
CS325: Linear programming with Python & Matlab

Prof. Glencora Borradaile

Updated Fall 2015

The Bicycle Problem

I need to get to Portland as quickly as possible (on my bicycle). The distance is 90 miles but I only have
two Burgerville milkshakes (1000 calories and $3 each) to fuel my trip. I can bike 30 miles/hr, but that uses
up 17 calories each minute. I could bike really slowly, at 10 miles/hr and only use 3 calories each minute.
Or I could split the difference and travel at 20 miles/hr and use 10 calories each minute. What is the fastest
way I can reach Portland without running out of energy?

Objective Let t30,t20 and t10 be the lengths of time (in minutes) that I will spend travelling 30, 20 and
10 miles/hr. Then, my goal is to:

min t30 + t20 + t10

Cover enough distance I need to make sure that those times will allow me to cover the 90 miles to
Portland:

30 · t30
60

+ 20 · t20
60

+ 10 · t10
60

= 90

Notice that we don’t really need an equality, but that a ≥ will still allow us to find a feasible solution:

30 · t30
60

+ 20 · t20
60

+ 10 · t10
60

≥ 90

Simplifying (this step isn’t absolutely necessary):

3 · t30 + 2 · t20 + t10 ≥ 540

Don’t use more energy than we have I also need to make sure that I don’t use up more energy than
I have:

17 · t30 + 10 · t20 + 3 · t10 ≤ 2000

The linear program Putting it together with the additional observation that our times should not be
negative:

min t30 + t20 + t10

s.t. 3 · t30 + 2 · t20 + t10 ≥ 540

17 · t30 + 10 · t20 + 3 · t10 ≤ 2000

t30 ≥ 0

t20 ≥ 0

t10 ≥ 0

Now, we just need to find the answer to this problem.

1

Using the GLPK LP-solver through Python

We will use the GLPK (GNU Linear Programming Kit) via the PuLP LP modeler for Python to solve this
problem.

>>> from pulp import *

>>> prob = LpProblem("The Bicycle Problem", LpMinimize)

>>> t10 = LpVariable("t10",0)

>>> t20 = LpVariable("t20",0)

>>> t30 = LpVariable("t30",0)

>>> prob += t10+t20+t30

>>> prob += 3*t30+2*t20+t10 >= 540

>>> prob += 17*t30+10*t20+3*t10 <= 2000

>>> status = prob.solve()

>>> LpStatus[status]

’Optimal’

>>> value(prob.objective)

445.0

>>> value(t10)

397.5

>>> value(t20)

0.0

>>> value(t30)

47.5

Conclusion: I can get to Portland in 445 minutes (7 hours and 25 minutes) if I bike at 30 miles per hour
for 47.5 minutes and 10 miles per hour for 397.5 minutes, and (if I had to guess) probably in that order.
Not too bad for 2 milkshakes. And a lot tastier (and cheaper and more fun) than 5 gallons (or 3 million
calories) of gasoline.

Using Matlab’s linear programming solver

Let’s try the same thing again with Matlab’s linear programming solver linprog. The help page for linprog
tells us

linprog Linear programming.

X = linprog(f,A,b) attempts to solve the linear programming problem:

min f’*x subject to: A*x <= b

x

which means that we need to get our LP into the form:

min
x

f ′x

s.t. Ax ≤ b

where x, f and b are vectors and A is a matrix. Notice that the constraints are only of the form ≤. We first
need to make that so by negating our ≥ constraints:

min t30 + t15 + t10

s.t. −3 · t30 − 2 · t15 − t10 ≤ −540

17 · t30 + 10 · t15 + 3 · t10 ≤ 2000

−t30 ≤ 0

−t15 ≤ 0

−t10 ≤ 0

2

https://www.gnu.org/software/glpk/
https://projects.coin-or.org/PuLP

And turning it into matrix form:

min [1 1 1]

 t30
t15
t10

s.t.

−3 −2 −1
17 10 3
−1 0 0

0 −1 0
0 0 −1

 t30

t15
t10

 ≤

−540
2000

0
0
0

Putting this into Matlab:

>> f = [1;1;1];

>> A = [-3 -2 -1; 17 10 3; -1 0 0; 0 -1 0; 0 0 -1];

>> b = [-540;2000;0;0;0];

>> t = linprog(f,A,b)

Optimization terminated.

t =

29.5301

35.9398

379.5301

>> f’*t

ans = 445.0

Conclusion: I can get to Portland in 445 minutes (7 hours and 25 minutes) if I bike at 30 miles per hour
for 29.5 minutes, 20 miles per hour for 36 minutes and 10 miles per hour for 379.5 minutes. This is a different
answer that gives the same objective. How is it that I can get the same answer two different ways? Watch
this video to find out.

Alternative tools

There are many open-source tools for solving linear programs, and it will not matter which one you use. The
wikipedia page on linear programming maintains a list of open-source solves you may opt to use. Matlab is
not free, but, while you are a student at OSU, you have access to Matlab through the College of Engineering.

Python & linear programming on COE computers

You can access the CBC via PuLP and Python quite easily on COE computers via a virtual environment:

1. Set up a virtualenv http://docs.python-guide.org/en/latest/dev/virtualenvs/.

2. Install PuLP using easy-install within the virtualenv.

The following should work:

% virtualenv venv

New python executable in venv/bin/python

Installing

Setuptools..done.

Installing

Pip...done.

% source venv/bin/activate.csh

[venv] % easy_install -U pulp

3

http://www.eecs.orst.edu/~glencora/cs325/videos/bike_polyhedron.mp4
http://docs.python-guide.org/en/latest/dev/virtualenvs/

Searching for pulp

...

Finished processing dependencies for pulp

[venv] % python

Python 2.6.6 (r266:84292, Jan 22 2014, 09:42:36)

[GCC 4.4.7 20120313 (Red Hat 4.4.7-4)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> from pulp import *

>>>

[venv] % deactivate

%

4

