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theoretical computer science
= complexity (What are the limits of computation?)
+ algorithms (Design within those limits?)

[follow the links to learn more]

http://eecs.orst.edu/~glencora/other/tcscrashcourse.pdf


what is computation?

• solving problems with a (restricted) set of operations

• a better name for computer science

abstract model of computation: the Turing machine

a tape (memory)
at any moment reads one scanned symbol (bus)
can alter scanned symbol according to a finite set of elementary operations (register)

(remains a good model for modern computers)

what is computable? what is incomputable?

• product of two integers is computable

• Entscheidungsproblem is incomputable

of the computable, what is efficiently computable?

http://plato.stanford.edu/entries/turing-machine
http://vimeo.com/44202270
http://plato.stanford.edu/entries/computability


larger problems = longer computation

eg. computing 761498762598× 319870897543 takes longer than computing 32× 54

T (n,X,A) = time to solve instance of size n of problem X using algorithm A
= # computational steps = # bits to represent instance

= Turing machine operations

e.g. what is T (2n, product of two n bit numbers, grade-school)?
at most n bit multiplications + n bit additions (for the carry) per row
at most n bit additions per column
at most 2n columns and n rows
or 4n2 bit additions/multiplications
or at most k(4n2) Turing machine steps for some constant k
O(n2) computational steps

O(n2) time on any single processor

algorithm analysis: for a particular X and A, what is T (n,X,A)?

algorithm design: for a particular X, find A to minimize T (n,X,A) for all n

http://www.cs.berkeley.edu/~vazirani/algorithms/chap1.pdf


efficiently means quickly

when is A efficient? what values of T (n,X,A) are good?

faster O(n) O(n2) O(n3) O(n10)︸ ︷︷ ︸
polynomial

nlogn O(2n) O(n!) O(nn)︸ ︷︷ ︸
exponential

slower

polynomial ≈ practical

if T (n,X,A) is O(nc)

• in twice the time, can solve problems 21/c times bigger

• if a processor gets twice as fast, can solve problems 21/c times bigger in the same
time

exponential ≈ impractical

if T (n,X,A) is O(cn)

• in twice the time, can solve problems bigger by logc 2 additively

• if a processor gets twice as fast, can solve problems bigger by logc 2 additively

http://www.cs.berkeley.edu/~vazirani/algorithms/chap8.pdf#page=2


million-dollar question: P v NP

P = set of (decision) problems that can be solved in polynomial time
(on a deterministic Turing machine)

e.g. is this number divisible by this other number?

NP = set of (decision) problems that can be solved in polynomial time
(on a non-deterministic Turing machine)

e.g. is this boolean formula satisfiable?

NP = set of (decision) problems with ‘yes’ answers verifiable in polynomial time
(on a deterministic Turing machine)

co-NP = set of (decision) problems with ‘no’ answers verifiable in polynomial time
(on a deterministic Turing machine)

e.g. is this boolean formula a tautology?

[Venn diagram of P, NP, co-NP]

http://www.claymath.org/millennium/P_vs_NP/


a direction for showing P = NP

design a poly-time algorithm for every problem in NP
what are all the problems in NP? this could take a long time
start with the most computationally-difficult problem

hard problems

problem X is NP-hard ⇐⇒
poly-time algorithm for X =⇒ poly-time algorithm ∀Y ∈ NP

( =⇒ P = NP)

Cook-Levin Theorem boolean formula satisfiability is NP-hard

more generally:

problem X is C-hard ⇐⇒
poly-time algorithm for X =⇒ poly-time algorithm ∀Y ∈ C

[Venn diagram of P, NP, NP-hard]

https://secure.flickr.com/photos/glencora/1767256931
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/29-nphard.pdf
http://en.wikipedia.org/wiki/Cook-Levin_theorem


reductions

problem X reduces to problem Y
if algorithm for X can be designed using algorithm for Y

problem X poly-time reduces to problem Y
if a poly-time algorithm for X can be designed using a poly-time algorithm for Y

more definitions of hardness

problem X is NP-hard ⇐⇒ every problem in NP can be poly-time reduced to X
problem X is NP-hard ⇐⇒ a known NP-problem can be poly-time reduced to X

e.g. boolean-formula satisfiability reduces to graph Hamiltonicity
so, graph Hamiltonicity ∈ NP-hard

take-home lesson

if you can show your problem is NP-hard (by reducing a known NP-hard problem to it),
then you shouldn’t look for a poly-time algorithm to solve your problem

http://www.cs.berkeley.edu/~vazirani/algorithms/chap8.pdf


designing poly-time algorithms

example problem: max subarray

given array of small integers a[1, . . . , n], compute

max
i≤j

j∑
k=i

a[k]

e.g. MaxSubarray([31,−41,59,26,−53,58,97,−93,−23, 84]) = 187

algorithmic design techniques

1. enumeration

2. iteration

3. simplification & delegation (aka divide & conquer)

