G(S) is the set of darts whose
tails are in S and whose heads are not. (We omit the subscript when the choice
of graph is clear from the context.) Such a set of darts is called a cut. A cut is
a simple cut if both S and V \ S are connected. A simple cut is also known as
a bond.

4.2 Vector spaces

The arc space of a graph G = 〈V, A〉 is the vector space RA: a vector δ in arc
space assigns a real number δ[a] to each arc a ∈ A. It is notationally convenient
to interpret a vector δ in arc space as assigning real numbers to all darts. For
a dart 〈a, i〉 (i = ±1), we define

δ[〈a, i〉] = i · δ[a].

That is, if d is a dart in the same direction as the corresponding arc a then
δ[d] = δ[a], and if d points in the opposite direction then δ[d] = −δ[a].

For each arc a, we define δ(a) to be the vector in arc space that assigns 1 to
a and zero to all other arcs:

∀a′ ∈ A, δ(a)[a′] =

{

1 if a′ = a,
0 otherwise.

For a multi-set S of darts, we define δ(S) =
∑

d∈S δ(d).
The cycle space of G is the subspace of the arc space spanned by

C = {δ(C) : C a cycle of darts in G}.

We will refer to vectors in cycle space alternatively as circulations.
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4.3 Planar graphs

According to the geometric definition, a planar graph is a graph for which there
exists a planar embedding. A planar embedding of a graph is a drawing of the
graph on the plane (or the surface of a sphere) so that vertices are mapped
to distinct points and edges are mapped to non-crossing curves. A face is a
connected component in the set of points that are not in the image of any arc
or vertex. For a connected graph embedded on the plane, there is one infinite
face. For a connected graph embedded on the sphere, an arbitrary face can be
designated as the infinite face. We denote the infinite face by f∞.

One can alternatively define embeddings combinatorially, without reference
to topology [19, 6, 38]. A combinatorial embedding is sometimes called a rotation
system. A combinatorial embedding is given by a permutation π such that for
each dart d, π(d) is the dart e such that x = tail(d) = tail(e) and e is the
dart immediately after d in the counterclockwise ordering of the darts around
x. While such a formulation frequently makes the implementation of algorithms
simpler, we will only use the permutation π explicitly in a few places throughout
this work. However, we note that for all the algorithms contained herein, a
combinatorial embedding is sufficient for implementation.

Duals of planar graphs

Corresponding to every connected planar embedded graph G there is another
connected planar embedded graph denoted G∗. The faces of G are the vertices
of G∗ and vice versa. The arcs (and hence darts) of G correspond one-to-one
with those of G∗. If d is a dart of G, the tail of the corresponding dart of G∗

is the face to the left of d, and the head is the face to the right of d. Thus
intuitively the geometric orientation in G∗ of the dart corresponding to d is
obtained by rotating the embedding of d clockwise roughly 90 degrees. It is
notationally convenient to equate the darts of G with the darts of G∗. We call
G the primal graph and G∗ the dual. An example is given in Figure 1. The
rotation system for the combinatorial embedding of G∗ is denoted π∗ and is
equal to π ◦ rev.

The boundary of a face f of a planar embedded graph is the cycle consisting
of darts whose tail in the planar dual is f , ordered according to the cycle of π∗

corresponding to f . Figure 1 gives an example. We denote the boundary of f
by ∂f . The boundary of the planar embedded graph G is denoted by ∂G and is
defined to be the boundary of its infinite face. According to our convention, for
a face f other than the infinite face, ∂f is oriented counterclockwise, and ∂f∞
is oriented clockwise.

We will liberally use the following two classical results on planar graphs.
These theorems are illustrated in Figures 2 and 3, respectively.

Theorem 4.1 (Interdigitating Spanning Trees [9, 34]). For a spanning tree T
of G, the set of arcs not in T form a spanning tree of the dual G∗.

We denote the set of arcs not in T by T ∗.
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a

bc

d

Figure 1: A planar graph and its dual: the primal is given by solid vertices and
solid arcs and the dual is given by open vertices and dotted arcs. The boundary
of one of the faces is the cycle a rev (b) c d.

Figure 2: The primal is given by solid arcs and the dual by dotted arcs. The
dark bold edges form a spanning tree T of the primal. The edges not in T form
a spanning tree T ∗ of the dual.

Theorem 4.2 (Cycle-Cut Duality [37]). In a connected planar graph, a set of
darts forms a simple directed cycle in the primal iff it forms a simple directed
cut in the dual.

Circulations

Recall that the cycle space of G is the subspace of the arc space spanned by
C = {δ(C) : C a cycle of darts in G}. Recall that ∂f consists of the darts
making up the boundary of face f . In a connected planar graph, the set of
vectors

{δ(∂f) : f a face of G, f 6= f∞}
is a basis for the cycle space of G. Therefore, any vector η ∈ C can be represented
as a linear combination of these basis vectors. We use φ to denote the vector of
coefficients for this linear combination, so

η =
∑

f 6=f∞

φ[f ]δ(∂f)
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Figure 3: The primal is given by solid edges and the dual by dotted edges.
The dark bold (directed) darts form a simple directed cycle in the dual and a
directed bond, δ+(S), in the primal, where S is the set of the lower 4 vertices.

We call φ a potential assignment, and we refer to φ[f ] as the potential of face f .
This use of potentials was introduced by Hassin [17] for st-planar graphs, and
by Miller and Naor [29] for general planar graphs. We adopt the convention
that φ[f∞] = 0.

Encloses

For a simple cycle C with a geometric embedding, we can say that C strictly
encloses a dart, vertex or face if the dart, vertex or face is embedded inside C
with respect to f∞. We formalize this definition for any cycle C (not necessarily
simple).

Let C be a cycle and let φ be the potential corresponding to the circulation
δ(C). Cycle C encloses a face f if φ[f ] 6= 0. Cycle C strictly encloses a dart
d if C encloses the faces to the left and right of d (tailG∗(d) and headG∗(d),
respectively). Cycle C encloses a dart d if C strictly encloses d, d ∈ C or
rev (d) ∈ C. Cycle C encloses or strictly encloses a vertex v if C encloses or
strictly encloses, respectively) all the darts incident to v.

Clockwise and Counterclockwise

A circulation is defined as counterclockwise (abbreviated c.c.w.) if the potential
of every face is nonnegative [26]. A circulation is defined as clockwise (abbre-
viated c.w.) if the potential of every face is non-positive. A directed cycle C
of darts is clockwise if δ(C) is clockwise. A cycle or circulation may be neither
counterclockwise nor clockwise, but a simple cycle is either clockwise or coun-
terclockwise. These definitions have geometric interpretations, as illustrated by
Figure 4.

For any face f , the boundary of f is a clockwise cycle if f 6= f∞ and a
counterclockwise cycle if f = f∞.

9



(a) (b)

Figure 4: (a) A clockwise cycle. (b) A cycle that is neither clockwise nor
counterclockwise.

a

b

d

Figure 5: The dart d enters the path a ◦ b from the right because d does not
appear among the sequence of darts in counterclockwise order between b and
rev (a).

Entering and Crossing

The notions of entering and crossing are illustrated in Figures 5 and 6.
Suppose a, b, and d are darts such that head(a) = tail(b) = head(d): we say

d enters a ◦ b at head(a). If in addition rev (d) is not among b, π(b), π(π(b)), . . . ,
πk(b)=rev (a) then d is said to enter a ◦ b from the right at head(a). (See
Figure 5.) A path that contains d is said to enter a walk that contains a◦b from
the right. Enters from the left, leaves from the right, etc., are defined similarly.

