
CS325: Close to zero project

Prof. Borradaile

Due: Tuesday, October 15 at 10AM

Your report must be typeset, printed and stapled. Each team member’s name must be listed as well as any
resources used to finish the project. For questions regarding this project, please contact your TA, Pingan Zhu
at zhup@eecs.oregonstate.edu.

For this project, you will design, implement and analyze (both experimentally and mathematically) two
algorithms for the close-to-zero problem:

Given array of small integers a[0, 1, . . . , n− 1], compute

min
0≤i≤j<n

∣∣∣∣∣
j∑

k=i

a[k]

∣∣∣∣∣ .
That is, given any array, find a subarray whose sum is closest to zero.
For example, CloseToZero([31,−41, 59, 26,−53,58,−6, 97,−93,−23, 84]) = 1

You may use any language you choose to implement your algorithms, but both algorithms should be imple-
mented in the same language. Be sure that your algorithm is correct for any input.

Instructions

Your two algorithms are to be based on these ideas:

Algorithm 1: Enumeration Loop over each pair of indices i, j and compute the sum,
∑j

k=i a[k]. Keep
the best sum you have found so far.

Algorithm 2: Better Enumeration Notice that in the previous algorithm, the same sum is computed
many times. In particular, notice that

∑j
k=i a[k] can be computed from

∑j−1
k=i a[k] in O(1) time, rather

than starting from scratch. Write a new version of the first algorithm that takes advantage of this
observation.

Testing for correctness Above all else, your algorithms should be correct. A file containing test sets can
be found here: https://web.engr.oregonstate.edu/~glencora/wiki/uploads/test_case.txt The file
has one test case per line (10 cases each with 100 entries). A line corresponding to the example above would
be:

[31, -41, 59, 26, -53, 58, -6, 97, -93, -23, 84], [-53,58,-6],1

with the input array followed by the sum of the closest-to-zero subarray and the corresponding start and end
indices (with indices start at 0). You may use this test file to check that your code is correct. You should
also test your code on small hand-generated instances.

1

mailto:zhup@eecs.oregonstate.edu
https://web.engr.oregonstate.edu/~glencora/wiki/uploads/test_case.txt


Experimental analysis For the experimental analysis you will plot running times as a function of input
size. Every programming language should provide access to a clock (not necessarily in seconds). Run each
of your algorithms on input arrays of size 100, 200, 300, . . . , 900 and 1000, 2000, 3000, . . . , 9000 (that is, you
should have 18 data points for each algorithm). The first enumerative algorithm may be frustratingly slow,
so you may compute running times for sizes 100, 200, 300, . . . , 900.

To do this, generate random instances using a random number generator as provided by your programming
language. Remember to include both positive and negative numbers! For each data point, you should take
the average of a small number (say, 10) runs to smooth out any noise. For example, for the first data point,
you will do something like:

for i = 1:10
A = random array with 100 entries
start clock
CloseToZero(A)
pause clock

return elapsed time

Note that you should not include the time to generate the instance.
Plot the running times as a function of input size for each algorithm in a single plot. Label your plot

(axes, title, etc.). Include an additional plot of the running times on a log-log axis. See here for an ex-
planation: http://en.wikipedia.org/wiki/Log-log_graph Note that if the slope of a line in a log-log
plot is m, then the line is of the form O(xm) on a linear plot. You may also find these videos help-
ful: http://www.khanacademy.org/math/algebra/logarithms/v/logarithmic-scale and https://www.

khanacademy.org/math/probability/regression/regression-correlation/v/fitting-a-line-to-data

For an example of an experimental analysis in java, see http://algs4.cs.princeton.edu/14analysis/

Project report

For each of the above algorithms, your report must include:

Run-time analysis Give pseudocode for each algorithm and an analysis of the asymptotic running-times
of the algorithms.

Testing To illustrate that your code is correct, determine the solution and value for each instance in this file:
https://web.engr.oregonstate.edu/~glencora/wiki/uploads/close_to_zero_problems.txt Each
line of this file is a different input array.

Experimental analysis Perform an experimental analysis and include plots as described above. Note:
Keep the data used for these plots; you will use them in the next project.

Extrapolation and interpretation Use the data from the experimental analysis to answer the following
questions:

1. For each algorithm, what is the size of the biggest instance that you could solve with your algorithm
in one hour?

2. Determine the slope of the lines in your log-log plot and from these slopes infer the experimen-
tal running time for each algorithm. Discuss any discrepancies between the experimental and
asymptotic running times.

Code Upload your code to T.E.A.C.H. Only one student from each group should do this.

2

http://en.wikipedia.org/wiki/Log-log_graph
http://www.khanacademy.org/math/algebra/logarithms/v/logarithmic-scale
https://www.khanacademy.org/math/probability/regression/regression-correlation/v/fitting-a-line-to-data
https://www.khanacademy.org/math/probability/regression/regression-correlation/v/fitting-a-line-to-data
http://algs4.cs.princeton.edu/14analysis/
https://web.engr.oregonstate.edu/~glencora/wiki/uploads/close_to_zero_problems.txt

