Testing sortedness: recap

Let $G_S = (A, S)$ be a graph such that every pair of vertices in A are connected by a path of length at most 2. There is such a graph with $|S| = n \log n$ (draw). (middle vertex connected to all n-1 vertices; recurse on first half and second half)

repeat $O(\log n)$ times:
 pick an edge ij from S uniformly at random
 check whether $A[i]$ and $A[j]$ are in the correct order
if all the checks are successful
 output “The array is nearly sorted”
If A is sorted, the output is correct

If A is nearly sorted, with fewer than ϵn out of order items, then we are allowed to say sorted or unsorted and we are right

If A is far from sorted (at least ϵn entries are out of place), then:

Claim: at least $\frac{\epsilon}{4} n$ edges of S would fail

will give us:

$P(\text{success in a single guess}) = \frac{\epsilon n/4}{n \log n} = \frac{\epsilon}{4 \log n}$ and

$P(\text{fail after } k \text{ guesses}) = \left(1 - \frac{\epsilon}{4 \log n}\right)^k < .01$ if $k = \frac{20}{\epsilon \log n}$
proof of claim that $\geq \frac{\epsilon}{4} n$ edges of S would fail

Let $G_W = (A, E_w)$, E_w are unsorted edges

we need to show $|S \cap E_W| \geq \epsilon n/4$

▶ let O be the set of out of place elements
proof of claim that $\geq \frac{\epsilon}{4} n$ edges of S would fail

Let $G_W = (A, E_w)$, E_w are unsorted edges
we need to show $|S \cap E_W| \geq \epsilon n/4$

- let O be the set of out of place elements
- every edge in E_W has an endpoint in O
proof of claim that $\geq \frac{\epsilon}{4} n$ edges of S would fail

Let $G_W = (A, E_w)$, E_w are unsorted edges
we need to show $|S \cap E_W| \geq \epsilon n/4$

- let O be the set of out of place elements
- every edge in E_W has an endpoint in O
- let M be a maximal matching of G_W
 every $e \in M \subseteq E_W$ has an endpoint in O so $|O| \leq 2|M|$
proof of claim that $\geq \frac{\epsilon}{4}n$ edges of S would fail

Let $G_W = (A, E_w)$, E_w are unsorted edges
we need to show $|S \cap E_W| \geq \epsilon n/4$

- let O be the set of out of place elements
- every edge in E_W has an endpoint in O
- let M be a maximal matching of G_W
 every $e \in M \subseteq E_W$ has an endpoint in O so $|O| \leq 2|M|$
- *mark* the endpoints V_m of $S \cap E_W$: $|S \cap E_W| \geq |V_m|/2$ (since every edge is counted twice by the vertices)
proof of claim that $\geq \frac{\epsilon}{4} n$ edges of S would fail

Let $G_W = (A, E_w)$, E_w are *unsorted* edges
we need to show $|S \cap E_W| \geq \epsilon n/4$

- let O be the set of out of place elements
- every edge in E_W has an endpoint in O
- let M be a maximal matching of G_W
 every $e \in M \subseteq E_W$ has an endpoint in O so $|O| \leq 2|M|$
- *mark* the endpoints V_m of $S \cap E_W$: $|S \cap E_W| \geq |V_m|/2$ (since every edge is counted twice by the vertices)
- for any $(i, j) \in M$, either $(i, j) \in S$ or $\exists k$ s.t. $(i, k), (k, j) \in S$, since every pair of vertices are at most 2 hops away in G_S.
Let $G_W = (A, E_w)$, E_w are unsorted edges
we need to show $|S \cap E_W| \geq \epsilon n/4$

- let O be the set of out of place elements
- every edge in E_W has an endpoint in O
- let M be a maximal matching of G_W
 every $e \in M \subseteq E_W$ has an endpoint in O so $|O| \leq 2|M|$
- *mark* the endpoints V_m of $S \cap E_W$: $|S \cap E_W| \geq |V_m|/2$ (since every edge is counted twice by the vertices)
- for any $(i, j) \in M$, either $(i, j) \in S$ or $\exists k$ s.t. $(i, k), (k, j) \in S$, since every pair of vertices are at most 2 hops away in G_S.
- further, either $(i, k) \in E_W$ or $(k, j) \in E_W$ since (i, j) is unsorted
proof of claim that $\geq \frac{\epsilon}{4} n$ edges of S would fail