Suppose paths P and Q are such that R is a maximal common subpath of
P and Q. We say that P crosses Q if

• P enters Q from the right at start(R) and P leaves Q from the left at
end(R), or

• P enters Q from the left at start(R) and P leaves Q from the right at
end(R).

If P and Q are paths that do not cross, then they are non-crossing. A
path/cycle is non-self-crossing if for every pair P and Q of subpaths of the
path, P does not cross Q. Note that, for any face f , the boundary of f is a
non-self-crossing cycle.

We will use the following lemma in Section 6 where we will use non-self-
crossing cycles (simple cycles are not sufficiently general). This lemma allows
us to build non-self-crossing cycles from other non-self-crossing cycles.
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P
Q

x

y

(a)

P

Q

(b) (c)

v

(d)

Figure 6: (a) P crosses Q: P enters Q on the right at x and P leaves Q on the
left at y. (b) P and Q are non-crossing. (c) This is a self-crossing cycle. (d)
This is a non-self-crossing but non-simple cycle, since vertex v occurs twice.

Lemma 4.3 (Composition Lemma). Let C be a non-self-crossing cycle and let
A be a non-self-crossing path with endpoints on C such that no part of A is
enclosed by C. Then

A ◦ C[end(A), start(A)]

is a non-self-crossing cycle.

Proof. Since no part of A is enclosed by C, A does not cross C. It follows that
A ◦ C[end(A), start(A)] is non-self-crossing.

4.4 Clockwise and leftmost

An x-to-y walk A is left of an x-to-y walk B if δ(A)−δ(B) is a clockwise circu-
lation. (This definition was given by [27] for paths, but generalizes naturally to
walks.) Likewise A is right of B if δ(A)−δ(B) is a counterclockwise circulation.
Left of and right of are transitive, reflexive, antisymmetric relations. An x-to-y
path A is the leftmost x-to-y path in a graph if, for every x-to-y path B, A is
left of B. There is not necessarily a leftmost walk: suppose P = Q ◦ C is the
leftmost path where Q is an x-to-y path and C is a c.w. cycle; then R = P ◦C is
a walk that is left of P and R ◦C is left of R and so on. However, the following
lemma allows us to consider only simple paths when we are considering graphs
with no clockwise cycles.

Lemma 4.4. Let G be a graph with no clockwise cycles. If P is a leftmost walk,
then P is a simple path.

Proof. Assume for a contradiction that P is not a simple path. Let x be a
vertex that occurs at least twice on P . Let x1 be the first occurrence of x on P
and let x2 be the last. Then C = P [x1, x2] is a cycle. Since G has no clockwise
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cycles, C must be counterclockwise. Let P ′ = P [·, x1]◦P [x2, ·] be the path that
is obtained from P by removing C. The circulation

δ(P ) − δ(P ′) = δ(C)

is counterclockwise, so P is strictly right of P ′. Thus P is not leftmost, a
contradiction.

Lemma 4.5. Every subpath of a leftmost path is a leftmost path.

Proof. Let P be a leftmost path. Let Q be an x-to-y subpath of P . Suppose
there is another x-to-y path Q′ 6= Q that is left of Q. Let P ′ = P [·, x]◦Q′◦P [y, ·].
The circulation

δ(P ′) − δ(P ) = δ(P [·, x] ◦ Q′ ◦ P [y, ·]) − δ(P [·, x] ◦ Q ◦ P [y, ·])
= δ(Q′) − δ(Q)

is clockwise since Q′ is left of Q. So P ′ 6= P is left of P , a contradiction.

Theorem 4.6 (Non-Crossing Theorem). If P and Q are disjoint non-self-
crossing x-to-y paths that do not cross each other, then P is either right of
or left of Q.

Proof. Let C = Q◦ rev (P ): C is a non-self-crossing cycle. Let GC be the graph
consisting of the edges and vertices of C. Since GC is a connected graph, each
face of GC has a connected boundary. We show that δ(C) is either a clockwise
or counterclockwise circulation.

We claim that each face of GC uses either darts of C or darts of rev (C) (but
not both). Suppose for a contradiction that f is a face that uses darts of both
C and rev (C). Let A and B be maximal subpaths of C such that A ∈ ∂f and
rev (B) ∈ ∂f and end(A) = start(rev (B)). Let A′ and B′ be the subpaths of
C such that C = A ◦ A′ ◦ B ◦ B′. Since f is a face, C does not cross ∂f and
so A ◦ A′ must leave ∂f from the left (at end(A), by the maximality of A).
Likewise, B ◦ B′ leaves ∂f from the left. Since C is non-self-crossing, A ◦ A′

does not cross B ◦ B′. However B′ is an end(B)-to-start(A) path and A′ is a
end(A)-to-start(B), so A′ crosses B′, a contradiction, proving the claim. See
Figure 7 for an illustration.

Consider the following assignment of numbers to faces.

φ[f ] =

{

−1 if ∂f ⊂ C
0 if rev (∂f) ⊂ C

By the claim, every face is assigned a number.
If φ[f∞] = 0, then φ is a valid potential assignment and corresponds to the

circulation η = δC. Then C is clockwise and Q is left of P .
If φ[f∞] = −1, then φ + 1 is a valid potential assignment (where 1 is the

all-ones vector). It follows that C is counterclockwise and Q is right of P .
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B

B'

A

A'

f

Figure 7: If A ◦ A′ ◦ B ◦ B′ is a cycle and A ∪ rev (B) ∈ ∂f , then A′ must cross
B′.

4.5 Maximum flows and minimum cuts

We now give the formal statement of the maximum-flow and minimum-cut prob-
lems. Given a graph G, a source vertex s, a sink vertex t, and an assignment
c(·) of real-valued capacities to the arcs of G, the maximum-flow problem is as
follows:

max f · δ(δ+({s}))
s.t. f is a vector in arc-space (1)

f · δ(δ+({v})) = 0, ∀v ∈ V \ {s, t} (2)

0 ≤ f [a] ≤ c(a), ∀ arcs a (3)

Constraint (2) is the conservation constraint: the net flow at every non-source-
or-sink vertex is zero. Constraint (3) is the capacity constraint.

A flow assignment f or st-flow is called feasible if it satisfies these constraints.
The goal is to maximize the value of the flow, f · δ(δ+({s})). A flow of value
zero is called a circulation and is a vector in cycle space.

Given the same input, the minimum st-cut problem is:

min c(δ+(S))

s.t. s ∈ S ⊆ V \ {t} (4)

A set of vertices S satisfying Constraint (4) is called an st-cut. The value of a
cut is given by the objective function.

The capacity function c(·) assigns capacities to arcs. We extend it to darts
as follows: c(〈a, 1〉) = c(a) and c(〈a,−1〉) = 0 for each arc a. That is, a dart in
the same direction as the corresponding arc has the same capacity as the arc,
and a dart in the opposite direction has capacity zero.

A flow f assigns values to arcs. We extend it to darts as follows: f [〈a, 1〉] =
f [a] and f [〈a,−1〉] = −f [a].

For any flow f , the residual capacity of a dart d, written cf (d), is c(d)− f [d].
A dart d is residual with respect to f and c if its residual capacity is positive.

Otherwise, d is non-residual. A path is residual if all its darts are residual.
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It follows from the Max-Flow Min-Cut Theorem that a feasible st-flow f is
maximum if and only if there is no residual s-to-t path with respect to f and c.
Augmenting an st-flow f along a residual s-to-t path P , means increasing f [d]
by the same amount for each dart d in P . We call this path the augmenting
path. Suppose that f is feasible with respect to c. If the amount of the increase
is no more than

∆ = min
d∈P

c(d) − f [d],

then after augmentation the st-flow f is still feasible. If the increase is exactly
∆, then we say the augmentation saturates the path P . In this case, at least
one dart of P becomes saturated (i.e., non-residual).

