
CS515: Algorithms Fall 2013

Divide and conquer

For all of the following problems, a proof that the algorithm you design is correct is required.

1. For a sequence of n numbers a1, . . . , an, which we assume are all distinct, we define a significant
inversion to be a pair (ai, aj) such that if i < j and ai > 2aj . Give an O(n log n) algorithm to count
the number of significant inversions between two orderings.

2. Let merge(A,B) be the linear-time procedure that takes two sorted arrays, A and B, and returns a
single sorted array that contains the elements A ∪B.

Suppose you have k sorted arrays, each with n elements, and you want to combine them into a single
sorted array.

(a) What is the time complexity of the algorithm that merges the first two arrays, then merges in the
third array, then the fourth, and so on?

(b) Give a more efficient solution to this problem. Give pseudocode (using merge(A,B) as a black-
box) and analyze the running time.

Note that your running times should depend on both k and n.

3. You are given two sorted lists of size m and n. Give an O(logm+ log n) time algorithm for computing
the kth smallest element in the union of the two lists.

4. Suppose we are given an array A[1 . . . n] with the special property that A[1] ≥ A[2] and A[n−1] ≤ A[n].
We say that an element A[x] is a local minimum if it is less than or equal to both its neighbors, or
more formally, if A[x1] ≥ A[x] and A[x] ≤ A[x + 1]. For example, there are six local minima in the
following array:

[9 7 7 2 1 3 7 5 4 7 3 3 4 8 6 9]

We can obviously find a local minimum in O(n) time by scanning through the array. Describe and
analyze an algorithm that finds a local minimum in O(log n) time.

5. Hidden Surface removal is a problem in computer graphics that scarcely needs an introduction: when
Woody is standing in front of Buzz, you should be able to see Woody but not Buzz, when Buzz is
standing in front of Woody ,... well, you get the idea.

The magic of hidden surface removal is that you can often compute things faster than your intuition
suggests. Here’s a clean geometric example to illustrate a basic speed-up that can be achieved. you are
given n nonvertical lines in the plane, labeled L1, . . . , Ln, with the ith line specified by the equation
y = aix+ bi. We will make the assumption that no of three of the lines meet at a single point. We say
line Li is uppermost at a given x-coordinate x0 if its y-coordinate at x0 is greater than y-coordinate
of all the other lines at x0 : aix0 + bi > ajx0 + bj ∀j 6= i. We say line Li is visible if there is some
x-coordinate at which it is uppermost-intuitively, some portion of it can be seen if you look down from
“y =∞”.
Give an algorithm that takes n lines as input and in O(n log n) time returns all of the ones that are
visible.

1 of 2



CS515: Algorithms
Fall 2013

Divide and conquer

6. You are at a political convention with n delegates. Each delegate is a member of exactly one political
party. It is impossible to tell which political party a delegate belongs to. However, you can check
whether any two delegates are in the same party or not by introducing them to each other. (Members
of the same party always greet each other with smiles and friendly handshakes; members of different
parties always greet each other with angry stares and insults.)

(a) Suppose a majority (more than half) of the delegates are from the same political party. Give an
efficient algorithm that identifies a member of the majority party. Hint: perhaps the usual divide
approach is not the best one.

(b) Suppose exactly k political parties are represented at the convention and one party has a plurality :
more delegates belong to that party than to any other. Give an efficient algorithm that identifies
a member of the plurality party.

2 of 2