Let $G_W = (A, E_w)$, E_w are unsorted edges
we need to show $|S \cap E_W| \geq \epsilon n/4$

▶ let O be the set of out of place elements
▶ every edge in E_W has an endpoint in O
▶ let M be a maximal matching of G_W
every $e \in M \subseteq E_W$ has an endpoint in O so $|O| \leq 2|M|$
▶ mark the endpoints V_m of $S \cap E_W$: $|S \cap E_W| \geq |V_m|/2$ (since every edge is counted twice by the vertices)
▶ for any $(i, j) \in M$, either $(i, j) \in S$ or $\exists k$ s.t. $(i, k), (k, j) \in S$, since every pair of vertices are at most 2 hops away in G_S.
▶ further, either $(i, k) \in E_W$ or $(k, j) \in E_W$ since (i, j) is unsorted
▶ so either i or j or both are marked: $|V_m| \geq |M|$ (recall M is a matching)
proof of claim that $\geq \frac{\epsilon}{4} n$ edges of S would fail

Let $G_W = (A, E_w)$, E_w are *unsorted* edges

we need to show $|S \cap E_W| \geq \epsilon n/4$

- let O be the set of out of place elements
- every edge in E_W has an endpoint in O
- let M be a maximal matching of G_W
 every $e \in M \subseteq E_W$ has an endpoint in O so $|O| \leq 2|M|$
- *mark* the endpoints V_m of $S \cap E_W$: $|S \cap E_W| \geq |V_m|/2$ (since every edge is counted twice by the vertices)
- for any $(i, j) \in M$, either $(i, j) \in S$ or $\exists k$ s.t. $(i, k), (k, j) \in S$, since every pair of vertices are at most 2 hops away in G_S.
- further, either $(i, k) \in E_W$ or $(k, j) \in E_W$ since (i, j) is unsorted
- so either i or j or both are marked: $|V_m| \geq |M|$ (recall M is a matching)
proof of claim that $\geq \frac{\epsilon}{4} n$ edges of S would fail

Let $G_W = (A, E_w)$, E_w are unsorted edges
we need to show $|S \cap E_W| \geq \epsilon n/4$

- let O be the set of out of place elements
- every edge in E_W has an endpoint in O
- let M be a maximal matching of G_W
every $e \in M \subseteq E_W$ has an endpoint in O so $|O| \leq 2|M|$
- mark the endpoints V_m of $S \cap E_W$: $|S \cap E_W| \geq |V_m|/2$ (since every edge is counted twice by the vertices)
- for any $(i, j) \in M$, either $(i, j) \in S$ or $\exists k$ s.t.$(i, k), (k, j) \in S$, since every pair of vertices are at most 2 hops away in G_S
- further, either $(i, k) \in E_W$ or $(k, j) \in E_W$ since (i, j) is unsorted
- so either i or j or both are marked: $|V_m| \geq |M|$ (recall M is a matching)

putting it together:

$$|S \cap E_W| \geq |V_m|/2 \geq |M|/2 \geq |O|/4 \geq \epsilon n/4$$
Matroids

motivation an abstract mathematical object that will allow us to show that many greedy algorithms are optimal

use if you can show that your problem can be cast as a matroid (problem), then you get an optimal, greedy algorithm for free!
An example: Kruskal’s algorithm for \textit{maximum} weight spanning tree

set \ T = \emptyset \\
while \ \exists \ e \notin \ T \ s.t. \ T \cup \{e\} \text{ is a forest} \\
\quad \text{choose such an } e \text{ with maximum weight} \\
\quad \text{replace } T \text{ by } T \cup \{e\}
An example: Kruskal’s algorithm for maximum weight spanning tree

set $T = \emptyset$
while $\exists e \notin T$ s.t. $T \cup \{e\}$ is a forest
 choose such an e with maximum weight
 replace T by $T \cup \{e\}$

Let $\mathcal{I} = \{J \subseteq E : J$ is a forest$\}$ (i.e. the set of all forests).
An example: Kruskal’s algorithm for maximum weight spanning tree

set \(T = \emptyset \)

while \(\exists e \not\in T \) s.t. \(T \cup \{e\} \) is a forest
 choose such an \(e \) with maximum weight
 replace \(T \) by \(T \cup \{e\} \)