5 The max-flow algorithm

We present an algorithm to find a maximum st-flow in a directed planar graph
that runs in O(n log n) time. The algorithm is a direct generalization of the
uppermost-path algorithm. Ford and Fulkerson’s algorithm finds the upper-
most flow: one in which no flow can be rerouted above the existing flow. Our
generalization finds the leftmost flow (which we define in the next section, and is
defined with respect to the infinite face). At the start of the algorithm, we start
with a leftmost flow of value zero, which is achieved via a preprocessing step
equivalent to satisfying Requirement 2 of Weihe’s algorithm. The algorithm,
which we call MaxFlow, is as follows:

• Designate a face incident to t as f∞.

• Saturate the clockwise cycles. (LeftmostCirculation)

• While there is a residual s-to-t path, saturate the leftmost such
path. (LeftmostFlow)

In Section 5.1, we review an algorithm due to Khuller, Naor, and Klein [26]
for carrying out the second step, LeftmostCirculation. This algorithm was
previously used by Weihe [36]. In Section 5.2, we discuss the third step, Left-

mostFlow. We state a theorem, the Unusability Theorem, that implies that
the third step, LeftmostFlow, takes O(n) iterations. We give an implementa-
tion in which each iteration takes O(log n) time. (More precisely, the implemen-
tation allows for some degenerate iterations in which zero flow is pushed, but
the Unusability Theorem enables us to show that the total number of iterations
is nevertheless linear.) In Section 6, we prove the Unusability Theorem.

5.1 LeftmostCirculation

The second step of the MaxFlow algorithm, LeftmostCirculation, is im-
plemented using the following algorithm, due to Khuller, Naor, and Klein [26]. It
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computes an assignment of potentials to the faces using single-source shortest-
path distances in the dual planar graph, interpreting capacities as distances.
(We denote the length of the shortest x-to-y path in G as distG(x, y).)

LeftmostCirculation(G), c(·), f∞)

• Interpret capacities c(d) as lengths of darts in the dual graph G∗.
• Let φ[f ] = distG∗(f, f∞) for every face f .
• Let η[d] = φ[tailG∗(d)] − φ[headG∗(d)] for every dart d.
• Return η.

Lemma 5.1 (Khuller et al. [26]). The graph has no clockwise cycle that is
residual with respect to the circulation returned by LeftmostCirculation.

Proof. Let C be a clockwise cycle of darts in G and let T be the tree representing
the shortest-path distances computed in LeftmostCirculation. There is a
path in T to f∞ from every face enclosed by C, so at least one dart of C is in
the shortest-path tree. Let d be such a dart:

cη(d) = c(d) − η[d]

= c(d) − (distG∗(tailG∗(d), f∞) − distG∗(headG∗(d), f∞))

= c(d) − c(d) since d is in the shortest-path tree

= 0

Since d is not residual, the cycle C is not residual.

5.2 LeftmostFlow

Weihe [36] defined a leftmost maximum st-flow. We slightly generalize this. We
say an st-flow f (not necessarily maximum) is a leftmost flow if the residual
graph with respect to f has no clockwise residual cycles.

Lemma 5.2. Let f be a leftmost flow and let P be the leftmost residual path.
The flow f ′ that results from saturating P is a leftmost flow.

Proof. Assume for a contradiction that f ′ is not a leftmost flow. By the defini-
tion of leftmost, there must then be a clockwise residual cycle C with respect to
f ′. Assume w.l.o.g. that C is simple. Since f was leftmost, C was not residual
prior to the augmentation, and so P must have a dart d in common with rev (C).

Let P ′ = P [·, tail(d)]◦C[tail(d), tail(d)]◦P [tail(d), ·] where C[tail(d), tail(d)]
is the clockwise cycle starting at tail(d). P ′ is a walk and δ(P ′) − δ(P ) =
δ(P ) + δ(C) − δ(P ) = δ(C) is a clockwise circulation and so P ′ is left of P .
Therefore P was not the leftmost residual path.

Next we discuss the third step of our MaxFlow algorithm, Leftmost-

Flow: starting with the circulation η output by the second step (Leftmost-

Circulation), repeatedly saturate the leftmost residual s-to-t path until none
remains. It is convenient for the analysis to describe LeftmostFlow as an
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algorithm that takes as input a new graph G0 and new capacity function c0(·),
derived from the original input graph Gin and capacity function cin(·), that
satisfies the following preconditions.

Precondition 5.3. G0 has no clockwise cycle of arcs.

Precondition 5.4. For every arc a in G0, c0(a) > 0.

To obtain G0 and c0(·) from the original input graph Gin and original capac-
ity function cin(·) in the MaxFlow algorithm, we use the leftmost circulation
η found in the second step. For each dart of Gin that is residual with respect
to η, we include a corresponding arc in G0, and we assign the residual capacity
of the dart as the capacity of the new arc in G0. Because Gin has no cycle of
darts that is residual with respect to η, G0 satisfies Precondition 5.3. Because
each arc in G0 arises from a residual dart, G0 satisfies Precondition 5.4.

The algorithm LeftmostFlow finds a maximum st-flow f in G0. By adding
η to f , we obtain a maximum st-flow in the original graph Gin.

However, it should be emphasized that this distinction between the input
graph Gin and G0 is purely for notational convenience; it enables the analysis
to use the term arc to refer to a dart that is residual with respect to the left-
most circulation. A simpler and equivalent version of LeftmostFlow would
simply continue working with the input graph Gin using the circulation found
by LeftmostCirculation as the initial flow assignment.

We start with an abstract version of LeftmostFlow.

(Abstract) LeftmostFlow(G0, c0, s, t, f∞)

• Initialize f = 0.
• While there is an s-to-t path that is residual w.r.t. f and c0, sat-

urate the leftmost residual s-to-t path, modifying f .
• Return f .

The following invariant of LeftmostFlow follows from Lemma 5.2:

Invariant 5.5. During the execution of LeftmostFlow, G0 has no clockwise
residual cycles with respect to f .

Corollary 5.6. During the execution of LeftmostFlow, there is no cycle of
darts all assigned positive flow.

Proof. Assume for contradiction that C is a cycle of darts all assigned positive
flow. If C is counterclockwise, then rev (C) is residual, contradicting Invari-
ant 5.5. If C is clockwise, then C contradicts Precondition 5.3.

In Ford and Fulkerson’s uppermost-path algorithm for st-planar graphs, once
flow is pushed on an arc, flow can never be removed from that arc. For planar
graphs that are not st-planar, such a strong property does not hold, as illustrated
in Figure 8. However, we prove a weaker property that suffices for the analysis.
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Figure 8: A simple example illustrating that flow can be removed from an arc in
LeftmostFlow, even in the case of unit capacities. On the left, the leftmost
residual path (dotted) pushes flow along the bottom arc. On the right is the
resulting residual graph. The leftmost residual path (dotted) removes flow from
the bottom arc.

Theorem 5.7 (Unusability Theorem). Consider the algorithm LeftmostFlow.
Suppose an arc a is augmented and some time later rev (a) is augmented. Then
arc a cannot be augmented again.

We informally explain how this theorem enables us to bound the number of
iterations; a more formal explanation appears later in this section. If an arc
a is saturated, the algorithm must augment rev (a) before augmenting a again.
The theorem therefore shows that each arc is saturated at most once. If rev (a)
is saturated, the algorithm must previously have augmented a; after rev (a) is
saturated, a itself must be augmented before rev (a) can be saturated a second
time. The theorem therefore shows that the reverse of each arc is saturated at
most once. Each iteration of the abstract version of LeftmostFlow saturates
some arc or the reverse of some arc, so the number of iterations is at most twice
the number of arcs.

