(CS325: Visible lines project

Prof. Borradaile

Due: Thursday, October 16 at 10AM

Your report must be typeset, printed and stapled. Fach team member’s name must be listed as well as any
resources used to finish the project. For questions regarding this project, please contact your TA, Spencer
Hubbard at hubbarsp@eecs.oregonstate.edu.

For this project, you will design, implement and analyze (both experimentally and mathematically) three
algorithms for the visible line problem:

Given lines y1, .. .,y, where y;(z) = m;x+b; and my < ... < my, find the subset of visible lines.
A line y; is visible if there exists « such that for all indices j, y;(z) > y; ().

For example, if yy = =224+ 9, yo = —x + 27, y3 = 54, y4 = = + 95 and y5 = 2z + 96, then the subset of
visible lines is {y1, ¥4, y5}. These are illustrated below; the red lines are the visible lines.

3001
250
200F
150+

100+

50F

Ok

-50}

-100

-150

,200 Il Il Il Il J
-100 -80 -60 -40 -20 0 20 40 60 80 100

You may use any language you choose to implement your algorithms, but all three algorithms must be
implemented in the same language. Plan ahead: in the next project you will implement a divide and conquer
algorithm for this problem and you must use the same language for both projects — this may influence your
choice of language. (You may use a different language for Projects 3 and 4 and the TSP Challenge.) Be sure
that your algorithm is correct for any input.


mailto:hubbarsp@eecs.oregonstate.edu

Instructions

You will implement three algorithms for the visibility problem. The first two algorithms are based on the
following claim, which we prove in class (Tuesday, October 7):

Claim 1: y; is not visible if and only if then there exist j,k with j < ¢ < k such that y;(x;x) > vi(z;x)
where (2, y;(2;x)) is the point of intersection of the lines y; and yy.

Algorithm 1: Enumeration Initially, mark each line as visible. Loop over each triple of indices j < i < k
and compute the point of intersection (z; 1, y;(x; %)) of the lines y; and yx. If y;(x; %) > yi(x; k), then
mark y; as not visible.

Algorithm 2: Better Enumeration Notice that in the previous algorithm, the same line may be tested
for visibility multiple times after it has been marked as not visible. Write a new version of the first
algorithm that stops testing a line for visibility after it has been marked as not visible.

Algorithm 3: Even Better Enumeration The third algorithm is based on the following claim, which
you will prove as part of this project:

Claim 2: If {y;,,y;,,...,y;,} is the visible subset of {y1,y2,...,9i—1} (¢t < i — 1) then
{Yjr»Yjas - Yju,Yi} is the visible subset of {y1,y2,...,y;} where y;, is the last line such
that y;, (z*) > y;(z*) where (z*,y,, (z*)) is the point of intersection of the lines y;, and
Yjk—1-

This claim should allow you to iterate over indices ¢ and find the visible subset of {y;,, Yj,- -, Yjrs Yi b
given the visible subset of {y1,y2,...,%i—1}-

Testing for correctness Above all else, your algorithms should be correct. A file containing test
sets will be found here (by Tuesday, October 7):http://web.engr.oregonstate.edu/~glencora/cs325/
visibility The file has one test case per line. A line corresponding to the example above would be:

[-2, -1, 0, 1, 21, [9, 27, 54, 95, 96], [True, False, False, True, Truel

You may use this test file to check that your code is correct. Warning: Be sure to never use division!
Doing so will result in unpredictable rounding errors that can result in incorrect solutions!
See the note at the end of the accompanying notes. (These notes will appear on Tuesday, October
7.)

Experimental analysis For the experimental analysis you will plot running times as a function of input
size. Every programming language should provide access to a clock (not necessarily in seconds). Run each
of your algorithms on input arrays of size 100,200, 300, ...,900 and 1000, 2000, 3000, ...,9000 (that is, you
should have 18 data points for each algorithm). The first two algorithms may be frustratingly slow, so you
may compute running times for sizes 100, 200, 300, . .., 900.

To do this, generate random instances using a random number generator as provided by your programming
language. Remember to order your lines by increasing slope and that no two slopes should be the same.
Note that you should not include the time to generate the instance.

Plot the running times for each algorithm in a single plot. Label your plot (axes, title, etc.). Include an ad-
ditional plot of the running times on a log-log axis. See here for an explanation: http://en.wikipedia.org/
wiki/Log-log_graph Note that if the slope of a line in a log-log plot is m, then the line is of the form O(z™)
on a linear plot. You may also find these videos helpful: http://www.khanacademy.org/math/algebra/
logarithms/v/logarithmic-scale and https://www.khanacademy.org/math/probability/regression/
regression-correlation/v/fitting-a-line-to-data

For an example of an experimental analysis in java, see http://algs4.cs.princeton.edu/14analysis/


http://web.engr.oregonstate.edu/~glencora/cs325/visibility
http://web.engr.oregonstate.edu/~glencora/cs325/visibility
http://en.wikipedia.org/wiki/Log-log_graph
http://en.wikipedia.org/wiki/Log-log_graph
http://www.khanacademy.org/math/algebra/logarithms/v/logarithmic-scale
http://www.khanacademy.org/math/algebra/logarithms/v/logarithmic-scale
https://www.khanacademy.org/math/probability/regression/regression-correlation/v/fitting-a-line-to-data
https://www.khanacademy.org/math/probability/regression/regression-correlation/v/fitting-a-line-to-data
http://algs4.cs.princeton.edu/14analysis/

Project report

For each of the above algorithms, your report must include:

Run-time analysis Give pseudocode for each algorithm and an analysis of the asymptotic running-times
of the algorithms.

Correctness Prove that Claim 2 is correct and, given this claim, prove that your design for Algorithm 3 is
correct.

Experimental correctness To illustrate that your code is correct, determine the solution and value for
each instance in the correctness file, which will be here (by Tuesday, October 7):http://web.engr.
oregonstate.edu/~glencora/cs325/visibility Each line of this file is a different input. A line
corresponding to the example above would be:

[-2, -1, 0, 1, 2], [9, 27, 54, 95, 96]

Experimental analysis Perform an experimental analysis and include plots as described above. Note:
Keep the data used for these plots; you will use them in the next project.

Extrapolation and interpretation Use the data from the experimental analysis to answer the following
questions:

1. For each algorithm, what is the size of the biggest instance that you could solve with your algorithm
in one hour?

2. Determine the slope of the lines in your log-log plot and from these slopes infer the experimen-
tal running time for each algorithm. Discuss any discrepancies between the experimental and
asymptotic running times.

Code Upload your code to T.E.A.C.H. Only one student from each group should do this.


http://web.engr.oregonstate.edu/~glencora/cs325/visibility
http://web.engr.oregonstate.edu/~glencora/cs325/visibility

