crash course in theoretical computer science

Glencora Borradaile
Oregon State University
eecs.orst.edu/~glencora/other/tcscrashcourse.pdf

theoretical computer science
$=$ complexity $\quad($ What are the limits of computation?)

+ algorithms (Design within those limits?)
[follow the links to learn more]

what is computation?

- solving problems with a (restricted) set of operations
- a better name for computer science
abstract model of computation: the Turing machine
a tape (memory)
at any moment reads one scanned symbol (bus)
can alter scanned symbol according to a finite set of elementary operations (register)
(remains a good model for modern computers)
what is computable? what is incomputable?
- product of two integers is computable
- Entscheidungsproblem is incomputable
of the computable, what is efficiently computable?

larger problems $=$ longer computation

eg. computing $761498762598 \times 319870897543$ takes longer than computing 32×54
$T(n, X, A)=\underline{\text { time }}$ to solve instance of size n of problem X using algorithm A $=\#$ computational steps $=\#$ bits to represent instance
$=$ Turing machine operations
e.g. what is $T(2 n$, product of two n bit numbers, grade-school)?
at most n bit multiplications $+n$ bit additions (for the carry) per row
at most n bit additions per column
at most $2 n$ columns and n rows
or $4 n^{2}$ bit additions/multiplications
or at most $k\left(4 n^{2}\right)$ Turing machine steps for some constant k
$O\left(n^{2}\right)$ computational steps
$O\left(n^{2}\right)$ time on any single processor
algorithm analysis: for a particular X and A, what is $T(n, X, A)$?
algorithm design: for a particular X, find A to minimize $T(n, X, A)$ for all n

efficiently means quickly

when is A efficient? what values of $T(n, X, A)$ are good?

$$
\text { faster } \underbrace{O(n) O\left(n^{2}\right) O\left(n^{3}\right) O\left(n^{10}\right)}_{\text {polynomial }} n^{\log n} \underbrace{O\left(2^{n}\right) O(n!) O\left(n^{n}\right)}_{\text {exponential }} \text { slower }
$$

polynomial \approx practical

if $T(n, X, A)$ is $O\left(n^{c}\right)$

- in twice the time, can solve problems $2^{1 / c}$ times bigger
- if a processor gets twice as fast, can solve problems $2^{1 / c}$ times bigger in the same time

exponential \approx impractical

if $T(n, X, A)$ is $O\left(c^{n}\right)$

- in twice the time, can solve problems bigger by $\log _{c} 2$ additively
- if a processor gets twice as fast, can solve problems bigger by $\log _{c} 2$ additively

million-dollar question: P v NP

$\mathrm{P}=$ set of (decision) problems that can be solved in polynomial time
(on a deterministic Turing machine)
e.g. is this number divisible by this other number?
$\mathrm{NP}=$ set of (decision) problems that can be solved in polynomial time
(on a non-deterministic Turing machine)
e.g. is this boolean formula satisfiable?
$\mathrm{NP}=$ set of (decision) problems with 'yes' answers verifiable in polynomial time
(on a deterministic Turing machine)
$c o-N P=$ set of (decision) problems with 'no' answers verifiable in polynomial time (on a deterministic Turing machine)
e.g. is this boolean formula a tautology?
[Venn diagram of P, NP, co-NP]

a direction for showing $P=N P$

design a poly-time algorithm for every problem in NP
what are all the problems in NP? this could take a long time
start with the most computationally-difficult problem
hard problems
problem X is NP-hard \Longleftrightarrow

$$
\begin{aligned}
\text { poly-time algorithm for } X \Longrightarrow & \text { poly-time algorithm } \forall Y \in \mathrm{NP} \\
& (\underset{\mathrm{P}=\mathrm{NP})}{\Longrightarrow}
\end{aligned}
$$

Cook-Levin Theorem boolean formula satisfiability is NP-hard
more generally:

```
problem X is C-hard }
    poly-time algorithm for X \Longrightarrow poly-time algorithm }\forallY\in
```

[Venn diagram of P, NP, NP-hard]

reductions

problem X reduces to problem Y
if algorithm for X can be designed using algorithm for Y
problem X poly-time reduces to problem Y
if a poly-time algorithm for X can be designed using a poly-time algorithm for Y

more definitions of hardness

problem X is NP-hard \Longleftrightarrow every problem in NP can be poly-time reduced to X problem X is NP-hard \Longleftrightarrow a known NP-problem can be poly-time reduced to X
e.g. boolean-formula satisfiability reduces to graph Hamiltonicity
so, graph Hamiltonicity \in NP-hard

take-home lesson

if you can show your problem is NP-hard (by reducing a known NP-hard problem to it), then you shouldn't look for a poly-time algorithm to solve your problem

designing poly-time algorithms

example problem: max subarray
given array of small integers $a[1, \ldots, n]$, compute

$$
\max _{i \leq j} \sum_{k=i}^{j} a[k]
$$

e.g. $\operatorname{MaxSubarray}([31,-41,59, \mathbf{2 6}, \mathbf{5 3}, \mathbf{5 8}, \mathbf{9 7},-93,-23,84])=187$

algorithmic design techniques

1. enumeration
2. iteration
3. simplification \& delegation (aka divide \mathcal{E} conquer)
4. recursion inversion (aka dynamic programming)