In order to achieve O(log n) time per iteration, we give an implementation
of LeftmostFlow in which some iterations do not actually push any flow,
but we can nevertheless use the Unusability Theorem to bound the number of
iterations by thrice the number of arcs.

The algorithm is given in Table 2). It maintains a spanning tree T of the
graph rooted at the sink t and the corresponding dual spanning tree T ∗ rooted
at the infinite face f∞.

The tree is an undirected structure, so we modify it by ejecting or inserting
undirected edges, but as shorthand we speak of ejecting or inserting darts.

Right-first search [31] in Step 2 constructs a tree T spanning every vertex v
that can reach t in G0, such that the path T [v] is the leftmost directed v-to-t path
in G0. The primal tree T is represented using a dynamic-tree data structure [1,
2, 12, 33, 35], enabling Steps 6, 7, and 11 to run in amortized O(log n) time.
The dual tree T ∗ is represented by an Euler-tour tree data structure [20], so
Steps 8, 9 and 10 can also be implemented in amortized O(log n) time.

An iteration of Step 5 is a pivot step and is illustrated in Figure 9. To show
that LeftmostFlow(G0, c, s, t) takes O(m log n) time, we show that there are
at most 3m pivot steps (Theorem 5.15). It therefore follows that the algorithm
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(Implementation) LeftmostFlow(G0, c0, s, t)

1. Initialize f = 0.
2. Initialize T to be the right-first search tree searching backwards

from t. (Every arc in T is directed towards t.)
3. Let G be the graph obtained from G0 by deleting all vertices not

in T .
4. Initialize T ∗ to consist of the edges of G∗ that are not in T .
5. Repeat:

6. If T [s] is residual, saturate T [s], modifying f .
7. Let d be the last non-residual dart in T [s].
8. If tailG∗(d) is a descendent in T ∗ of headG∗(d), return f .
9. Let e be the parent dart in T ∗ of headG∗(d).

10. Eject e from T ∗ and insert d into T ∗.
11. Eject d from T and insert e into T .

Table 2: A network-simplex type implementation of the LeftmostFlow algo-
rithm.

runs in O(m log n) time.
First we show that the algorithm does maintain spanning trees of G and G∗.

Invariant 5.8. T is a spanning tree of G and T ∗ is a spanning tree of G∗.

Proof that the algorithm maintains the invariant. Initially, Step 2 establishes
that T is a spanning tree of G and Step 4 establishes that T ∗ is a spanning
tree of G∗, by the Interdigitating Spanning Trees Theorem. Ejecting e from
T ∗ in Step 10 breaks T ∗ into two connected component, one consisting of the
descendents of headG∗(d) in T ∗ and one consisting of the non-descendents. At
the time Step 10 is about to be executed, the condition in Step 8 is false, so
tailG∗(d) is not a descendent of headG∗(d) in T ∗. It follows that in T ∗ inserting
d joins the two connected components, so T ∗ is a spanning tree of G∗ at the
end of Step 10. By the Interdigitating Spanning Trees Theorem, therefore, T is
a tree of G after Step 11. 2

Note that Step 11 can result in reversing parent and child in some edges.
Specifically, as illustrated in Figure 9, the path in T between tailG(d) and
tailG(e) is reversed. However, this is within the scope of the dynamic-tree data
structure.

Invariant 5.9. Let e be an edge of T ∗, and let d be the corresponding dart that
is oriented away from f∞. Then d is non-residual.

Proof that the algorithm maintains the invariant. First we show that the in-
variant holds initially. T ∗ is composed of edges not in T . Let a be any arc not in
T . By construction of T , the path of arcs a◦T [headG(a)] is right of T [tailG(a)].
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Figure 9: The edges of T are solid, non-tree edges are dashed. The root of T is
the sink t. T ∗ is represented by light edges, and its root is the infinite face f∞.
In an iteration of LeftmostFlow, the s-to-t path is saturated and d is the
rootmost non-residual edge. The shaded face is headG∗(d). This face’s parent
dart e in T ∗ is ejected from T ∗ and inserted into T , and rev (d) is inserted into
T ∗ and becomes the new parent dart. The edge that immediately precedes d in
the s-to-t path gets reversed: the parent endpoint becomes the child endpoint
and vice versa.

Let C = a ◦T [headG(a), tailG(a)]. Then C is a simple c.c.w. cycle. The face to
the left of a is enclosed by C and the face to the right is not. Let S be the set
of faces enclosed by C. In G∗, a is directed out of S (i.e. a ∈ δ+

G∗(S)). Since
a is the only arc in C that is not in T and therefore is in T ∗, and since f∞ is
not enclosed by C, 〈a, 1〉 is directed towards f∞ in T ∗ and 〈a,−1〉 is oriented
away from f∞. Since the reverses of arcs have zero capacity, the invariant holds
initially.

See Figure 9 for an illustration of the next argument. Note that, in each
nonterminating pivot step, tailG∗(d) is not a descendent in T ∗ of headG∗(d).
Dart e, the parent of headG∗(d), is removed from T ∗. The component of T ∗−{e}
that contains f∞ contains tailG∗(d) and not headG∗(d), so when d is inserted
into T ∗, d is oriented away from f∞. Since d was saturated in Step 6, d is
non-residual.

Let c be a dart that remains in T ∗ during a pivot. The residual capacity of
c does not change and the orientation of c in T ∗ does not change. Therefore the
invariant holds. 2

We say that a dart d is a non-tree dart if the corresponding edge is not in T .

Lemma 5.10. There is no clockwise simple cycle whose non-tree darts are all
residual.

Proof. Suppose for a contradiction that C was such a cycle. Let S be the
set of non-tree darts in C. By Invariant 5.8, for every dart d ∈ S, the tree
T ∗ contains the edge corresponding to d. Since every dart in S is residual,
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Invariant 5.9 implies that in T ∗ the darts of S are oriented towards the root
f∞. Since C is clockwise, headG∗(d) is enclosed by C for every dart d in C.
Since T is a tree, C contains at least one non-tree dart d. The directed path
T ∗[headG∗(d)] is completely enclosed by C, implying that C also encloses f∞ =
end(T ∗[headG∗(d)]), a contradiction.

We show in the next two corollaries that the network-simplex version of Left-

mostFlow implements the abstract version. Corollary 5.11 shows that every
augmentation is along the leftmost residual s-to-t path and Corollary 5.12 shows
that the algorithm does not terminate until there is no s-to-t residual path.

Corollary 5.11. For every vertex v, there is no residual path strictly left of
T [v].

Proof. Suppose for a contradiction that there is a residual path strictly left of
T [v]. Then the leftmost residual v-to-t path P must be strictly left of T [v]. Let
Q be a subpath of P such that the endpoints of Q are on T [v] but Q and rev (Q)
are both edge disjoint from T [v]. Since P is leftmost, by Lemma 4.5, Q is left
of T [end(Q), start(Q)], so Q ◦ rev (T [end(Q), start(Q)]) is a simple c.w. cycle
whose non-tree darts are residual, contradicting Lemma 5.10.

Corollary 5.12. The st-flow f returned by the algorithm is maximum.

