(CS325: Group Assignment 2

Prof. Borradaile

Due: Tuesday, October 20 at 10AM

You are encouraged to work in groups of up to three students. Only one member of each group should
submit the group’s work to TEACH, including the project report as a pdf and the code that implements
the algorithms. The report should have all member’s names included. You may use any language you
choose to implement your algorithms. No questions about this assignment will be answered after
the due date abovelll

For this project, you will design a dynamic programming algorithm for the following game that is played
ON & Moy X Mgy grid A:

You start on any square of the grid. Then on each turn, you move either one square to the right
or one square down. The game ends when you move off the edge of the board (either the bottom
side or the right side). Each square of the grid has a numerical value. Your score is given by the
sum of the values of the grid squares that you visit. The object is to maximize your score.

For example, in the grid below, the player can score 8 —6+7—3+4 = 10 by following the highlighted route.
(This is not the best solution. The best solution has value 15 — can you find it?)

1| 7|-8(10|-5
4| -9l 8| -6| 0
‘I“I'
5|-2|-6|-6| 7
‘I“I’
7| 4| T==-3 | -3
i
7| 1]|-6 4|-9
1l

Here is a basic idea for your dynamic programming algorithm: Consider the constrained subproblem of finding
the best solution (taking steps right or down) that ends at entry (4,5) (the i*" row and j** column) of A. Let
Ti, j] denote the value of this solution. Can you compute T[i, j] from T[i’, j/] for other values of i’ and j'?
You will need to find the value of the best solution as well as the path corresponding to the best solution.

Specifications

In the directory http://www.eecs.orst.edu/~glencora/cs325/mw there are several example input and
output files as well as a testing procedure (in python). In the following, all indices start at 0.
Input instance file specification e The first line specifies the number of rows 7., of A.

e The second line specifies the number of columns n., of A.

e Each of the remaining n,..,, lines is a list of n., space-separated values; each represents a row of

A.

example-input-1.txt is an input file that corresponds to the above example.

1The due date in TEACH is 24 hours late, as submissions submitted within 24 hours of the deadline above will not be
penalized.

http://www.eecs.orst.edu/~glencora/cs325/mw

Output file specification Your code should produce an output file according to the following specification:

e The first line gives the score of the solution.
e The second line gives the number of grid squares that your solution visits.

e Each remaining line gives grid squares visited by the solution in order; each line has two numbers
separated by a space, the first determines the row, and the second determines the column.

example-output-1.txt is an output file that corresponds to the (sub-optimal) solution to the above
example and example-output-1-opt.txt is an output file that corresponds to the optimal solution
to the above example.)

Several more example input and (optimal) output files are provided to help you in testing your implemen-
tation. A testing procedure, mwv.py is provided that we will use to verify the validity of your solutions. An
example usage is: python mwv.py example-input-1.txt example-output-1.txt. Note that there may
be more than one solution having the same maximum score. Your implementation may find a different route
through A, but it should have the same score as the optimum scores provided in these example cases. You
should also create your own instances to test with as well.

Instructions for report

Your report should include the following:

Recursive description Give a recursive description for solving the problem (that is for computer T4, j]
for the relevant values of ¢ and j). Be sure that your recursive description includes relevant base cases!

Pseudocode Give pseudocode for how to compute the function T'[i, j] efficiently using dynamic program-
ming. Your pseudocode should populate the entries of a dynamic programming table. Also show how
to determine the grid squares that you visit in obtaining the maximum score.

Running time Analyze the asymptotic time complexity of your algorithm.

Instructions for implementation
One group member should upload to TEACH the following:

Implement Implement your dynamic programming algorithm. Your implementation must be able to read
and write the above-described input and output files. Upload your source code to TEACH.

Testing Solve the three instances testl.txt, test2.txt, and test3.txt found inhttp://www.eecs.orst.
edu/~glencora/cs325/mw. Upload to TEACH three corresponding output files called testl_out.txt,
test2_out.txt, and test3_out.txt. Your output files should cause no errors for the testing procedure
(so test your files using the provided testing procedure first!).

http://www.eecs.orst.edu/~glencora/cs325/mw
http://www.eecs.orst.edu/~glencora/cs325/mw