enumeration for max subarray

evaluate every possible solution
MaxSubarray (a[1, ..., n])
for each pair (i,j) with $1 \leq i<j \leq n$
compute $a[i]+a[i+1]+\cdots+a[j-1]+a[j]$
keep max sum found so far
return max sum found
analysis $\left(O\left(n^{2}\right)\right.$ pairs $) \times(O(n)$ time to compute each sum $)=O\left(n^{3}\right)$ time

iteration for max subarray

don't compute sums from scratch:
$\sum_{k=i}^{j} a[k]$ can be computed from $\sum_{k=i}^{j-1} a[k]$ in $O(1)$ time
(really just clever enumeration)
$\operatorname{MaxSubarray}(a[1, \ldots, n])$
for $\mathrm{i}=1, \ldots, \mathrm{n}$
sum $=0$
for $\mathrm{j}=\mathrm{i}, \ldots, \mathrm{n}$
sum $=$ sum $+a[j]$
keep max sum found so far
return max sum found
analysis $\quad(O(n) i$-iterations $) \times(O(n) j$-iterations $) \times(O(1)$ time to update sum $)=O\left(n^{2}\right)$

simplification \& delegation for max subarray

max subarray either has value

- MaxSubarray $\left(a\left[1, \ldots, \frac{n}{2}\right]\right)$,
- or $\operatorname{MaxSubarray}\left(a\left[\frac{n}{2}, \ldots, n\right]\right)$,
- or $\operatorname{MaxSuffix}\left(a\left[1, \ldots, \frac{n}{2}\right]\right)+\operatorname{MaxPrefix}\left(a\left[\frac{n}{2}, \ldots, n\right]\right)$
compute MaxSuffix and MaxPrefix in linear time by modifying previous algorithm
divide \& conquer
$\operatorname{MaxSubarray}(a[1, \ldots, n])=\max \left\{\begin{array}{l}\operatorname{MaxSubarray}\left(a\left[1, \ldots, \frac{n}{2}\right]\right) \\ \operatorname{MaxSubarray}\left(a\left[\frac{n}{2}, \ldots, n\right]\right) \\ \operatorname{MaxSuffix}\left(a\left[1, \ldots, \frac{n}{2}\right]\right)+\operatorname{MaxPrefix}\left(a\left[\frac{n}{2}, \ldots, n\right]\right)\end{array}\right.$
analysis $(O(n)$ time for non-recursive work $) \times(O(\log n)$ depth $)=O(n \log n)$

recursion inversion for max subarray

the max subarray either uses the last element or doesn't:

$$
\begin{aligned}
& \operatorname{MaxSubarray}(a[1, \ldots, n])=\max \left\{\begin{array}{l}
\operatorname{MaxSubarray}(a[1, \ldots, n-1]), \\
\operatorname{MaxSuffix}(a[1, \ldots, n]
\end{array},\right. \\
& \operatorname{MaxSuffix}(a[1, \ldots, n])=\max \{0, \operatorname{MaxSuFfix}(a[1, \ldots, n-1])+a[n]\}
\end{aligned}
$$

dynamic programming evaluate this non-recursively by computing

- first $\operatorname{MaxSubarray}(a[1])$ and $\operatorname{MaxSuffix}(a[1])$
- then MaxSubarray $(a[1,2])$ and $\operatorname{MaxSuffix}(a[1,2])$ from above
- then MaxSubarray $(a[1,2,3])$ and $\operatorname{MaxSuffix}(a[1,2,3])$ from above
- and so on
analysis computing MaxSubarray $(a[1, \ldots, n])$ and $\operatorname{MaxSuffix}(a[1, \ldots, n]$ from MaxSubarray $(a[1, \ldots, n-1])$ and $\operatorname{MaxSuffix}(a[1, \ldots, n-1])$ takes $O(1)$ time
$O(n)$ things to compute $=O(n)$ time

does algorithm design matter?

	TABLE l.	Summary of the Algorithms			
Algorithm	1	2	3	4	
Lines of C Code	8	7	14	7	
Run time in		$3.4 \mathrm{~N}^{3}$	$13 \mathrm{~N}^{2}$	46 N log N	33 N
microseconds					
Time to solve	10^{2}	3.4 secs	130 msecs	30 msecs	3.3 msecs
problem of size	10^{3}	.94 hrs	13 secs	.45 secs	33 msecs
	10^{4}	39 days	22 mins	6.1 secs	.33 secs
	10^{5}	108 yrs	1.5 days	1.3 min	3.3 secs
	10^{6}	108 mill	5 mos	15 min	33 secs
Max problem	sec	67	280	2000	30,000
solved in one	min	260	2200	82,000	$2,000,000$
	hr	1000	17,000	$3,500,000$	$120,000,000$
	day	3000	81,000	$73,000,000$	$2,800,000,000$

Digital Equipment Corporation VAX-11/750 in 1984

what if my problem is not in P ?

find something else in polynomial time:

- a solution close to optimal (approximate)
- an optimal solution in expectation (average-case analysis)
- solutions to problems with particularly good solutions (planted analyses)
- solutions that are small (parameterized analysis)
- solutions to nice instances (smoothed analysis)
- a locally optimal solutions (local search)
or you could use a heuristic and not guarantee anything or you could spend exponential time and have patience

what if I don't know if my problem is in P or is NP-hard?

your problem could be NP-intermediate
such as:

- comparing sums of square roots
- integer factorization
- computing the discrete logarithm