Proof. Refer to Figure 10. When the algorithm terminates in Step 7, tailG∗(d)
is a descendent in T ∗ of headG∗(d). Let C be the simple cycle d◦T ∗[headG∗(d),
tailG∗(d)] in the dual. In the primal G, the darts of C form a directed cut
δ+

G(S). Every dart in C except d is a non-tree dart, so the headG(d)-to-t path
in T does not use any dart in C or the reverse of any dart in C. Since t is on
the infinite face, C does not enclose t and so S does not contain t. Likewise
the s-to-tailG(d) path in T does not use any dart in C or the reverse of any
dart in C. Since d crosses C, S contains s. Since every dart comprising the
cut is non-residual, there is no residual s-to-t path. By the Max-Flow Min-Cut
Theorem, the flow is maximum.

We now show that there are at most 3m pivot steps in the LeftmostFlow

algorithm. Let d be a dart. We have the following facts with regards to the
LeftmostFlow algorithm:

Fact 1. If d is residual at time i and non-residual at time j (i < j), there was
an augmentation including d at some time between i and j.

Fact 2. If d is non-residual at time i and residual at time j (i < j), there was
an augmentation including rev (d) at some time between i and j.

Fact 3. When e is inserted into T , e is residual. (Just before e was inserted into
T , e was a parent dart in T ∗. By Invariant 5.9, rev (e) is non-residual.
Precondition 5.4 implies that e is residual.)

Fact 4. When d ejected from T , d is non-residual. (This holds by choice of d in
Step 7.)
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Figure 10: An illustration of Corollary 5.12. Darts of the dual tree are dark,
with darts of T ∗ solid. In the dual, s and t are faces, shown shaded. Upon
termination, tailG∗(d) is a descendent in T ∗ of headG∗(d). Since rev (d) is non-
residual and the reverses of dual tree darts are non-residual, the cycle shown is
a saturated cut separating s from t. The darts of this cut (in the primal) are
light.

Claim 5.13. A dart 〈a, 1〉 where a is an arc of G0 is ejected at most once.

Proof. Let a be an arc and let d = 〈a, 1〉. Suppose for a contradiction that a is
ejected at time i1 and at time i2 (i1 < i2).

To be ejected at time i1, d must be non-residual by Fact 4. Fact 1 implies
that there was an augmentation including d at some time k0 where 0 < k0 < i1.

To be ejected at time i2, d must have been inserted at some time j1 where
i1 < j1 < i2. At time j1, d is residual by Fact 3. By Fact 2, there was an
augmentation including rev (d) at some time k1 where i1 < k1 < j1.

Since there was an augmentation including d at time k0 and there was an
augmentation including rev (d) at time k1 > k0, d cannot be augmented after
time k1 by the Unusability Theorem.

Finally, to be ejected at time i2, d must be non-residual by Fact 4. By Fact
2, there was an augmentation including d at some time k2 where j1 < k2 < i2.
But d cannot be augmented after time k1. This is a contradiction.

Corollary 5.14. A dart 〈a,−1〉 where a is an arc of G0 is ejected at most
twice.

Proof. Let a be an arc and let d = 〈a,−1〉.
Suppose d is ejected at times i1 and i2. Then d must be inserted at time

i1 < j1 < i2. By Fact 4, d is non-residual at time i1 and by Fact 3, d is residual
at time j1. By Fact 2, rev (d) must be part of an augmentation at some time k1

where i1 < k1 < j1.
Likewise, by Fact 4, d is non-residual at time i2 and by Fact 1 d must be

augmented at time k2 where j1 < k2 < i2.
At time i2, d is out of the tree and non-residual. Since rev (d) cannot be

augmented after time k2 by Claim 5.13, d can never become residual again and
so cannot be inserted or ejected again.

As a consequence of the above, we have the following theorem:
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Theorem 5.15. There are at most 3m pivot steps in the LeftmostFlow

algorithm.

6 Unusability Theorem

In this section, we prove the Unusability Theorem. The structure of the proof is
as follows. We show that if an arc a is augmented and later rev (a) is aug-
mented, then a structure in the residual graph arises called an obstruction
(Lemma 6.11). We show that this structure persists under leftmost augmen-
tations (Lemma 6.12). We also prove (Lemma 6.10) that the existence of the
obstruction ensures that no leftmost residual path includes arc a, which shows
that a is never augmented again.

The idea of the proof is as follows. We assume for a contradiction that
the leftmost residual path A does include a. We use a suffix of the s-to-tail(a)
subpath of A together with paths comprising the obstruction to construct a cycle
C such that the arc a is completely enclosed by C, as shown in Figure 16(b),
and we show that the head(a)-to-s subpath of A cannot escape from this cycle
(escaping would imply that an invariant failed to hold).

We make use of Preconditions 5.3 (no c.w. cycles) and 5.4 (every arc is
initially residual). We will use the term arc to refer to an arc of G0 (and to the
corresponding dart), and use anti-arc to refer to a dart whose reverse is an arc.

Before commencing the proof, we establish some properties of leftmost resid-
ual paths and walks. Recall that since the graphs we consider have no clockwise
residual cycles (Invariant 5.5), the leftmost walk is a simple path (Lemma 4.4).

Lemma 6.1 (Prohibited augmentations). The following situations are not per-
mitted if A is a leftmost augmentation and the given vertex indices are well-
defined:

1. A[x, y] is right of a residual walk R[x, y].

2. A[x, y] makes a clockwise cycle with residual walk R[y, x].

3. A has a dart that enters a t-to-s residual walk R from the right.

Proof. We prove each part separately.

1. A[s, x] ◦R[x, y] ◦A[y, t] is left of A. This contradicts the requirement that
A is leftmost residual walk.

2. This contradicts Invariant 5.5.

3. Suppose uv is a dart of a leftmost augmentation path and suppose uv
enters a t-to-s residual walk R from the right. As such, uv /∈ R and
rev (uv) /∈ R. A[s, u] must intersect R at some vertex: let x be the last
intersection of A[s, u] with R (possibly x = s). If x ∈ R(v, s], then A[x, v]◦
R[v, x] is clockwise, contradicting Invariant 5.5. If x ∈ R(t, v) then R[x, v]
is a residual walk that is left of A[x, v], which is a prohibited augmentation
of the first kind.
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Now we define what it means to be unusable. Unusability is given by a
structure in the residual graph called an obstruction.

Definition 6.2 (Unusable Arc). An obstruction is a clockwise non-self-crossing
cycle L ◦ M where L is residual and M consists entirely of arcs. We say it is
an obstruction for an arc a if 〈a, 1〉 is the first dart of L. We say an arc a is
unusable if there is an obstruction for a.

We give a second, equivalent representation for an obstruction which will be
useful in proving the Unusability Theorem. Both are illustrated in Figure 11.

M

(a)

Q
2

Q
1

R

(b)

Figure 11: (a) An obstruction for arc a as given by Definition 6.2. (b) The
obstruction for arc a as given by Lemma 6.3 with the obstruction from (a)
shaded in the background. L, Q2 and R are residual; M , Q1 and Q2 consist of
arcs; a is the first arc of L and Q2.

Lemma 6.3. A clockwise non-self-crossing cycle C satisfies Definition 6.2 iff
it can be written as Q1 ◦ Q2 ◦ R where

1. Q1 ◦ Q2 consists entirely of arcs,

2. Q2 ◦ R is residual,

3. a is the first dart of Q2,

4. there is flow through the vertex start(R), and

5. there is flow through the vertex end(R).

Proof. The “if” direction is trivial. To prove the “only if” direction, let L ◦ M
be an obstruction for a. Since G0 has no clockwise cycle of arcs, L ◦ M cannot
consist entirely of arcs. Let b be the first anti-arc of L. By Invariant 5.5, L ◦M
cannot consist entirely of residual darts and so M cannot consist entirely of
residual darts. Let c be the first non-residual dart of M .

