\{Y_1, Y_3, Y_6, Y_8, Y_{10}\}^2 \text{ is the visible subset of } \{Y_1, \ldots, Y_{10}\}^3.

In Claim 2, this visible subset is called \{Y_1, Y_2, Y_3, \ldots, Y_{10}\}^3.

In this example, \(t = 5 \) and \(y_1 = Y_1, y_2 = Y_3, \ldots \) as shown above.

If we add a line to this set, \(y_{10} = Y_{10} \) in Claim 2), then the visible subset of \{Y_1, Y_2, \ldots, Y_{10}\}^3 will contain a subset of the visible subset of \{Y_1, Y_2, \ldots, Y_{10}\}^3 and \(y_{11} \). That is, adding a line can't make something visible that was previously not visible.

Notice that the visible subset of \{Y_1, Y_2, \ldots, Y_{11}\}^3.

\(\overrightarrow{\{Y_1, Y_3, Y_6, Y_{11}\}^3} \) (in red above)

This is a prefix of \(\overrightarrow{\{Y_1, Y_3, Y_6, Y_{10}\}^3} \).

You must show that this "prefix" idea is true in general.

In this example, \(j_e = 10 \) and \(j_k = 6 \). (\(y_{10} = Y_{10} \) and \(y_{11} = Y_6 \)).