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(a bad sorting algorithm)

Glencora Borradaile

We are going to design and debug (using induction to help us) a (bad) in-place sorting algorithm based
on the following idea for recursion:

If we (recursively) sort the first two thirds of the array, the middle third of the resulting array
are guaranteed to be in the final two thirds of the array. Likewise, if we then sort the final two
thirds of the array, the middle third of the resulting array are guaranteed to be in the first two
thirds of the array. Sorting the first two thirds of the array (again) should result in a completely
sorted array.

Let’s try to design an algorithm sort based on this idea and, in lockstep, try to prove its correctness using
induction.

Attempt 1

sort(A[0,...,n-1])

m = floor(n/3)

sort(A[0,...,2m-1])

sort(A[m,...,n-1])

sort(A[0,...,2m-1])

return

Claim: sort correctly sorts an array of length n.

Proof by induction:

Base case. Ooops ... there isn’t a base case. Let’s add one.

We will highlight the changes that we make to the pseudocode and the proof in blue.
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Attempt 2

sort(A[0,...,n-1])

if n = 1

return

else

m = floor(n/3)

sort(A[0,...,2m-1])

sort(A[m,...,n-1])

sort(A[0,...,2m-1])

return

Claim: sort correctly sorts an array of length n.

Proof by induction:

Base case, n = 1. Since an array of length 1 is trivially sorted, the statement is true for n = 1.

Inductive hypothesis. sort correctly sorts an array of length ≤ n− 1.

Applying the axiom of induction. So that we can use the I.H., we want to make sure that the three
recursive calls are of a size strictly smaller. (Algorithmically, we want to make sure we don’t have an
infinite loop.) But notice that if n = 2, then m = 0 and the second recursive call is on an array of
length n. You might also notice that this algorithm never makes a comparison. We can solve both
issues by adding a base case!
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Attempt 3

sort(A[0,...,n-1])

if n <= 1

return

if n = 2

if A[0] > A[1]

swap A[0] and A[1]

return

else

m = floor(n/3)

sort(A[0,...,2m-1])

sort(A[m,...,n-1])

sort(A[0,...,2m-1])

return

Claim: sort correctly sorts an array of length n.

Proof by induction: Base case, n <= 2. Since an array of length 0 or 1 is trivially sorted, the statement
is true for n ≤ 1. Clearly the algorithm correctly sorts arrays of length 2.
Inductive hypothesis. sort correctly sorts an array of length ≤ n− 1.
Applying the axiom of induction. The I.H. applies to all three recursive calls since m ≥ 1 (since n ≥ 3
when we recurse). Therefore, we may assume that after each of the recursive sort calls, the corresponding
part of the array is sorted.

We will complete the proof with a proof by contradiction. That is, this is a proof by contradiction within
an inductive proof. Suppose, that our algorithm is incorrect and that, after these three recursive calls, there
are two numbers x and y of the array out of order: x > y but x is ordered before y. Consider the three parts
of the array A1 = A[0,...,m-1], A2 = A[m,...,2m-1], A3 = A[2m,...,n-1].

By the correctness of the third call
(using the I.H.), both x and y can-
not be in A1+A2 immediately before the
third call. Therefore y must be in A3

immediately before the third call. By
the correctness of the second call (us-
ing the I.H.), both x and y cannot be
in A2+A3 immediately before the second
call. Therefore x must be in A1 immedi-
ately before the second call. By the correctness of the first call (using the I.H.), both x and y cannot be in
A1+A2 immediately before the first call. Therefore y must be in A3 immediately before the first call. This is
pictured to the right.

Also by the correctness of the first call, x must be less than all the elements in A2 (red). Since y < x, y
is also less than all these elements. By the correctness of the second call all the red elements must be placed
after y, and so y along with all the elements in A2 must be moved into A3 by the second call. There are m
elements in A2 and n − 2m − 1 spots in A3 (the −1 comes from the spot that y must take up). Therefore,

for these red elements to fit in A3, we need m ≤ n − 2m − 1 or, equivalently, 3m ≤ n − 1. Since m=bn
3c ,

though, this can happen. In particular, if n = 4, 3m = 3 and n− 1 = 3. So in fact, we have shown that this
can happen. Our algorithm must have a bug. But notice, to get this proof to work, we must make it so the
red elements cannot fit into A3. That is, we want the middle third to be, if anything, bigger than the final
third. We need to change the sizes of the recursive calls, without introducing an infinite loop, that is, while
maintaining that we can still use the I.H. to argue that our three subproblems correctly sort their parts of
the array. We can do so by making the first and last third of size equal to m.
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Attempt 4

sort(A[0,...,n-1])

if n <= 1

return

if n = 2

if A[0] > A[1]

swap A[0] and A[1]

return

else

m = floor(n/3)

sort(A[0,...,n-m-1])

sort(A[m,...,n-1])

sort(A[0,...,n-m-1])

return

Claim: sort correctly sorts an array of length n.

Proof by induction: Base case, n <= 2. Since an array of length 0 or 1 is trivially sorted, the statement
is true for n ≤ 1. Clearly the algorithm correctly sorts arrays of length 2.
Inductive hypothesis. sort correctly sorts an array of length ≤ n− 1.
Applying the axiom of induction. The I.H. applies to all three recursive calls since m ≥ 1 (since n ≥ 3
when we recurse). Therefore, we may assume that after each of the recursive sort calls, the corresponding
part of the array is sorted.

We will complete the proof with a proof by contradiction. Suppose, that our algorithm is incorrect and
that, after these three recursive calls, there are two numbers x and y of the array out of order: x > y but
x is ordered before y. Consider the three parts of the array A1 = A[0,...,m-1], A2 = A[m,...,n-m-1],

A3 = A[n-m,...,n-1].
By the correctness of the third call (using the I.H.), both x and y cannot be in A1+A2 immediately before

the third call. Therefore y must be in A3 immediately before the third call. By the correctness of the second
call (using the I.H.), both x and y cannot be in A2+A3 immediately before the second call. Therefore x must
be in A1 immediately before the second call. By the correctness of the first call (using the I.H.), both x and
y cannot be in A1+A2 immediately before the first call. Therefore y must be in A3 immediately before the
first call. This is pictured below.

Also by the correctness of the first call, x must be less than all the elements in A2 (red). Since y < x,
y is also less than all these elements. By the correctness of the second call all the red elements must be
placed after y, and so y along with all the elements in A2 must be moved into A3 by the second call. There
are n − 2m elements in A2 and m − 1 spots in A3. Therefore, for these red elements to fit in A3, we need
n − 2m ≤ m − 1 or, equivalently, n ≤ 3m − 1. But n ≥ 3m. Combining these two inequalities gives us the
contradiction 3m ≤ n ≤ 3m − 1. This can never happen! Therefore, our assumption that our algorithm is
incorrect was wrong – our algorithm must correctly sort arrays of length n.
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