
CS515: Algorithms Fall 2013

Greedy

1. Often a chashier wants to give change to a customer. Unless the customer requests otherwise, the
cashier wants to use the fewest number of bills. In a more general setting, say that the cashier
has the denominations {a1, a2, . . . , ak}, with ai < ai+1; he has an unlimited supply of bills of each
denomination.

(a) A greedy algorithm to solve this problem is to recursively choose the largest bill that is not more
than the amount of change we want to make. Construct an example where the natural greedy
algorithm does not give an optimal solution.

(b) The denominations of United States currency are $1, $2, $5, $10, $20, $50 and $100. Does the
greedy algorithm work for this set of denominations?

2. Suppose you are running a business and you get, on day one, a set of n jobs 1, 2, . . . , n. For each job,
you will get $100 less one dollar per day it takes you to complete the job. You can only work on one
job at a time and once you start a job, you must complete it. You know, on day one, how many days
each job will take. You must complete all the jobs. You want to work on the jobs in an order that will
maximize your profit.

Formally, job j takes tj days to complete. An ordering of the jobs will define a completion time Cj for
each job j. That is, if the first job in the ordering is j, then the completion time will be Cj = tj . The
completion time of any other job j′ is given by the completion time of the job before it in the ordering
plus tj′ . You want to maximize 100n−

∑n
j=1 Cj which is equivalent to minimizing

∑n
j=1 Cj .

(a) Design a greedy algorithm to find an ordering (and so define completion times) that minimizes∑n
j=1 Cj . Give pseudocode for this algorithm.

(b) Prove that your algorithm in (a) correctly minimizes
∑n

j=1 Cj .

(c) Now suppose that each job j has a penalty pj : your profit for job j is now $100 −pjCj . Design a
greedy algorithm to find an ordering (and so define completion times) that minimizes

∑n
j=1 pjCj .

Give pseudocode for this algorithm.

(d) Prove that your algorithm in (c) correctly minimizes
∑n

j=1 pjCj .

(e) What is the running time of your algorithms for part (a) and (c)?

3. Let X be a set of n intervals on the real line. A proper coloring of X assigns a color to each interval,
so that any two overlapping intervals are assigned different colors. Describe and analyze an efficient
algorithm to compute the minimum number of colors needed to properly color X . Assume that your
input consists of two arrays L[1 . . . n] and R[1 . . . n], where L[i] and R[i] are the left and right endpoints
of the ith interval.

1 of 2

CS515: Algorithms
Fall 2013

Greedy

4. Let X be a set of n intervals on the real line. A subset of intervals Y ⊆ X is called a tiling path if the
intervals in Y cover the intervals in X , that is, any real value that is contained in some interval in X is
also contained in some interval in Y . The size of a tiling path is just the number of intervals. Describe
(*cough* give pseudocode) and analyze (*cough* prove correctness and running time) an algorithm to
compute the smallest tiling path of X as quickly as possible. Assume that your input consists of two
arrays XL[1..n] and XR[1..n], representing the left and right endpoints of the intervals in X.

CS 573: Graduate Algorithms, Fall 2008
Homework 3

Due at 11:59:59pm, Wednesday, October 22, 2008

• Groups of up to three students may submit a single, common solution. Please neatly print (or
typeset) the full name, NetID, and the HW0 alias (if any) of every group member on the first page
of your submission.

1. Consider an n× n grid, some of whose cells are marked. A monotone path through the grid starts
at the top-left cell, moves only right or down at each step, and ends at the bottom-right cell. We
want to compute the minimum number of monotone paths that cover all marked cells. The input
to our problem is an array M[1 .. n, 1 .. n] of booleans, where M[i, j] = TRUE if and only if cell
(i, j) is marked.

One of your friends suggests the following greedy strategy:

• Find (somehow) one “good” path π that covers the maximum number of marked cells.

• Unmark the cells covered by π.

• If any cells are still marked, recursively cover them.

Does this greedy strategy always compute an optimal solution? If yes, give a proof. If no, give a
counterexample.

Greedily covering the marked cells in a grid with four monotone paths.

2. Let X be a set of n intervals on the real line. A subset of intervals Y ⊆ X is called a tiling path if
the intervals in Y cover the intervals in X , that is, any real value that is contained in some interval
in X is also contained in some interval in Y . The size of a tiling path is just the number of intervals.

Describe and analyze an algorithm to compute the smallest tiling path of X as quickly as
possible. Assume that your input consists of two arrays X L[1 .. n] and XR[1 .. n], representing the
left and right endpoints of the intervals in X . If you use a greedy algorithm, you must prove that it
is correct.

A set of intervals. The seven shaded intervals form a tiling path.

Figure 1: A set of intervals. The seven shaded intervals form a tiling path.

2 of 2