Let \(\mathcal{I} = \{\mathcal{J} \subseteq E : \mathcal{J} \text{ is a forest}\} \) (i.e. the set of all forests).

set \(J = \emptyset \)

while \(\exists e \not\in J \) s.t. \(J \cup \{e\} \in \mathcal{I} \)
 choose such an \(e \) with maximum weight
 replace \(J \) by \(J \cup \{e\} \)
An example: Kruskal’s algorithm for maximum weight spanning tree

set \(T = \emptyset \)
while \(\exists e \notin T \) s.t. \(T \cup \{e\} \) is a forest
 choose such an \(e \) with maximum weight
 replace \(T \) by \(T \cup \{e\} \)

Let \(\mathcal{I} = \{\mathcal{J} \subseteq \mathcal{E} : \mathcal{J} \text{ is a forest}\} \) (i.e. the set of all forests).

set \(J = \emptyset \)
while \(\exists e \notin J \) s.t. \(J \cup \{e\} \in \mathcal{I} \)
 choose such an \(e \) with maximum weight
 replace \(J \) by \(J \cup \{e\} \)

\(\mathcal{I} \) is the **graphic matroid**: it is a family of subsets of \(E \) with some other properties that guarantee the above greedy algorithm is correct/optimal.
For what families \mathcal{I} does this prototypical "greedy" algorithm work?

set $J = \emptyset$
while $\exists e \notin J$ s.t. $J \cup \{e\} \in \mathcal{I}$
 choose such an e with maximum weight
replace J by $J \cup \{e\}$
For what families \mathcal{I} does this prototypical “greedy” algorithm work?

set $J = \emptyset$
while $\exists e \notin J$ s.t. $J \cup \{e\} \in \mathcal{I}$
 choose such an e with maximum weight
 replace J by $J \cup \{e\}$

matchings? let \mathcal{I} be the set of all matchings in a graph the greedy algorithm fails to find the max-weight matching (e.g. cycle with edge weights 7,3,8,9)
Matroid: definition

for a ground set S and independent set family \mathcal{I} of subsets of S, $M = (S, \mathcal{I})$ is a matroid if:

- non-empty $\emptyset \in \mathcal{I}$
- heredity if $J \in \mathcal{I}$ and $J' \subseteq J$, then $J' \in \mathcal{I}$
- exchange if $J, J' \in \mathcal{I}$ and $|J| < |J'|$ then there is an element $e \in J'$ such that $J \cup \{e\} \in \mathcal{I}$

(matchings do not satisfy exchange (e.g. odd-length alternating path example))
for a **ground set** S and **independent set** family \mathcal{I} of subsets of S, $M = (S, \mathcal{I})$ is a **matroid** if:

- **non-empty** $\emptyset \in \mathcal{I}$
- **heredity** if $J \in \mathcal{I}$ and $J' \subseteq J$, then $J' \in \mathcal{I}$
- **exchange** if $J, J' \in \mathcal{I}$ and $|J| < |J'|$ then there is an element $e \in J'$ such that $J \cup \{e\} \in \mathcal{I}$

matchings do not satisfy exchange (e.g. odd-length alternating path example)
Matroid: definition

for a ground set S and independent set family \mathcal{I} of subsets of S, $M = (S, \mathcal{I})$ is a matroid if:

- non-empty $\emptyset \in \mathcal{I}$
- heredity if $J \in \mathcal{I}$ and $J' \subseteq J$, then $J' \in \mathcal{I}$
- exchange if $J, J' \in \mathcal{I}$ and $|J| < |J'|$ then there is an element $e \in J'$ such that $J \cup \{e\} \in \mathcal{I}$

A basis is any independent set that is not a strict subset of any other independent subset a.k.a. a maximal set (e.g. spanning trees).

Theorem: the greedy algorithm finds a maximum-weight basis.

