crash course in theoretical computer science

Glencora Borradaile
Oregon State University

[follow the links to learn more]
what is computation?

- solving problems with a (restricted) set of operations
- a better name for computer science

abstract model of computation: the Turing machine

a tape (memory)
at any moment reads one scanned symbol (bus)
can alter scanned symbol according to a finite set of elementary operations (register)

(remains a good model for modern computers)

what is computable? what is incomputable?

- product of two integers is computable
- Entscheidungsproblem is incomputable

of the computable, what is efficiently computable?
larger problems = longer computation

eg. computing 761498762598 × 319870897543 takes longer than computing 32 × 54

\[T(n, X, A) = \text{time to solve instance of size } n \text{ of problem } X \text{ using algorithm } A \]
\[= \# \text{ computational steps} = \# \text{ bits to represent instance} \]
\[= \text{Turing machine operations} \]

e.g. what is \(T(2n, \text{product of two } n \text{ bit numbers, grade-school})? \)
 at most \(n \) bit multiplications + \(n \) bit additions (for the carry) per row
 at most \(n \) bit additions per column
 at most \(2n \) columns and \(n \) rows
 or \(4n^2 \) bit additions/multiplications
 or at most \(k(4n^2) \) Turing machine steps for some constant \(k \)
 \(O(n^2) \) computational steps
 \(O(n^2) \) time on any single processor

algorithm analysis: for a particular \(X \) and \(A \), what is \(T(n, X, A) \)?

algorithm design: for a particular \(X \), find \(A \) to minimize \(T(n, X, A) \) for all \(n \)
efficiently means quickly

when is A efficient? what values of $T(n, X, A)$ are good?

\[
\begin{array}{cccccc}
\text{faster} & O(n) & O(n^2) & O(n^3) & O(n^{10}) & n^{\log n} & O(2^n) & O(n!) & O(n^n) & \text{slower}
\end{array}
\]

polynomial \approx practical

if $T(n, X, A)$ is $O(n^c)$

- in twice the time, can solve problems $2^{1/c}$ times bigger
- if a processor gets twice as fast, can solve problems $2^{1/c}$ times bigger in the same time

exponential \approx impractical

if $T(n, X, A)$ is $O(c^n)$

- in twice the time, can solve problems bigger by $\log_c 2$ additively
- if a processor gets twice as fast, can solve problems bigger by $\log_c 2$ additively
million-dollar question: P v NP

P = set of (decision) problems that can be solved in polynomial time (on a deterministic Turing machine)

 e.g. is this number divisible by this other number?

NP = set of (decision) problems that can be solved in polynomial time (on a non-deterministic Turing machine)

 e.g. is this boolean formula satisfiable?

NP = set of (decision) problems with ‘yes’ answers verifiable in polynomial time (on a deterministic Turing machine)

co-NP = set of (decision) problems with ‘no’ answers verifiable in polynomial time (on a deterministic Turing machine)

 e.g. is this boolean formula a tautology?

[Venn diagram of P, NP, co-NP]
a direction for showing $P = NP$

design a poly-time algorithm for every problem in NP
what are all the problems in NP? this could take a long time
start with the most computationally-difficult problem

hard problems

problem X is NP-hard \iff
poly-time algorithm for X \implies poly-time algorithm $\forall Y \in NP$
(\implies $P = NP$)

Cook-Levin Theorem boolean formula satisfiability is NP-hard

more generally:

problem X is C-hard \iff
poly-time algorithm for X \implies poly-time algorithm $\forall Y \in C$

[Venn diagram of P, NP, NP-hard]
reductions

problem X reduces to problem Y if algorithm for X can be designed using algorithm for Y

problem X poly-time reduces to problem Y if a poly-time algorithm for X can be designed using a poly-time algorithm for Y

more definitions of hardness

problem X is NP-hard \iff every problem in NP can be poly-time reduced to X
problem X is NP-hard \iff a known NP-problem can be poly-time reduced to X

e.g. boolean-formula satisfiability reduces to graph Hamiltonicity
so, graph Hamiltonicity \in NP-hard

take-home lesson

if you can show your problem is NP-hard (by reducing a known NP-hard problem to it), then you shouldn’t look for a poly-time algorithm to solve your problem
designing poly-time algorithms

example problem: max subarray

given array of small integers $a[1, \ldots, n]$, compute

$$\max_{i \leq j} \sum_{k=i}^{j} a[k]$$

e.g. $\text{MaxSubarray}([31, -41, 59, 26, -53, 58, 97, -93, -23, 84]) = 187$

algorithmic design techniques

1. enumeration
2. iteration
3. simplification & delegation (aka divide & conquer)
4. recursion inversion (aka dynamic programming)
enumeration for max subarray

evaluate every possible solution

MaxSubarray(a[1,...,n])
 for each pair (i,j) with 1 ≤ i < j ≤ n
 compute a[i]+a[i+1]+⋯+a[j-1]+a[j]
 keep max sum found so far
 return max sum found

analysis \((O(n^2) \text{ pairs}) \times (O(n) \text{ time to compute each sum}) = O(n^3) \text{ time} \)
iteration for max subarray

don’t compute sums from scratch:
\[\sum_{k=i}^{j} a[k] \] can be computed from \[\sum_{k=i}^{j-1} a[k] \] in \(O(1) \) time

