CS515: Algorithms Fall 2013

Randomized algorithms

1. Consider the following randomized algorithm for generating biased random bits. The subroutine FAIR-
COIN returns either 0 or 1 with equal probability; the random bits returned by FAIRCOIN are mutually
independent.

ONEINTHREE:
if FAIRCOIN = 0
return 0

else
return 1— ONEINTHREE

(a) Prove that ONEINTHREE returns 1 with probability 1/3.
(b) What is the exact expected number of times that this algorithm calls FATIRCOIN?

(¢) Now suppose you are given a subroutine ONEINTHREE that generates a random bit that is equal
to 1 with probability 1/3. Describe a FAIRCOIN algorithm that returns either 0 or 1 with equal
probability, using ONEINTHREE as your only source of randomness.

2. (a) Suppose you have access to a function FAIRCOIN that returns a single random bit, chosen
uniformly and independently from the set {0,1}, in O(1) time. Describe and analyze an algorithm
RANDOM(n), which returns an integer chosen uniformly and independently at random from the
set {1,2,...,n}.

(b) Suppose you have access to a function FAIRCOINS(k) that returns k random bits (or equiva-
lently, a random integer chosen uniformly and independently from the set {0, 1,...,2¥ —1}) in O(1)
time, given any non-negative integer k as input. Describe and analyze an algorithm RANDOM(n),
which returns an integer chosen uniformly and independently at random from the set {1,2,...,n}.

3. Suppose you are given a graph G with weighted edges, and your goal is to find a cut whose total weight
(not just number of edges) is smallest.

(a) Describe an algorithm to select a random edge of G, where the probability of choosing edge e is
proportional to the weight of e.

(b) Prove that if you use the algorithm from part (a), instead of choosing edges uniformly at random,
the probability that the single-phase randomized min cut algorithm (GUESSMINCUT, in Jeff
Erickson’s notes) returns a minimum-weight cut is still Q(1/n?).

(c) What is the running time of your modified GUESSMINCUT algorithm?

4. Prove that the single-phase randomized min cut algorithm (GUESSMINCUT, in Jeff Erickson’s notes)
returns the second smallest cut in its input graph with probability €(1/n3). (The second smallest cut
could be significantly larger than the minimum cut.)

5. Consider the following randomized algorithm for choosing the largest bolt. Draw a bolt uniformly at
random from the set of n bolts, and draw a nut uniformly at random from the set of n nuts. If the
bolt is smaller than the nut, discard the bolt, draw a new bolt uniformly at random from the unchosen
bolts, and repeat. Otherwise, discard the nut, draw a new nut uniformly at random from the unchosen
nuts, and repeat. Stop either when every nut has been discarded, or every bolt except the one in your
hand has been discarded.

What is the expected number of nut-bolt tests performed by this algorithm? Prove your answer is
correct. [Hint: What is the expected number of unchosen nuts and bolts when the algorithm terminates?]

1of 2



CS515: Algorithms Randomized algorithms
Fall 2013

6. The IRS receives, every year, n forms with personal tax returns. The IRS, of course, can not verify
all n forms, but they can check some of them. Describe an algorithm, as fast as possible, that decides
whether the number of incorrect tax forms is larger than en, where € is a prespecified constant between
0 and 1.

The decision of the algorithm is considered to be incorrect if it declares that the number of incorrect
forms is smaller than en, but it is in fact larger than 2en. Similarly, the algorithm is considered to be
incorrect if it claims that the number of incorrect forms is larger than 2en, where it is in fact smaller
than en. (Namely, if the number of incorrect forms is between en and 2en, any of the two answers are
acceptable.)

Your algorithm should output a correct result with probability > 1 —1/n'?. What is the running time
of your algorithm, assuming that verifying the correctness of a single tax form takes O(1) time? (Hint:
Use the Chernoff inequalities.)

2 of 2



