
CS515: Algorithms Fall 2018

Dynamic Programming

Attempt to solve the following four problems using dynamic programming. Your solutions (or par-
tial solutions) should be typeset and saved as a pdf before uploading to TEACH: https://teach.engr.
oregonstate.edu/teach.php by Thursday October 4 at 8.30AM. Your solutions will be graded on ef-
fort alone: if you are unable to come up with a complete solution, then indicate your ideas toward generating
a complete solution.

A complete solution to a problem will include the following elements:

• a recursive formulation of the solution to the problem

• an explanation or formal proof of why that formulation is correct

• pseudocode showing how to compute the solution in a bottom-up dynamic-programming way

• an analysis of the running time.

1. Suppose you are given an array A[1..n] of integers, which may be positive, negative, or zero. Describe a
linear-time (i.e. O(n)-time) algorithm that finds the largest sum of elements in a contiguous subarray
A[i..j]. For example, given the array [−6, 12,−7, 0, 14,−7, 5] as input, your algorithm should return
the integer 19 (the sum of [12,−7, 0, 14]).

For the sake of analysis, assume that comparing, adding, or multiplying any pair of numbers takes
O(1) time.

2. String A is a supersequence of string B if string B can be obtained from string A by removing let-
ters. For example, the strings BARNYARDSNACK, YUMMYBANANAS, and BWANWANWA are
supersequences of the string BANANA.

Give a dynamic program for finding the length of the shortest string that is a supersequence of two
input strings, A and B.

In this question, be sure to define the dynamic programming table and how to fill it in as well as
analyze the running time.

3. Find the length (number of edges) of the longest path in a binary tree.

4. Suppose you are given an n×n bitmap, represented by a 2-dimensional array M [1..n, 1..n] of 0s and 1s.
A solid block in M is a subarray of the form M [i..i′, j..j′] containing only 1-bits. Describe an algorithm
to find the area of the maximum solid block in M in O(n3) time. If you can do that, try to design a
faster algorithm that runs in O(n2) time.

1 of 1


