
CS325: Revisit Visibility Project

Prof. Borradaile

Due: Tuesday, October 28 at 10AM

Your report must be typeset, printed and stapled. Each team member’s name must be listed as well as any
resources used to finish the project. For questions regarding this project, please contact your TA, Spencer
Hubbard at hubbarsp@eecs.oregonstate.edu.

For this project, you will revisit the visibility problem and design, analyze and implement a (hopefully)
more efficient divide-and-conquer algorithm. Recall the visibility problem:

Given lines y1, . . . , yn where yi(x) = mix+ bi and m1 < . . . < mn, find the subset of visible lines.
A line yi is visible if there exists x such that for all indices j, yi(x) ≥ yj(x).

To get there, we will start with a warm-up problem, the merging visible lines problem.

Merging visible lines

Consider the following problem:

Given two sets of lines {z1, z2, . . . , zt} and {z′1, z′2, . . . , z′s}, each ordered by (strictly) increasing
slope, and such that the slope of zt is strictly less than the slope of z′1, find the visible subset of
{z1, z2, . . . , zt} ∪ {z′1, z′2, . . . , z′s}.

Consider the following example. Among the red lines, z1, z2, z3, z4, z5 are all visible and among the blue lines
z′1, z

′
2, z
′
3, z
′
4, z
′
5 are all visible. Among z1, z2, z3, z4, z5, z

′
1, z
′
2, z
′
3, z
′
4, z
′
5 the solid lines are visible: z1, z2, z3, z

′
2, z
′
3, z
′
4, z
′
5.

Can you see a pattern? In fact, there is a pattern; the following is true (as you will prove):

1

mailto:hubbarsp@eecs.oregonstate.edu


Claim 3: If {z1, z2, . . . , zt} and {z′1, z′2, . . . , z′s} Are two visible set of lines (each ordered by
increasing slope), then the visible subset of {z1, z2, . . . , zt} ∪ {z′1, z′2, . . . , z′s} is {z1, . . . , zi} ∪
{z′j , . . . , z′s} for some i ≥ 1 and j ≤ s.

Given this claim, how do you quickly find i and j? Suppose you have discovered that {z1, . . . , zk}∪{z′`, . . . , z′s}
is visible. Can you easily determine if {z1, . . . , zk+1}∪{z′`, . . . , z′s} or {z1, . . . , zk}∪{z′`−1, . . . , z′s} are visible?
We will call this algorithm MergeVisible.

Be sure to test (experimentally) that your implementation of MergeVisible is correct! You can use
your implementations from Project 1 as a point of comparison.

Divide and Conquer

You will use MergeVisible to help design a divide-and-conquer algorithm Algorithm 4 for the original
visible lines problem. If you want to determine the visible subset of {y1, . . . , yn}, you can recursively compute
the visible subsets of y1, y2, . . . , y` and y`+1, y`+2, . . . , yn for ` = bn/2c. These recursively computed subsets
can then be merged using MergeVisible. Note that you should design MergeVisible so that the running
time of Algorithm 4 is better than Algorithm 3 (from Project 1).

Project report

Your report must include:

Proof of Claim 3 You can use any claims from previous handouts, if they are helpful.

Run-time analysis Give pseudocode for MergeVisible and Algorithm 4 and an analysis of the asymptotic
running-time of each algorithm.

Proofs of Correctness Give a proof by induction that Algorithm 4 returns the correct solution. You may
use the fact that Claim 3 is true.

Experimental correctness To illustrate that your code is correct, determine the solution for the sin-
gle instance in the file:http://web.engr.oregonstate.edu/~glencora/cs325/visibility/solve_
these_2.txt The format of this file is the same as in Project 1. You should submit a solution file to
TEACH as in Project 1 with the filename proj2 grp<i>.txt where < i > is your group number..

Experimental analysis Perform an experimental analysis of Algorithm 4 as described in the first project.
For your plots, include the data collected for Algorithms 1, 2 and 3 that you performed in the first
project. An easy way to generate an instance of size 900 is to use the slopes −449,−448, . . . , 448, 450
and then use randomly selected (integer) intercepts (over a large enough domain).

Extrapolation and interpretation Use the data from the experimental analysis to answer the following
questions:

1. For Algorithm 4, what is the size of the biggest instance that you could solve with your algorithm
in one hour? How does this compare with your answers from the first project?

2. Determine the slope of the line for Algorithm 4 in your log-log plot and from these slopes in-
fer the experimental running time for these algorithms. Discuss any discrepancies between the
experimental and theoretical running times.

Code Upload your code to T.E.A.C.H. Only one student from each group should do this.

Note! 1. You must use the same language you chose for the first project.

2. Be sure that you never use division as in the first project!

2

http://web.engr.oregonstate.edu/~glencora/cs325/visibility/solve_these_2.txt
http://web.engr.oregonstate.edu/~glencora/cs325/visibility/solve_these_2.txt