Let Q1 = M [tail(c), ·], let Q2 = L[·, tail(b)], and let R = L[tail(b), ·] ◦
M [·, tail(c)]. By choice of b, L[·, tail(b)] consists entirely of arcs, so property 1
holds. By choice of c, M [·, tail(c)] is residual, so property 2 holds. Since a is
the first dart of L, property 3 holds. Since b is a residual anti-arc, rev (b) carries
flow, so property 4 holds. Since c is a non-residual arc, by Precondition 5.4 it
carries flow, so property 5 holds.
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Definition 6.4. For an unusable arc a, let ∆a denote the obstruction for a that
encloses the minimum number of faces (breaking ties arbitrarily). Write ∆a as
Q1

a ◦ Q2
a ◦ Ra, and let Qa denote Q1

a ◦ Q2
a.

Considering a minimally enclosing obstruction simplifies the proofs because
it allows us to rule out the existence of certain paths that cross the obstruction.
Let C be a non-self-crossing cycle, and let P be a path whose start and end are
vertices of C. If P has at least one dart, we say P crosscuts C if every dart of
P is strictly enclosed by C. If P has no darts (i.e. start(P ) = end(P )), we say
P crosscuts C if start(P ) occurs more than once in C. Note that in either case
the path P splits C into two cycles, e.g. containing strictly fewer faces.

A non-trivial path P is a flow path if every dart of P is assigned a positive
flow value. A trivial path P (i.e. having no darts) is a flow path if there is a
dart incident to start(P ) that is assigned a positive flow value. Note that a
dart assigned a positive flow value must correspond to an arc, i.e. cannot be an
anti-arc.

Property 6.5. Suppose a is unusable. There is no residual path crosscutting
∆a from a vertex in Q2

a(·, ·] to a vertex in Q1
a.

Proof. Assume for a contradiction that W is such a residual path. Then W ◦
Q1

a[end(W ), ·] ◦ Q2
a[·, start(W )] is an obstruction for arc a that encloses fewer

faces than ∆a does. That is, W can be used to replace Ra in the obstruction.

Property 6.6. Suppose a is unusable. Q2
a belongs to a t-to-s residual path.

Proof. Since ∆a is a clockwise cycle, it cannot be residual, so Q1
a cannot be

residual. Let b be the last non-residual dart of Q1
a. Since Q1

a contains only arcs,
b carries flow and this flow must be routed to t. Let Ft be any head(b)-to-t flow
path and let Fs be any s-to-start(Ra) flow path. Since the reverse of a flow path
is residual, the path rev (Ft) ◦ Q1

a[head(b), ·] ◦ Q2
a ◦ rev (Fs) is a residual t-to-s

path.

Property 6.7. There are no flow paths that crosscut ∆a.

Proof. Assume for contradiction that F is such a flow path, and assume without
loss of generality that F is simple. Let α = start(F ) and β = end(F ). Then
C1 = ∆a[α, β] ◦ rev (F ) and C2 = F ◦ ∆a[β, α] are clockwise non-self-crossing
cycles, each enclosing fewer faces than ∆a. See Figure 12.

We will refer to the following:

Argument 1 Note that rev (F ) is residual. If ∆a[α, β] were residual then C1

would be a residual clockwise cycle, contradicting Invariant 5.5.
Since all non-residual darts of ∆a are in Q1

a, we infer that ∆a[α, β]
must include at least one dart of Q1

a.

Argument 2 Note that F consists entirely of arcs. If ∆a[β, α] consisted entirely
of arcs then C2 would be a clockwise cycle of arcs in G0, contra-
dicting Precondition 5.3. Since all anti-arcs of ∆a are in Ra, we
infer that ∆a[β, α] must include at least one dart of Ra.
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Figure 12: Property 6.7 (a) An illustration of the cycles C1 and C2 for the the
proof of Property 6.7. By Argument 1, there is an arc (bold) of Q1

a in ∆a[α, β].
By Argument 2, there is an arc (grey) of Ra in ∆a[β, α]. (b) Case 1, first sub-
case. C1 is a smaller obstruction. (c) Case 1, second sub-case. C2 is a smaller
obstruction. (d) Case 2. C1 is a smaller obstruction.

There are two cases to consider:

Case 1 start(Ra) is a vertex of ∆a[β, α]: By Argument 1, Q1
a is not a subpath

of ∆a[β, α]. If a is in ∆a[α, β] then C1 is an obstruction enclosing fewer
faces than ∆a (Figure 12b). If a is in ∆a[β, α] then C2 is an obstruction
enclosing fewer faces than ∆a (Figure 12c).

Case 2 start(Ra) is a vertex of ∆a(α, β): By Argument 2, Ra is not a subpath
of ∆a[α, β], so end(Ra) is outside ∆a[α, β]. By Argument 1, Q1

a is not
a subpath of ∆a[β, α], so α is a vertex of Q1

a. Therefore the first arc of
Q2

a, which is a, is in ∆a[α, β], so C1 is an obstruction enclosing fewer
faces than ∆a (Figure 12d).

Each case contradicts the minimality condition of ∆a.

Corollary 6.8. If ∆a strictly encloses a flow-carrying dart d, then ∆a strictly
encloses the source s and every s-to-head(d) flow path.

Proof. Suppose for a contradiction that there is a flow-carrying dart d strictly
enclosed by ∆a and an s-to-head(d) flow path P containing a dart e that is not
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strictly enclosed by ∆a. Let Q be a head(d)-to-t flow path. The path P ◦ Q
contains a subpath that starts at a vertex (head(e)) not strictly enclosed by ∆a,
goes through a dart (d) strictly enclosed by ∆a, and ends at a vertex (t) not
strictly enclosed by ∆a. Such a flow path violates Property 6.7.

For an unusable arc a, there is a start(Ra)-to-t flow path and an s-to-end(Ra)
flow path by Parts 4 and 5 of Lemma 6.3.

Corollary 6.9. For an unusable arc a, any start(Ra)-to-t flow path does not
intersect any s-to-end(Ra) flow path.

Proof. Let Ft be any start(Ra)-to-t flow path and let Fs be any s-to-end(Ra)
flow path. By Corollary 5.6, each of these paths is simple. Suppose for a
contradiction that Ft and Fs share a vertex. Let w be the first such vertex
in Ft. See Figure 13. Let F ′

s be the maximal suffix of Fs that is not strictly
enclosed by ∆a. By Corollary 6.8, F ′

s is the only part of Fs that is not strictly
enclosed by ∆a. Since Ft ends at a vertex that is not strictly enclosed by ∆a,
Property 6.7 implies that no arc of Ft is strictly enclosed by ∆a, so w must be
a vertex of F ′

s.
Let F = Ft[start(Ra), w] ◦Fs[w, end(Ra)]. F is a start(Ra)-to-end(Ra) flow

path that is not internal to ∆a. By the Non-Crossing Theorem, F is either right
of or left of Ra. There are two cases.

Case 1 If F is right of Ra, Ra◦rev (F ) is a clockwise residual cycle, contradicting
Invariant 5.5.

Case 2 If F is left of Ra, F is also left of rev (Qa) by transitivity. Hence F ◦Qa

is a clockwise cycle in G0, a contradiction. This case is illustrated in
Figure 13.

