Group Assignment 3

(CS325 Winter 2015
Due: Tuesday, February 24 at 2PM

You are encouraged to work in groups of up to three students. Only one member of each group should sub-
mit the group’s work to TEACH, including the project report as a pdf and the code you wrote. The report
should have all member’s names included. You may use any language you choose for implementation.
No questions about this assignment will be answered after the due date above.ﬂ

The Closest-to-Zero Problem

Consider the following problem: Given an array of n integers A[0, 1,...,n —1], find indices 7 and j such that
1 < 7 that minimizes

That is, given any array, find a subarray whose sum is closest to zero. For example if

A = [31,-41,59,26, —53, 58, —6,97, —93, —23]
then using ¢ = 4 and j = 6 gives ‘22:4 A[k]‘ =|—53+458 — 6] = 1 and this is the best you can do.

You can solve this problem by enumerating over all ©(n?) choices for i and j and computing the sum,
keeping the best sum found so far. By reusing computation as you did for the maximum subarray problem
in the first group assignment, this algorithm will take ©(n?) time. In this assignment, you will develop a
divide-and-conquer algorithm that is asymptotically faster.

A divide-and-conquer approach

If we split the input array into two halves, we know that the subarray whose sum is closest to zero will either
be

e contained entirely in the first half,
e contained entirely in the second half, or
e made of a suffix of the first half and a prefix of the second half.

If we have computed these three options (the first two options recursively), then we simply take the best of
the three options. For our example array A used above, we would take the best of

e the closest-to-zero subarray of [31, —41,59, 26, —53]

e the closest-to-zero subarray of [58, —6,97, —93, —23]

1The due date in TEACH is 24 hours late, as submissions submitted within 24 hours of the deadline above will not be
penalized.



e the closest-to-zero subarray formed by a suffix of [31, —41, 59, 26, —53] and a prefix of [58, —6,97, —93, —23]

To find the latter case, we can consider the sums of the suffices of [31, —41, 59, 26, —53]:
22,—9,32, —27,-53

and the sums of prefices of [58, —6,97, —93, —23]:

The best suffix-prefix pair can be found by finding a number in the first list and a number in the second
list that when added together is closest to zero or, equivalently, finding a number in the first list that is
closest to the negative of a number in the second list. Consider the following three methods for solving this
suffiz-prefix identification problem:

Method 1 Compare every number in the first list with every number in the second list.

Method 2 Sort the first list (=53, —27,—9,22,32) and sort the second list (33,52,56,58,149) and iterate
the two lists carefully to identify the two numbers you are looking for in (—53 and 52).

Method 3 Combine the first list with the negative of the second list:

22, -9,32, —27, —53, =58, —52, —149, —56, —33

and sort this combined list:

—149, —58, —56, —53, —52, —33 — 27, —9, 22, 32

keeping track of which list the numbers come from (as we have done with underlining) and noticing
that the two numbers you are interested in are adjacent to one another (that is, —53, —=52).

Tasks

1. Write pseudocode for each of the three methods for the suffix-prefix identification problem described
above. Analyze the running time of each of the three methods.

2. Write pseudocode for a divide and conquer algorithm for the closest-to-zero problem that uses the
suffix-prefix identification problem as a subroutine, but doesn’t specify which of the methods to use..

3. The three methods for suffix-prefix identification potentially give three different (although not nec-
essarily unique, asymptotically) running times when used as a subroutine for the divide and conquer
algorithm. For each method, write a recurrence relation that describes the running time of the resulting
divide and conquer algorithm; solve each of these recurrence relations.

4. Implement the divide and conquer algorithm using either method 2 or 3 for suffix-prefix identification.
A file containing test sets can be found here: https://eecs.orst.edu/~glencora/cs325/ctz/test_
cases_with_solutions.txt The file has one test case per line (10 cases each with 100 entries) with
the input array followed by the absolute value of the sum of the closest-to-zero subarray and the
corresponding start and end indices (with indices start at 0). A line corresponding to the example
above would be:

[31, -41, 59, 26, -53, 58, -6, 97, -93, -23],1,4,6

You may use this test file to check that your code is correct. You should also test your code on small
hand-generated instances. Submit your code in a separate file to TEACH.


https://eecs.orst.edu/~glencora/cs325/ctz/test_cases_with_solutions.txt
https://eecs.orst.edu/~glencora/cs325/ctz/test_cases_with_solutions.txt

5. Another file containing several instances without solutions can be found here: https://eecs.orst.
edu/~glencora/cs325/ctz/test_cases_without_solutions.txt|/Each line is a separate input array.
Submit a text file to TEACH named answers.txt that contains your answers for the test
cases. Each line of your file represents your answer for the test case on the corresponding line of test
cases file. This means that your file should contain exactly the same number of lines that the test cases
file contains. Each line of your file should contain three numbers separated by white space (spaces or
tabs). The first number should be the absolute value of the sum of the closest-to-zero subarray, the
second number should be the start index, and the last number should be the end index; note that
indices start at 0.

6. Plot the experimental run time of your algorithm as a function of input size for the inputs in the file
test_cases_without_solutions.txt. (You may want to run the algorithm several times and average
the running times to get a good measurement.)

7. Your pdf report should include pseudocode for each of the three methods for the suffix-
prefix identification problem, pseudocode for a divide and conquer algorithm for the
closest-to-zero problem, three recurrence relations and their solutions and the plot de-
scribed above.

Optional Bonus (up to 20%) There is an algorithm whose run-time for this problem is asymptotically
better than the divide-and-conquer method suggested. Give pseudocode for this algorithm and analyze its
run time. Prove that your algorithm is correct.

Note on sorting You may use a built-in sorting subroutine. That is, you do not need to implement your
own sorting algorithm. However, in analyzing the above algorithms, you should specify the running time of
the sorting algorithm you use.


https://eecs.orst.edu/~glencora/cs325/ctz/test_cases_without_solutions.txt
https://eecs.orst.edu/~glencora/cs325/ctz/test_cases_without_solutions.txt