Set $J = \emptyset$ while $\exists e / \in J$ s.t. $J \cup \{e\} \in \mathcal{I}$ choose such an e with maximum weight replace J by $J \cup \{e\}$.
Matroid: definition

for a ground set S and independent set family \mathcal{I} of subsets of S, $M = (S, \mathcal{I})$ is a matroid if:

- non-empty $\emptyset \in \mathcal{I}$
- heredity if $J \in \mathcal{I}$ and $J' \subseteq J$, then $J' \in \mathcal{I}$
- exchange if $J, J' \in \mathcal{I}$ and $|J| < |J'|$ then there is an element $e \in J'$ such that $J \cup \{e\} \in \mathcal{I}$

a basis is any independent set that is not a strict subset of any other independent subset a.k.a. a maximal set (e.g. spanning trees)
Matroid: definition

for a ground set S and independent set family \mathcal{I} of subsets of S, $M = (S, \mathcal{I})$ is a matroid if:

- non-empty $\emptyset \in \mathcal{I}$
- heredity if $J \in \mathcal{I}$ and $J' \subseteq J$, then $J' \in \mathcal{I}$
- exchange if $J, J' \in \mathcal{I}$ and $|J| < |J'|$ then there is an element $e \in J'$ such that $J \cup \{e\} \in \mathcal{I}$

a basis is any independent set that is not a strict subset of any other independent subset a.k.a. a maximal set (e.g. spanning trees)

theorem: the greedy algorithm finds a maximum-weight basis.

set $J = \emptyset$

while $\exists e \notin J \text{ s.t. } J \cup \{e\} \in \mathcal{I}$

choose such an e with maximum weight

replace J by $J \cup \{e\}$
Proof that the greedy algorithm finds a max-weight basis

let $G = \{g_1, g_2, \ldots, g_k\}$ be the solution found by greedy, with elements given in the order they were found. G is a basis, by the greedy nature of the algorithm.
Proof that the greedy algorithm finds a max-weight basis

let \(G = \{g_1, g_2, \ldots, g_k\} \) be the solution found by greedy, with elements given in the order they were found. \(G \) is a basis, by the greedy nature of the algorithm we prove \(G \) is optimal by a greedy stays ahead argument.
Proof that the greedy algorithm finds a max-weight basis

let $G = \{g_1, g_2, \ldots, g_k\}$ be the solution found by greedy, with elements given in the order they were found. G is a basis, by the greedy nature of the algorithm we prove G is optimal by a greedy stays ahead argument

let $O = \{o_1, o_2, \ldots, o_\ell\}$ be an optimal solution with elements ordered by decreasing weight; suppose that $w(G) < w(O)$
Proof that the greedy algorithm finds a max-weight basis

let $G = \{g_1, g_2, \ldots, g_k\}$ be the solution found by greedy, with elements given in the order they were found. G is a basis, by the greedy nature of the algorithm. We prove G is optimal by a greedy stays ahead argument.

Let $O = \{o_1, o_2, \ldots, o_\ell\}$ be an optimal solution with elements ordered by decreasing weight; suppose that $w(G) < w(O)$.

By the exchange property of matroids and the greediness of the algorithm, $k = \ell$.
Proof that the greedy algorithm finds a max-weight basis

let $G = \{g_1, g_2, \ldots, g_k\}$ be the solution found by greedy, with elements given in the order they were found. G is a basis, by the greedy nature of the algorithm we prove G is optimal by a greedy stays ahead argument

let $O = \{o_1, o_2, \ldots, o_\ell\}$ be an optimal solution with elements ordered by decreasing weight; suppose that $w(G) < w(O)$ by the exchange property of matroids and the greediness of the algorithm, $k = \ell$.

let i be the first index such that $w(g_i) < w(o_i)$. by the exchange property of matroids, there is an element $e \in \{o_1, o_2, \ldots, o_i\}$ that can be added (while maintaining independence) to $\{g_1, g_2, \ldots, g_{i-1}\}$. by the ordering of the elements, we have that $w(e) \geq w(o_i) > w(g_i)$. but e would then contradict the choice of g_i. \qed
disjoint path matroid

Let $G = (V, E)$ be an arbitrary directed graph, and let s be a fixed vertex. A subset $I \subseteq V$ is independent if and only if there are edge-disjoint paths from s to each vertex in I.

solves Given a directed graph with a special vertex s, find the largest set of edge-disjoint paths from s to other vertices.