Q
a

F
t

w

R
a

F
s

s

Figure 13: If flows to and from ∆a (dashed), Fs and Ft, share a vertex w, then
we can construct from them a start(Ra)-to-end(Ra) flow path F (bold). The
shaded area is bounded by a clockwise cycle of arcs.
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Now we have all the tools needed to prove the Unusability Theorem. We prove
it in three parts. First we show that an unusable arc cannot belong to a leftmost
residual path (Lemma 6.10). Next we show that if an arc a satisfies the condi-
tion of the Unusability Theorem, there is an obstruction for a in the residual
graph (Lemma 6.11). Finally we show that obstructions persist under leftmost
augmentations (Lemma 6.12). The Unusability Theorem follows.

R

Q
1

Q
2

s

F
s

A
1

a

Figure 14: Lemma 6.10, construction of C1. The obstruction ∆a is shown in
bold. It consists of paths R, Q1, and Q2, where a is the first arc of Q2. The
s-to-end(Ra) flow path Fs is indicated by a solid line. The dashed curve A1

denotes a subpath of a leftmost residual path A that is assumed to include the
arc a. The interior of the cycle C1 is shaded.

Lemma 6.10 (Unusable Arc Consequence). A leftmost augmenting path con-
tains no unusable arcs.

Proof. Let A be the leftmost augmenting path, and assume for a contradiction
that it goes through an unusable arc a.

The goal is to first construct a non-self-crossing cycle C that strictly encloses
a and does not enclose t. A[tail(a), ·] must therefore cross C. We will show that
this results in a contradiction.

Consider the flow assignment just before augmenting. Refer to Figure 14. By
the definition of ∆a, there is an s-to-end(Ra) flow path. Let Fs be any such path
and let P1 = Q2

a ◦Ra ◦ rev (Fs). P1 is a residual tail(a)-to-s path. Let A1 be the
maximal suffix of A[s, tail(a)] that does not cross P1. Let P ′

1 = P1[·, start(A1)].
Let C1 = A1◦P ′

1. Then C1 is a residual cycle and since there are no c.w. residual
cycles, it is c.c.w. By construction, C1 is non-self-crossing.

We next define another c.c.w. non-self-crossing cycle, C2. Refer to Figure 15.
If P ′

1 does not include start(Ra), define C2 = C1. See Figure 15(a). Note that
in this case P ′

1 is a subpath of Q2
a.

Otherwise, we proceed as follows. See Figure 15(b). By the definition of
∆a, there is a start(Ra)-to-t flow path. Let Ft be any such path and let F ′

t

be the maximal prefix of Ft that is enclosed by C1 (possibly the empty path).
By Corollary 6.9, Ft and Fs do not share any vertices and by Corollary 6.8, no
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Figure 15: Lemma 6.10, the construction of C2. In both cases, the interior of
C2 is shaded. (a) An example where the subpath A1 starts in Q2. In this case
P ′

1 does not include start(Ra), so C2 is defined to be C1. (b) The case where P ′
1

includes start(Ra). In addition to the paths in Figure 14, this figure illustrates
the start(Ra)-to-t flow path Ft. The prefix F ′

t that is enclosed by C1 is indicated
in gray.

part of Ft is enclosed by ∆a. We conclude that end(F ′
t ) is in A1. We define

C2 = F ′
t ◦ A1[end(F ′

t ), ·] ◦ P1[·, start(F ′
t )]. Note that P1[·, start(F ′

t )] = Q2
a. By

definition, C2 is non-self-crossing.

R

Q
�Q

�
s

F
s

A�
F
 ����
(a)

R

Q
�Q

�
s

F
s

A�
F� ����
(b)

Figure 16: Lemma 6.10. (a) The path P2, indicated by the dashed gray curve,
is the maximal prefix of R ◦ Q1 not enclosed by C1. The interior of the cycle
C2 is shaded. (b) The cycle C is obtained by combining the cycle C2 with the
path rev (P2). Its interior is shaded. Note that C strictly encloses the arc a.
The head(a)-to-t subpath of the augmentation path A must escape from C at
some point.
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Note that, in both cases, Ra is not enclosed by C2. Refer to Figure 16.
Let P2 be the maximal subpath of Q2

a ◦ Ra ◦ Q1
a that is not enclosed by C2.

By applying the Composition Lemma (Lemma 4.3) to C2 and rev (P2), we get
a non-self-crossing cycle, C whose boundary is composed of subpaths of Ft,
A, rev (Q1

a), rev (Ra), and possibly rev (Q2
a). Further, C is c.c.w. and strictly

encloses a.
Let A3 denote the maximal prefix of A[head(a), ·] that does not cross C.

The three cases are illustrated in Figure 17.

Case 1 end(A3) ∈ Q2
a◦Ra. Let P3 = Q2

a◦Ra: P3[start(A3), end(A3)] is a bound-
ary of C and since A3 is enclosed by C, A3 is right of P3[start(A3), end(A3)],
violating Part 1 of Lemma 6.1.

Case 2 end(A3) ∈ rev (F ′
t ). Since rev (F ′

t ) is a subpath of a t-to-s residual path,
this case contradicts Part 3 of Lemma 6.1.

Case 3 end(A3) ∈ Q1
a. Let A4 be the maximal suffix of A3 that is internal to

∆a. The only boundary vertices of ∆a that are not boundary vertices
of C are the vertices of Q2

a so start(A4) must be a vertex of Q2
a. This

case therefore contradicts Property 6.5.
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(b)
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*

s

F
s

F+ ,-. /0
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Figure 17: Lemma 6.10. (a) Case 1: The augmenting path leaves C via a vertex
of Q2◦R. (b) Case 2: The augmenting path leaves C via a vertex of F ′

t . (c) Case
3: The augmenting path leaves C via a vertex of Q1. In this case, a subpath
of the augmenting path that is enclosed by ∆a goes from a vertex of Q2 to a
vertex of Q1.

Lemma 6.11 (Unusable Arc Creation). If augmentation A uses arc a in the
reverse direction, a will be unusable after augmentation A.

Proof. See Figure 18. Let a be an arc and let A be the leftmost residual s-to-t
path. Suppose d is a dart in A where d = rev (a). Since d is residual, a must
carry flow. Let F be any s-to-tail(a) flow path. Let x be the last vertex of
A[·, tail(a)] that is in F . Let L = rev (A[x, tail(a)]) and let M = F [x, tail(a)].
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Both L and M are simple and by the choice of x, L does not cross M . L is
residual after augmentation and a is the first dart of L. M consists entirely of
arcs. Since rev (M) is residual before augmentation, A[x, tail(a)] must make a
c.c.w. cycle with it by Part 2 of Lemma 6.1. Therefore M ◦ L is a c.w. non-self
crossing cycle, and hence an obstruction for a.

s

x

a

F

Figure 18: Lemma 6.11. The creation of an obstruction (whose interior is
shaded) from the flow path (dotted) through a (grey) and the augmentation
path through rev (a) (solid).

Lemma 6.12 (Unusable Arc Persistence). Once an arc becomes unusable, it
remains unusable.

Proof. Suppose a is an unusable arc at some point in time, and let A be the
leftmost residual s-to-t path at that time. The obstruction ∆a for a remains
an obstruction after augmentation along A unless the augmentation renders
some dart of Q2

a ◦ Ra non-residual. Since every dart of Q2
a is an unusable arc,

Lemma 6.10 implies that the augmentation cannot contain a dart of Q2
a. We

may therefore assume that A and Ra share a dart.
Let b be the first dart of Ra that is in A. Let A1 be the maximal suffix of

A[·, head(b)] that is not strictly enclosed by ∆a. Since A cannot enter Ra from
the right by Part 2 of Lemma 6.1 and since the left of Ra is not enclosed by ∆a,
A1 is not a trivial path.