(really just clever enumeration)

MaxSubarray(a[1, ..., n])

for i = 1, ..., n
 sum = 0
 for j = i, ..., n
 sum = sum + a[j]
 keep max sum found so far
 return max sum found

analysis \((O(n) \text{ i-iterations}) \times (O(n) \text{ j-iterations}) \times (O(1) \text{ time to update sum}) = O(n^2)\)
simplification & delegation for max subarray

max subarray either has value

- **MaxSubarray**\(a[1, \ldots, \frac{n}{2}]\),
- or **MaxSubarray**\(a[\frac{n}{2}, \ldots, n]\),
- or **MaxSuffix**\(a[1, \ldots, \frac{n}{2}]\)+**MaxPrefix**\(a[\frac{n}{2}, \ldots, n]\)

compute **MaxSuffix** and **MaxPrefix** in linear time by modifying previous algorithm

divide & conquer

\[
\text{MaxSubarray}(a[1, \ldots, n]) = \max \begin{cases}
\text{MaxSubarray}(a[1, \ldots, \frac{n}{2}]) \\
\text{MaxSubarray}(a[\frac{n}{2}, \ldots, n]) \\
\text{MaxSuffix}(a[1, \ldots, \frac{n}{2}]) + \text{MaxPrefix}(a[\frac{n}{2}, \ldots, n])
\end{cases}
\]

analysis \((O(n) \text{ time for non-recursive work}) \times (O(\log n) \text{ depth}) = O(n \log n)\)
recursion inversion for max subarray

the max subarray either uses the last element or doesn’t:

$$\text{MaxSubarray}(a[1, \ldots, n]) = \max \left\{ \text{MaxSubarray}(a[1, \ldots, n-1]), \text{MaxSuffix}(a[1, \ldots, n]) \right\},$$

$$\text{MaxSuffix}(a[1, \ldots, n]) = \max\{0, \text{MaxSuffix}(a[1, \ldots, n-1]) + a[n]\}$$

dynamic programming evaluate this non-recursively by computing

- first $\text{MaxSubarray}(a[1])$ and $\text{MaxSuffix}(a[1])$
- then $\text{MaxSubarray}(a[1, 2])$ and $\text{MaxSuffix}(a[1, 2])$ from above
- then $\text{MaxSubarray}(a[1, 2, 3])$ and $\text{MaxSuffix}(a[1, 2, 3])$ from above
- and so on

analysis computing $\text{MaxSubarray}(a[1, \ldots, n])$ and $\text{MaxSuffix}(a[1, \ldots, n])$

from $\text{MaxSubarray}(a[1, \ldots, n-1])$ and $\text{MaxSuffix}(a[1, \ldots, n-1])$

takes $O(1)$ time

$O(n)$ things to compute = $O(n)$ time
does algorithm design matter?

| Table I. Summary of the Algorithms |
|-------------------------------|---|---|---|---|
| Algorithm | 1 | 2 | 3 | 4 |
| Lines of C Code | 8 | 7 | 14 | 7 |
| Run time in microseconds | $3.4N^3$ | $13N^2$ | $46N \log N$ | $33N$ |
| Time to solve problem of size| 10^2 | 3.4 secs | 130 msecs | 30 msecs | 3.3 msecs |
| | 10^3 | .94 hrs | 13 secs | .45 secs | 33 msecs |
| | 10^4 | 39 days | 22 mins | 6.1 secs | .33 secs |
| | 10^5 | 108 yrs | 1.5 days | 1.3 min | 3.3 secs |
| | 10^6 | 108 mill | 5 mos | 15 min | 33 secs |
| Max problem solved in one | sec | 67 | 280 | 2000 | 30,000 |
| | min | 260 | 2200 | 82,000 | 2,000,000 |
| | hr | 1000 | 17,000 | 3,500,000 | 120,000,000 |
| | day | 3000 | 81,000 | 73,000,000 | 2,800,000,000 |

Digital Equipment Corporation VAX-11/750 in 1984
what if my problem is not in P?

find something else in polynomial time:

- a solution close to optimal \textit{(approximate)}
- an optimal solution in expectation \textit{(average-case analysis)}
- solutions to problems with particularly good solutions \textit{(planted analyses)}
- solutions that are small \textit{(parameterized analysis)}
- solutions to \textit{nice} instances \textit{(smoothed analysis)}
- a locally optimal solutions \textit{(local search)}

or you could use a \textit{heuristic} and not guarantee anything
or you could spend exponential time and have patience

what if I don’t know if my problem is in P or is NP-hard?

your problem could be NP-intermediate such as:

- comparing sums of square roots
- integer factorization
- computing the discrete logarithm