
CS515: Algorithms Fall 2018

Greedy and Randomized Algorithms

1. Suppose you are running a business and you get, on day one, a set of n jobs 1, 2, . . . , n. For each job,
you will get $100 less one dollar per day it takes you to complete the job. You can only work on one
job at a time and once you start a job, you must complete it. You know, on day one, how many days
each job will take. You must complete all the jobs. You want to work on the jobs in an order that will
maximize your profit.

Formally, job j takes tj days to complete. An ordering of the jobs will define a completion time Cj for
each job j. That is, if the first job in the ordering is j, then the completion time will be Cj = tj . The
completion time of any other job j′ is given by the completion time of the job before it in the ordering
plus tj′ . You want to maximize 100n−

∑n
j=1 Cj which is equivalent to minimizing

∑n
j=1 Cj .

(a) Design a greedy algorithm to find an ordering (and so define completion times) that minimizes∑n
j=1 Cj . Give pseudocode for this algorithm.

(b) Prove that your algorithm correctly minimizes
∑n

j=1 Cj .

(c) What is the running time of your algorithm?

2. You’re walking along the beach and you stub your toe on something in the sand. You dig around it
and find that it is a treasure chest of k gold bricks of different (integral) weight. Your knapsack can
only carry up to weight n before it breaks apart. You want to put as much in it as possible without
going over, but you cannot break the gold bricks up.

(a) Suppose that the k gold bricks have the weights 1, 2, 4, 8, . . . , 2k−1, for k ≥ 1. Describe a greedy
algorithm that fills the knapsack as much as possible without going over.

(b) Prove that your algorithm is correct.

(c) Give an example, including a multiset of different weight values of bricks and total weight n that
the knapsack can carry up, for which the greedy algorithm does not yield an optimal solution.

3. Consider the following randomized algorithm for generating biased random bits. The subroutine FAIR-
COIN returns either 0 or 1 with equal probability; the random bits returned by FAIRCOIN are mutually
independent.

ONEINTHREE:
if FAIRCOIN = 0

return 0
else

return 1− ONEINTHREE

(a) Prove that ONEINTHREE returns 1 with probability 1/3.

(b) What is the exact expected number of times that this algorithm calls FAIRCOIN?

(c) Now suppose you are given a subroutine ONEINTHREE that generates a random bit that is equal
to 1 with probability 1/3. Describe a FAIRCOIN algorithm that returns either 0 or 1 with equal
probability, using ONEINTHREE as your only source of randomness.

4. The IRS receives, every year, n forms with personal tax returns. The IRS, of course, can not verify all
n forms, but they can check some of them. Describe an algorithm that decides whether the number of
incorrect tax forms is larger than εn, where ε is a prespecified constant between 0 and 1.

The decision of the algorithm is considered to be incorrect if it declares that the number of incorrect
forms is smaller than εn, but it is in fact larger than 2εn. Similarly, the algorithm is considered to be
incorrect if it claims that the number of incorrect forms is larger than 2εn, where it is in fact smaller
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than εn. (Namely, if the number of incorrect forms is between εn and 2εn, any of the two answers are
acceptable.)

Your algorithm should output a correct result with probability ≥ 1− 1/n10. What is the running time
of your algorithm, assuming that verifying the correctness of a single tax form takes O(1) time? (Hint:
Use the Chernoff inequality.)
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