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2.1 Planar Graphs and Duality

Definition 2.1 A graph G = (V,E) is planar if it can be drawn on a plane in a way that it edges
only intersect at their endpoints. Such a drawing is called a planar embedding of the graph G.

Herein, when we talk about a planar graph G, we mean G and its planar embedding.

Definition 2.2 Given a planar graph G = (V,E), a dual graph of G, denoted by G∗ = (V ∗, E∗),
is a graph that each vertex corresponds to a face of G and an edge between two vertices corresponds
to the edge between two neighboring faces.

Figure 2.1: A planar graph (blue) and its dual (red)1

Lemma 2.3 G = (G∗)∗.

For a given edge e, we define:

• G/e is the graph obtained from contracting an edge e of G.
• G− e is the graph obtained from deleting an edge e of G.

Lemma 2.4 For a planar graph G and for any edge e of G that is not a loop, we have (G/e)∗ =
G∗ − e∗ and (G− e)∗ = G∗/e∗.

1Source: http://en.wikipedia.org/wiki/File:Duals_graphs.svg
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For a subset of vertices S of G, we define δG(S) to be a set of edges with exactly one endpoint in
S. A set of edges of G is a cut if it has the form δG(S). A cut δG(S) is a bond if both G[S] and
G[V \S] are connected.

Lemma 2.5 For a planar graph G, a subgraph C is a cycle of G if and only if C∗ is a bond of G∗.

2.2 Finding MAXCUT

We gives a reduction from the MAXCUT problem of a planar graph G to the maximum matching
problem.

Definition 2.6 An edge set D is an odd-circuit cover if its removal leaves a subgraph free of odd
circuit.

Observation 1 If D is an odd-circuit cover, then every edge set D′ such that D ⊆ D′ is also an
odd-circuit cover.

For an edge set D ⊆ E of G, its complement is denoted by D = E\D

Observation 2 w(D) + w(D) = w(E)

Lemma 2.7 An edge set is contained in a cut if and only if its complement is an odd-circuit cover.

Proof:

(⇒) Let δG(S) be a cut of G, then the graph G′ = G(V, δG(S)) is a bipartite graph. Since a
bipartite graph contains no odd cycle, E\δG(S) is an odd-circuit cover. Therefore, for any subset
D ⊆ δG(S), by Observation 1, D is an odd-circuit cover.

(⇐) Let D ⊆ E be an edge set of G. Since D is an odd-circuit cover, by definition of odd-circuit
cover, D = E\D contains no odd cycle. Therefore, the subgraph G′ = G(V,D) induced by D is a
bipartite graph. Hence, D is contained in a cut.

Combining Observation 2 with Lemma 2.7, we get

Corollary 2.8 An edge set is a maximum cut if and only if its complement is a minimum odd-
circuit cover.

A vertex v in G is called an odd vertex if it has odd degree.

Definition 2.9 An edge set P is an odd-vertex pairing if its contraction leaves a multigraph free
of odd vertices.
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Figure 2.2: Odd-vertex pairing and its contraction.

Since the graph free of odd vertices is Eulerian, contracting an odd-vertice pairing results in an
Eulerian multigraph

Lemma 2.10 An edge set D is an odd-circuit cover of a planar graph G if and only if D∗ is an
odd-vertex pairing of G∗

Proof: We give a proof for the forward direction. The backward direction of the lemma is proved
similarly. LetD be an odd-circuit cover, thenG−D contains no odd cycle. Therefore, by Lemma 2.5,
G∗/D∗ contains no odd cut. In other words, every vertex in G∗/D∗ has even degree. Hence, D∗ is
an odd-vertex pairing of G∗.

Lemma 2.11 For an edge set P of an arbitrary multigraph G, P is a minimum odd-vertex pairing
if and only if P is the collection of edge-disjoint paths with odd vertices in G as endpoints, using
each once as endpoint, with minimum sum of path lengths.

Proof: We prove that P can be decomposed into a collection of edge-disjoint paths, each path
contains exactly two odd vertices of G which are endpoints of that path. Since P is an odd-vertex
pairing, by definition, vertices in G′ = G(V,E/P ) have even degree. Therefore, if a vertex v in G
has odd degree, in P it also has odd degree. We decompose P by repeatedly applying the following
decomposition process: for a connected component CP of P , pick a pair of odd vertices (u, v) in CP

such that the shortest path between u and v in CP contains no other odd vertex. Contracting that
path leaves P1 and G1 in which P1 is an odd-vertex pairing of G1. Applying the decomposition
process to P1 and G1 until there is no odd vertex left, we get a decomposition of P into collection
of paths between odd vertices.
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We prove that the collection of paths are edge-disjoint by contradiction. Assume that there are
two pairs of odd vertices (u1, v1) and (u2, v2) such that the paths between (u1, v1) and (u2, v2) in
CP are not edge-disjoint (Figure 2.3). Then there are two new paths (u1, u2) and (v1, v2) such that
they are disjoint and:

`P (u1, u2) + `P (v1, v2) < `P (u1, v1) + `P (u2, v2)

that contradicts to the minimality of P .

By Corollary 2.8 and Lemma 2.10, we reduce MAXCUT problem of G to finding minimum odd-
vertex pairing of the dual graph G∗ and by Lemma 2.11, we reduce to finding a minimum collection
of edge-disjoint paths between odd vertices of the dual graph. Now we further reduce to the
maximum matching in a complete graph.

Given a multigraph G, let Gc be a complete graph with vertex set is the set of odd vertices of G.
For any pair of vertices u, v of Gc, let ec(u, v) = W − dG(u, v) be the weight of edge (u, v) in Gc

where W = 1 + max{dG(u, v)|u, v are odd vertices of G}. Since the number of vertices in Gc is
even, the maximum matching is a perfect matching of Gc

Figure 2.3: Two paths between (u1, v1) and (u2, v2)

Lemma 2.12 The weight of maximum perfect matching of Gc is the weight of the minimum col-
lection of edge-disjoint paths between odd vertices in G.

Proof: Clearly, the weight of maximum perfect matching of Gc is the weight of the minimum
collection P of shortest paths between odd vertices in G. The proof for the edge-disjointedness
property is exactly the same to the proof of Theorem 2.11

Maximum matching can be solved in polynomial time, therefore, MAXCUT in planar graphs can
be solved in polynomial time.
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