For this project, you will revisit the close-to-zero problem and design a (hopefully) more efficient divide and conquer algorithm. Recall the close-to-zero problem:

Given array of small integers $a[0, 1, \ldots, n-1]$, compute

$$\min_{0 \leq i \leq j < n} \left| \sum_{k=1}^{j} a[k] \right|.$$

That is, given any array, find a subarray whose sum is closest to zero.

For example, $\text{CLOSETOZERO}([31, -41, 26, -53, 58, -6, 97, -93, -43, 84]) = 1$

To get there we will start with a warm-up problem, the sum-of-suffices problem.

Sum of suffices

Consider the following problem:

Given two arrays of small integers $b[0, 1, \ldots, \ell - 1]$ and $c[0, 1, \ldots, m - 1]$, compute:

$$\min_{0 \leq s < \ell, 0 \leq t < m} \left| \sum_{i=s}^{\ell-1} b[i] + \sum_{j=t}^{m-1} c[j] \right|$$

That is, find a suffix of b and a suffix of c such that the sum of both is as close to zero as possible.

For example, $\text{SUMOFSUFINES}([59, 26, -53, 58, -6, 97, -93, -23], [9, -74, 68, 4, 100, 67, 95]) = 21$

It may be helpful to think of this as finding a suffix b' of b and a suffix c' of c such that the sum of b' is as close as possible to the negative of the sum of c. In the following, let

$$S_b[s] = \sum_{i=s}^{\ell-1} b[i] \text{ for } s = 0, 1, \ldots, \ell - 1 \text{ and } S_c[t] = \sum_{j=t}^{m-1} c[j] \text{ for } t = 0, 1, \ldots, m - 1$$

Note that you can compute all these sums in linear time. You will implement two algorithms for \text{SUMOFSUFINES} based on these ideas:

Algorithm 1: Enumerate Loop over every pair s and t and compute the sum, keeping the sum closest to zero.
Algorithm 2: Sort and Compare

Sort the array

\[A = [S_b[0], S_b[1], \ldots, S_b[\ell - 1], -S_c[0], -S_c[1], \ldots, -S_c[m - 1]]. \]

Can you use the resulting sorted array to determine \textsc{SumOfSuffices}[b, c] more quickly than the enumeration algorithm? Which elements in the sorted list should you compare?

Be sure to test your algorithm for correctness! It is helpful to hand-create some instances for this purpose.

Divide and conquer

You will use \textsc{SumOfSuffices} to help design a divide and conquer algorithm \textsc{CloseToZero} for the close-to-zero problem. If we split the input array for \textsc{CloseToZero} into two halves, we know that the subarray whose sum is closest to zero will either be

- contained entirely in the first half,
- contained entirely in the second half, or
- made of a suffix of the first half and a prefix of the second half.

The first two cases can be found recursively. How can you use \textsc{SumOfSuffices} to implement the last case?

You will implement two versions of \textsc{CloseToZero}:

Algorithm 3: Divide and Conquer using Enumeration

Using the enumeration implementation of \textsc{SumOfSuffices} (Algorithm 1) to implement this last case.

Algorithm 4: Divide and Conquer using Sort and Compare

Using the sort-and-compare implementation of \textsc{SumOfSuffices} (Algorithm 2) to implement this last case.

Be sure to test your algorithms! You can compare your results to those obtained in the first project.

Project report

Your report must include:

Run-time analysis

Give pseudocode for each of the four algorithms and an analysis of the asymptotic running-times of the algorithms.

Proofs of Correctness

Give a proof by contradiction that Algorithm 2 returns the correct solution. Give a proof by induction that Algorithm 4 returns the correct solution.

Experimental analysis

Perform an experimental analysis of the two implementations of \textsc{CloseToZero} as described in the first project. For your plots, include the data collected for the two implementations of \textsc{CloseToZero} that you performed in the first project.

Extrapolation and interpretation

Use the data from the experimental analysis to answer the following questions:

1. For algorithms 3 and 4, what is the size of the biggest instance that you could solve with your algorithm in one hour?
2. Determine the slope of the lines for algorithms 3 and 4 in your log-log plot and from these slopes infer the experimental running time for these algorithms. Discuss any discrepancies between the experimental and theoretical running times.

Code

Upload your code to T.E.A.C.H. Only one student from each group should do this.