(CS325: Close to zero project, revisited

Prof. Borradaile

Due: Thursday, October 24 at 10AM

Your report must be typeset, printed and stapled. Fach team member’s name must be listed as well
as any resources used to finish the project. For your implementations, use the same language that you
used for the first project. For questions regarding this project, please contact your TA, Pingan Zhu at

zhup@eecs.oregonstate.edul

For this project, you will revisit the close-to-zero problem and design a (hopefully) more efficient divide
and conquer algorithm. Recall the close-to-zero problem:

Given array of small integers a0, 1,...,n — 1], compute

That is, given any array, find a subarray whose sum is closest to zero.
For example, CLOSETOZERO([31, —41, 59,26, —53,58, —6,97, —93, —23,84]) = 1

To get there we will start with a warm-up problem, the sum-of-suffices problem.

Sum of suffices
Consider the following problem:

Given two arrays of small integers b[0,1,...,¢ — 1] and ¢[0, 1,...,m — 1], compute:

-1 m—1

0§s<r£%1%t<m ;b[Z] + =t C[]]

That is, find a suffix of b and a suffix of ¢ such that the sum of both is as close to zero as possible.

For example,

SuMOFSUFFICES([59, 26, —53, 58, —6,97, —93, —23], [9, —74, 68,4, 100, 67,95]) = 21
It may be helpful to think of this as finding a suffix b’ of b and a suffix ¢’ of ¢ such that the sum of b is as
close as possible to the negative of the sum of ¢. In the following, let

0—1 -1
Sp[s] :Zb[i] for s=0,1,...,£—1 and S.[t] = clj] fort=0,1,...,m—1

3

j=t
Note that you can compute all these sums in linear time. You will implement two algorithms for SUMOF-
SUFFICES based on these ideas:

Algorithm 1: Enumerate Loop over every pair s and ¢ and compute the sum, keeping the sum closest to

Zero.


mailto:zhup@eecs.oregonstate.edu

Algorithm 2: Sort and Compare Sort the array
A = [Sp[0], Sp[1], ..., Sp[€ — 1], —=S.[0], =S.[1], ..., —Sc[m — 1]].

Can you use the resulting sorted array to determine SUMOFSUFFICES[b, ¢] more quickly than the
enumeration algorithm? Which elements in the sorted list should you compare?

Be sure to test your algorithm for correctness! It is helpful to hand-create some instances for this purpose.

Divide and conquer

You will use SUMOFSUFFICES to help design a divide and conquer algorithm CLOSETOZERO for the close-
to-zero problem. If we split the input array for CLOSETOZERO into two halves, we know that the subarray
whose sum is closest to zero will either be

e contained entirely in the first half,
e contained entirely in the second half, or
e made of a suffix of the first half and a prefix of the second half.

The first two cases can be found recursively. How can you use SUMOFSUFFICES to implement the last case?
You will implement two versions of CLOSETOZERO:

Algorithm 3: Divide and Conquer using Enumeration Using the enumeration implementation of SUMOF-
SUFFICES (Algorithm 1) to implement this last case.

Algorithm 4: Divide and Conquer using Sort and Compare Using the sort-and-compare implemen-
tation of SUMOFSUFFICES (Algorithm 2) to implement this last case.

Be sure to test your algorithms! You can compare your results to those obtained in the first project.

Project report

Your report must include:

Run-time analysis Give pseudocode for each of the four algorithms and an analysis of the asymptotic
running-times of the algorithms.

Proofs of Correctness Give a proof by contradiction that Algorithm 2 returns the correct solution. Give
a proof by induction that Algorithm 4 returns the correct solution.

Experimental analysis Perform an experimental analysis of the two implementations of CLOSETOZERO
as described in the first project. For your plots, include the data collected for the two implementations
of CLOSETOZERO that you performed in the first project.

Extrapolation and interpretation Use the data from the experimental analysis to answer the following
questions:

1. For algorithms 3 and 4, what is the size of the biggest instance that you could solve with your
algorithm in one hour?

2. Determine the slope of the lines for algorithms 3 and 4 in your log-log plot and from these slopes
infer the experimental running time for these algorithms. Discuss any discrepancies between the
experimental and theoretical running times.

Code Upload your code to T.E.A.C.H. Only one student from each group should do this.