Case 1: A1 6= A[·, head(b)]. This case is illustrated in Figure 19. Let c be the
dart of A just preceding A1. By construction of A1, the dart c is strictly enclosed
by ∆a. Both Q2

a and Ra belong to t-to-s residual paths (by Property 6.6 and
by consequence of Lemma 6.3, respectively). Since c is strictly enclosed by ∆a

and so enters ∆a from the right, head(c) cannot belong to either Q2
a or Ra by

Part 3 of Lemma 6.1. Thus head(c) is on Q1
a. Write ∆a = P ◦ P ′ where P is

a head(c)-to-head(b) path that contains b. (That is, P = Q1
a[head(c), ·] ◦ Q2

a ◦
Ra[·, head(b)].) Since A1 does not cross P , A1 is either left of or right of P .
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Figure 19: Lemma 6.12, Case 1. The obstruction ∆a is depicted by the solid
lines. The path P , on the left, consists of Q1, Q2, and the prefix of R ending
with dart b. The remainder of R, which is denoted P ′, appears on the right. The
subpath A1 of the augmenting path is represented by the dashed line. (a) A1 is
right of P . In this case, combining A1 with part of P yields a new obstruction
for a. (b) A1 is left of P . The flow path W1 is shown as a thick gray arrow.
The proof shows that this path ends on a vertex of A1 and is followed in Ft by
at least one dart.

First suppose A1 is right of P . This is the situation depicted in Fig-
ure 19(a). Since rev (A1) is residual after augmentation, rev (A1[·, tail(b)]) ◦
P [head(c), tail(b)] is an obstruction for a after augmentation, proving the lemma.

Suppose therefore that A1 is left of P . This is the situation depicted in
Figure 19(b). Let Ft be a start(Ra)-to-t flow path, and let W1 be the maximal
prefix of Ft consisting of darts enclosed by the cycle A1 ◦ rev (P ). Let W2 be the
maximal prefix of Ft[end(W1), ·] that consists only of darts strictly enclosed by
∆a. We claim that W1 ends on a vertex of the cycle A1 ◦ P ′, and W2 contains
no darts.

If W1 = Ft then W2 contains no darts, and, since t is incident to the infinite
face, which is not enclosed by A1 ◦ P ′, end(W1) is a vertex of A1 ◦ P ′, proving
the claim. Assume therefore that W1 6= Ft. If W2 were nontrivial then W2

would cross ∆a, contradicting Property 6.7. Therefore W2 contains no darts,
and W1 is immediately followed in Ft by a dart d such that d is not enclosed by
A1 ◦ rev (P ) and not strictly enclosed by ∆a = P ◦P ′. Since every dart of W1 is
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Figure 20: Lemma 6.12. The dart d4 enters d3 ◦ d2 from the right. (a) In this
case, d4 is the dart c that precedes A1 in A. (b) In this case, d4 is the dart of
A1 whose head is tail(d2).

enclosed by A1 ◦ rev (P ) and therefore by A1 ◦ P ′, we infer that tail(d) belongs
to A1 ◦ P ′, proving the claim.

Every dart of W1 is enclosed by A1 ◦ rev (P ), so end(W1) belongs to A1 ◦
rev (P ). If end(W1) were not on A1, then end(W1) would be an internal vertex
of P and an internal vertex of P ′, again contradicting Property 6.7. Thus W1

ends on A1, as shown in Figure 19(b).
Since A is a simple path ending at t, A1 is a subpath of A,and b occurs on A

after A1, it follows that A1 does not include t. Therefore W1 is a proper prefix
of Ft. Let d1 be the dart of Ft immediately after W1.

Let D = rev (W1 ◦ d1) ◦Ra[·, head(b)]. We claim that some dart of A1 enters
D from the right. This argument is illustrated in Figure 20. Note that D
contains b, which also belongs to A1. Let d2 be the first dart in D[tail(d1), ·]
that is not in rev (A1), and let d3 be its predecessor dart in D.

The dart d3 either is the reverse of a dart of A1 or is not enclosed by A1 ◦
rev (P ). The dart d2 is enclosed by A1 ◦ rev (P ) and is not the reverse of a dart
of A1. If tail(d2) = start(A1), then let d4 = c; then d4 is strictly enclosed in
∆a, and head(c) = tail(d2). Otherwise, let d4 be the dart of A1 whose head
is tail(d2). In either case, d4 enters d3 ◦ d2 from the right, as illustrated in
Figure 20. This is Situation 3 of Lemma 6.1, contradicting that lemma.

Case 2: A1 = A[·, head(b)]. This case is illustrated in Figure 21. Let Fs be
any s-to-end(Ra) flow path. Let A2 be the maximal suffix of A1 that does not
cross Fs. Let F ′

s = Fs[start(A2), ·]. Since start(A2) is not strictly enclosed by
∆a, F ′

s starts outside the interior of ∆a, and so by Property 6.7 no part of F ′
s

is interior to ∆a. Let C = F ′
s ◦ rev (Ra[tail(b), ·]) ◦ rev (A2[·, tail(b)]). By the

choice of A2, C is non-self-crossing. By Part 2 of Lemma 6.1, rev (C) is c.c.w.
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Figure 21: Lemma 6.12, Case 2.

and so C is c.w. By applying the Composition Lemma (Lemma 4.3) to ∆a and
rev (A2[·, tail(b)]) ◦ F ′

s, we get a non-self-crossing cycle C1. Let Q1 = F ′
s ◦ Q1

a

and R′ = Ra[·, tail(b)] ◦ rev (A2). Then C1 = Q1 ◦ Q2
a ◦ R′ is an obstruction for

a after augmentation since rev (A2) is residual after augmentation. This proves
the lemma.

This completes the proof of the Unusability Theorem.

7 Closing Remarks

In closing, we mention two more general versions of max-flow. The first is
maximum flow subject to vertex capacities. The best known result is by Khuller
and Naor [25]. The second problem is maximum flow with multiple sources
and/or sinks. As Miller and Naor point out [29], planarity is not preserved by the
traditional reduction from multiple-source/sink max flow to single-source/sink
max-flow. Is there a planarity-exploiting algorithm for either of these problems?
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Vysoká Škola Ekonomická, Bratislava, 1956.

[29] G. L. Miller and J. Naor. Flow in planar graphs with multiple sources and
sinks. SIAM Journal on Computing, 24(5):1002–1017, 1995.

[30] J. Reif. Minimum s-t cut of a planar undirected network in O(n log2 n)
time. SIAM Journal on Computing, 12:71–81, 1983.

35



[31] H. Ripphausen-Lipa, D. Wagner, and K. Weihe. Efficient algorithms for
disjoint paths in planar graphs. In W. Cook, L. Lovasz, and P. Sey-
mour, editors, Combinatorial Optimization, volume 20 of DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, pages 295–354.
AMS, 1995.

[32] A. Schrijver. On the history of the transportation and maximum flow
problems. Mathematical Programming, 91(3):437–445, 2002.

[33] D. Sleator and R. Tarjan. A data structure for dynamic trees. Journal of
Computer and System Sciences, 26(3):362–391, 1983.

[34] D. Sommerville. An introduction to the geometry of n dimensions. London,
1929.

[35] R. Tarjan and R. Werneck. Self-adjusting top trees. In Proceedings of the
16th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 813–
822, 2005.

[36] K. Weihe. Maximum (s, t)-flows in planar networks in O(|V |log|V |) time.
Journal of Computer and System Sciences, 55(3):454–476, 1997.

[37] H. Whitney. Planar graphs. Fundamenta mathematicae, 21:73–84, 1933.

[38] J. Youngs. Minimal imbeddings and the genus of a graph. Journal of
Mathematical Mechanic, 12:303–315, 1963.

36


