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2.1 Planar Graphs and Duality

Definition 2.1 A graph G = (V, E) is planar if it can be drawn on a plane in a way that it edges
only intersect at their endpoints. Such a drawing is called a planar embedding of the graph G.

Herein, when we talk about a planar graph G, we mean G and its planar embedding.

Definition 2.2 Given a planar graph G = (V, E), a dual graph of G, denoted by G* = (V*, E*),
is a graph that each vertex corresponds to a face of G and an edge between two vertices corresponds
to the edge between two neighboring faces.

Figure 2.1: A planar graph (blue) and its dual (red)E|
Lemma 2.3 G = (G*)*.
For a given edge e, we define:
e (/e is the graph obtained from contracting an edge e of G.

e (G — ¢ is the graph obtained from deleting an edge e of G.

Lemma 2.4 For a planar graph G and for any edge e of G that is not a loop, we have (G/e)* =
G* —e* and (G—e)* =G*/e*.

ISource: http://en.wikipedia.org/wiki/File:Duals_graphs.svg
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For a subset of vertices S of G, we define d5(S) to be a set of edges with exactly one endpoint in
S. A set of edges of G is a cut if it has the form d5(S). A cut 6¢(S) is a bond if both G[S] and
G[V\S] are connected.

Lemma 2.5 For a planar graph G, a subgraph C is a cycle of G if and only if C* is a bond of G*.

2.2 Finding MAXCUT

We gives a reduction from the MAXCUT problem of a planar graph G to the maximum matching
problem.

Definition 2.6 An edge set D is an odd-circuit cover if its removal leaves a subgraph free of odd
circust.

Observation 1 If D is an odd-circuit cover, then every edge set D' such that D C D' is also an
odd-circuit cover.

For an edge set D C E of G, its complement is denoted by D = E\D

Observation 2 w(D) 4+ w(D) = w(E)
Lemma 2.7 An edge set is contained in a cut if and only if its complement is an odd-circuit cover.

Proof:

(=) Let d¢(S) be a cut of G, then the graph G’ = G(V,0¢(S)) is a bipartite graph. Since a
bipartite graph contains no odd cycle, E\d¢(S) is an odd-circuit cover. Therefore, for any subset
D C §¢(S), by Observation |1} D is an odd-circuit cover.

(<) Let D C E be an edge set of G. Since D is an odd-circuit cover, by definition of odd-circuit
cover, D = E\D contains no odd cycle. Therefore, the subgraph G’ = G(V, D) induced by D is a
bipartite graph. Hence, D is contained in a cut. |

Combining Observation ] with Lemma we get

Corollary 2.8 An edge set is a maximum cut if and only if its complement is a minimum odd-
circuit cover.

A vertex v in G is called an odd vertex if it has odd degree.

Definition 2.9 An edge set P is an odd-vertex pairing if its contraction leaves a multigraph free
of odd vertices.
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Figure 2.2: Odd-vertex pairing and its contraction.

Since the graph free of odd vertices is Eulerian, contracting an odd-vertice pairing results in an
Eulerian multigraph

Lemma 2.10 An edge set D is an odd-circuit cover of a planar graph G if and only if D* is an
odd-vertez pairing of G*

Proof: We give a proof for the forward direction. The backward direction of the lemma is proved
similarly. Let D be an odd-circuit cover, then G— D contains no odd cycle. Therefore, by Lemma
G*/D* contains no odd cut. In other words, every vertex in G*/D* has even degree. Hence, D* is
an odd-vertex pairing of G*. ]

Lemma 2.11 For an edge set P of an arbitrary multigraph G, P is a minimum odd-vertex pairing
if and only if P is the collection of edge-disjoint paths with odd vertices in G as endpoints, using
each once as endpoint, with minimum sum of path lengths.

Proof: We prove that P can be decomposed into a collection of edge-disjoint paths, each path
contains exactly two odd vertices of G which are endpoints of that path. Since P is an odd-vertex
pairing, by definition, vertices in G’ = G(V, E/P) have even degree. Therefore, if a vertex v in G
has odd degree, in P it also has odd degree. We decompose P by repeatedly applying the following
decomposition process: for a connected component Cp of P, pick a pair of odd vertices (u,v) in Cp
such that the shortest path between u and v in Cp contains no other odd vertex. Contracting that
path leaves P; and G7 in which P; is an odd-vertex pairing of G;. Applying the decomposition
process to P; and G until there is no odd vertex left, we get a decomposition of P into collection
of paths between odd vertices.
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We prove that the collection of paths are edge-disjoint by contradiction. Assume that there are
two pairs of odd vertices (u1,v1) and (ug,vs) such that the paths between (uy,v1) and (uz,vs) in
Cp are not edge-disjoint (Figure. Then there are two new paths (u1,us) and (vy,vs) such that
they are disjoint and:

Cp(u1,u2) +£p(vi,v2) < p(ur,vi) + €p(ug, v2)

that contradicts to the minimality of P.

By Corollary and Lemma [2.10] we reduce MAXCUT problem of G to finding minimum odd-
vertex pairing of the dual graph G* and by Lemma [2.11] we reduce to finding a minimum collection
of edge-disjoint paths between odd vertices of the dual graph. Now we further reduce to the
maximum matching in a complete graph.

Given a multigraph G, let G. be a complete graph with vertex set is the set of odd vertices of G.
For any pair of vertices u,v of G, let eq(u,v) = W — dg(u,v) be the weight of edge (u,v) in G,
where W = 1 + maa{dg(u,v)|u,v are odd vertices of G}. Since the number of vertices in G, is
even, the maximum matching is a perfect matching of G,

L1

S

Figure 2.3: Two paths between (u1,v;) and (usg, va)

Lemma 2.12 The weight of mazimum perfect matching of G. is the weight of the minimum col-
lection of edge-disjoint paths between odd vertices in G.

Proof: Clearly, the weight of maximum perfect matching of G, is the weight of the minimum
collection P of shortest paths between odd vertices in G. The proof for the edge-disjointedness
property is exactly the same to the proof of Theorem [2.11 [ |

Maximum matching can be solved in polynomial time, therefore, MAXCUT in planar graphs can
be solved in polynomial time.
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