Group Assignment 1

Prof. Glencora Borradaile

Due: Tuesday, October 6 at 10AM

You are encouraged to work in groups of up to three students. Only one member of each group should
submit the group’s work to TEACH, including the project report as a pdf and the code that implements
the algorithms. The report should have all member’s names included. You may use any language you
choose to implement your algorithms. No questions about this assignment will be answered after
the due date abovell

For this project, you will design, implement and analyze (both experimentally and mathematically) three
algorithms for the maximum subarray problem:

Given array of small integers a[l,...,n] (that contains at least one positive integer), compute
J
max » alk]

1<j
7 k=t

For example, MAXSUBARRAY([31, —41, 59,26, —53, 58,97, —93, —23,84]) = 187

Description of the algorithms

Your three algorithms are to be based on these ideas:

Algorithm 1: Enumeration Loop over each pair of indices ¢ < j and compute the sum, chil alk]. Keep
the best sum you have found so far.

Algorithm 2: Better Enumeration Notice that in the previous algorithm, the same sum is computed
many times. In particular, notice that 3>/ _. a[k] can be computed from 7~ a[k] in O(1) time, rather
than starting from scratch. Write a new version of the first algorithm that takes advantage of this
observation.

Algorithm 3: Dynamic Programming Your dynamic programming algorithm should be based on the
following idea:

e The maximum subarray either uses the last element in the input array, or it doesn’t.

Describe the solution to the maximum subarray problem recursively and mathematically based on the
above idea.

See pages 8-13 of https://web.engr.oregonstate.edu/~glencora/wiki/uploads/max-subarray.pdf
for more details on these algorithms.

1The due date in TEACH is 24 hours late, as submissions submitted within 24 hours of the deadline above will not be
penalized.


https://web.engr.oregonstate.edu/~glencora/wiki/uploads/max-subarray.pdf

Testing for correctness You can test the correctness of your implementations using the test sets provided
here: http://www.eecs.orst.edu/~glencora/cs325/mstest.txt The file has one test case per line (10
cases each with 100 entries). A line corresponding to the example above would be:

[31, -41, 59, 26, -53, 58, 97, -93, -23, 84], 187

with the input array followed by the sum of the maximum subarray.

Project report

Your typeset report must include:

Pseudocode Give pseudocode for each of the algorithms. Recall the discussion in class as to what the
difference is between pseudocode. Your pseudocode should make clear how many times your algorithm will

e add two numbers together
e take the max of two numbers

Note that the pseudocode in the above-linked pdf does not do this.

Run-time analysis For each algorithm, express the number of + and max (between two numbers) oper-
ations that it makes for an input array of n numbers as a sum (e.g. > i, Z;.:il 2i + 3). Give asymptotic
bounds for each. (That is, you should give three sums and three asymptotic bounds, one sum and asymptotic

bound for each algorithm.)

Experimental run-time analysis For the experimental analysis you will plot running times as a function
of input size. Every programming language should provide access to a clock (not necessarily in seconds).
Run each of your algorithms on input arrays of size 100, 200, 300, . . ., 900 and 1000, 2000, 3000, . .., 9000 (that
is, you should have 18 data points for each algorithm). The first enumerative algorithm may be frustratingly
slow, so you may compute running times for sizes 100, 200, 300, . . ., 900.

To do this, generate random instances using a random number generator as provided by your programming
language. Remember to include both positive and negative numbers! For each data point, you should take
the average of a small number (say, 10) runs to smooth out any noise. For example, for the first data point,
you will do something like:

fori = 1:10
A = random array with 100 entries
start clock
maxsubarray(A)
pause clock
return elapsed time divided by 10

Note that you should not include the time to generate the instance.

Plot the running times as a function of input size for each algorithm in a single plot. Label your plot (axes,
title, etc.). Include an additional plot of the running times on a log-log axis. See here for a tutorial on log-log
plots: http://www.eecs.orst.edu/~glencora/cs325/videos/loglogplots.mp4 (and accompanying file:
https://web.engr.oregonstate.edu/~glencora/wiki/uploads/loglogplots.m).

Note that if the slope of a line in a log-log plot is m, then the line is of the form ©(z™) on a linear
plot. Determine the slope of the three sets of data points in your log-log plot by computing a line-of-best-fit
for each set of data points (for example, by using a least-squares algorithm). From these slopes, infer the
experimental running time for each algorithm. Discuss any discrepancies between the experimental and
theoretical running times.


http://www.eecs.orst.edu/~glencora/cs325/mstest.txt
http://www.eecs.orst.edu/~glencora/cs325/videos/loglogplots.mp4
https://web.engr.oregonstate.edu/~glencora/wiki/uploads/loglogplots.m

