
CS325: Coin change project

Prof. Borradaile

Due: November 7, 2013 at 10AM

Your report must be typeset, printed and stapled. Each team member’s name must be listed as well as any
resources used to finish the project.

Coin Change Problem

For this project, you will investigate the coin-change problem:

Given a cash register, how does one make change such that the fewest coins possible are returned
to the customer? In this assignment, we explore two algorithmic solutions to this problem: a
greedy algorithm and a dynamic programming algorithm.

Formally, an algorithm for this problem should take as input:

• A vector V where V [i] is the value of the coin of the ith denomination.

• A value C which is the amount of change we are asked to make.

The algorithm should return a vector O where O[i] is the number of coins of value V [i] to return. Note that
it is required that your algorithm output O satisfying:∑

i

V [i] ·O[i] = C

The objective is to minimize the number of coins returned or:∑
i

O[i]

You will implement a greedy algorithm and a dynamic programming algorithm for this.

Greedy Algorithm

One approach to coin change problem is a greedy approach:

• Return the largest value coin possible.

• Subtract the value of this coin from the amount of change to be made.

• Repeat.

This implementation is called changegreedy.

1



Dynamic Programming

We can use a dynamic programming table T indexed by values of change 0, 1, 2, . . . , C where T [v] is the
minimum number of coins needed to make change for v

T [v] = min
i:V [i]≤v

{T [v − V [i]] + 1}

We initialize T [0] = 0. How do you store and return the number of each type of coin to return? (That is,
how do you build O[i]?) This implementation is called changedp.

Example

Suppose V = [1, 10, 25, 50] and C = 40. changegreedy should return O = [5, 1, 1, 0] and changedp should
return O = [0, 4, 0, 0]. If C is changed to 76, both algorithms should return O = [1, 0, 1, 1]. For C = 40, the
dynamic programming solution outperforms the greedy solution: it finds a solution requiring fewer coins.

Questions

1. Describe, in words, how you fill in the dynamic programming table in changedp? Why is this a valid
way to fill the table.

2. Give pseudocode for each algorithm, changegreedy and changedp.

3. Prove that the dynamic programming approach is correct by induction. That is, prove that T [v] =
mini:V [i]≤v{T [v − V [i]] + 1}, T [0] = 0 is the minimum number of coins possible to make change for
value v.

4. Suppose V = [1 10 25 50]. For each integer value of C in and [2000 2300] determine the number of
coins that changegreedy and changedp requires. Plot this number of coins (two lines, one for each
changegreedy and changedp) as a function of C. How do the two approaches compare?

5. For the above situation, determine (experimentally) the running time required by both approaches,
using the methods suggested for the first two projects. How do the running times of the two approaches
compare? What is the asymptotic running time in terms of the number of denominations and the value
C for each approach?

6. Suppose V = [1 5 10 25 50]. For each integer value of C in and [2000 2300] determine the number of
coins that changegreedy and changedp requires. Plot this number of coins (two lines, one for each
changegreedy and changedp) as a function of C. How do the two approaches compare?

7. Suppose you are living in a country where coins have values that are powers of p, i.e. V = [p0, p1, p2, p3, ··
·]. How do you think the dynamic programming and greedy approaches would compare? Explain.

8. Is there a set of coins for which the greedy algorithm does not simply find a solution requiring more
coins than the dynamic programming algorithm, but all out fails? That is, is there a set of coins such
that the greedy algorithm will get stuck and not be able to find a set of coins whose value adds up
to the required amount C, but that the dynamic programming algorithm will not get stuck? If no,
explain. If yes, give an example.

2