4. recursion inversion (aka dynamic programming)

http://dl.acm.org/citation.cfm?doid=358234.381162


enumeration for max subarray

evaluate every possible solution

MaxSubarray(a[1,...,n])
for each pair (i,j) with 1 ≤ i < j ≤ n

compute a[i]+a[i+1]+· · · +a[j-1]+a[j]
keep max sum found so far

return max sum found

analysis (O(n2) pairs) × (O(n) time to compute each sum) = O(n3) time



iteration for max subarray

don’t compute sums from scratch:∑j
k=i a[k] can be computed from

∑j−1
k=i a[k] in O(1) time

(really just clever enumeration)

MaxSubarray(a[1,...,n])
for i = 1, ..., n

sum = 0

for j = i, ..., n

sum = sum + a[j]

keep max sum found so far

return max sum found

analysis (O(n) i-iterations)×(O(n) j-iterations)×(O(1) time to update sum) = O(n2)



simplification & delegation for max subarray

max subarray either has value

• MaxSubarray(a[1, . . . , n
2
]),

• or MaxSubarray(a[n
2
, . . . , n]),

• or MaxSuffix(a[1, . . . , n
2
])+MaxPrefix(a[n

2
, . . . , n])

compute MaxSuffix and MaxPrefix in linear time by modifying previous algorithm

divide & conquer

MaxSubarray(a[1, . . . , n]) = max


MaxSubarray(a[1, . . . , n

2
])

MaxSubarray(a[n
2
, . . . , n])

MaxSuffix(a[1, . . . , n
2
]) + MaxPrefix(a[n

2
, . . . , n])

analysis (O(n) time for non-recursive work)× (O(log n) depth) = O(n log n)

http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/01-recursion.pdf


recursion inversion for max subarray

the max subarray either uses the last element or doesn’t:

MaxSubarray(a[1, . . . , n]) = max

{
MaxSubarray(a[1, . . . , n− 1])
MaxSuffix(a[1, . . . , n]

,

MaxSuffix(a[1, . . . , n]) = max{0,MaxSuffix(a[1, . . . , n− 1]) + a[n]}

dynamic programming evaluate this non-recursively by computing

• first MaxSubarray(a[1]) and MaxSuffix(a[1])

• then MaxSubarray(a[1, 2]) and MaxSuffix(a[1, 2]) from above

• then MaxSubarray(a[1, 2, 3]) and MaxSuffix(a[1, 2, 3]) from above

• and so on

analysis computing MaxSubarray(a[1, . . . , n]) and MaxSuffix(a[1, . . . , n]
from MaxSubarray(a[1, . . . , n−1]) and MaxSuffix(a[1, . . . , n−1])

takes O(1) time
O(n) things to compute = O(n) time

http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/05-dynprog.pdf


does algorithm design matter?

Programming Pearls 

TABLE I. Summary of the Algorithms 

Algorithm 1 2 3 4 

Lines of C Code 8 7 14 7 

Run time in 3.4N 3 13N 2 46N log N 33N 
microseconds 
Time to solve 102 3.4 secs 130 msecs 30 msecs 3.3 msecs 
problem of size 103 .94 hrs 13 secs .45 secs 33 msecs 

104 39 days 22 mins 6.1 secs .33 secs 
10 s 108 yrs 1.5 days 1.3 min 3.3 secs 
106 108 mill 5 mos 15 min 33 secs 

Max problem sec 67 280 2000 30,000 
solved in one min 260 2200 82,000 2,000,000 

hr 1000 17,000 3,500,000 120,000,000 
day 3000 81,000 73,000,000 2,800,000,000 

If N multiplies by 1 O, 1000 1 O0 1 O+ 10 
time multiplies by 

If time multiplies by 2.15 3.16 10-  10 
1 O, N multiplies by 

Equipment Corporation VAX-11/750, 2 timed them, and 
extrapolated the run times to achieve Table I. 

This table makes a number of points. The most im- 
portant is that proper algorithm design can make a big 
difference in run time; that point is underscored by the 
middle rows. The table also shows something of the 
different character of cubic, quadratic, N log N and 
linear algorithms: the last two rows show how the prob- 
lem size and run time vary as a function of each other. 

Another important point is that when we're compar- 
ing cubic, quadratic, and linear algorithms with one 
another, the constant factors of the programs don't  mat- 
ter much. To underscore this point, I conducted an 
experiment in which I tried to make the constant fac- 
tors of two algorithms differ by as much as possible. To 
achieve a huge constant factor I implemented Algo- 
rithm 4 on a BASIC interpreter on a Radio Shack TRS- 
80 Model III microcomputer. For the other end of the 
spectrum, Eric Grosse of AT&T Bell Laboratories and I 
implemented Algorithm 1 in fine-tuned FORTRAN on a 
CRAY-1 supercomputer. We got the disparity we 
wanted: the run time of the cubic algorithm was meas- 
ured as 3.0N 3 nanoseconds, while the run time of the 
linear algorithm was 19,500,000N nanoseconds. Table II 

shows how those expressions translate to times for var- 
ious problem sizes (the same data is displayed graphi- 
cally in Figure 1.) 

The difference in constants (a factor of six and a half 
million) allowed the cubic algorithm to start off faster, 
but the linear algorithm was bound to catch up. In this 
case, the break-even point for the two algorithms is 
around 2,500, where each takes about 50 seconds. 

Principles 
The history of the problem sheds light on the algorithm 
design techniques. The problem arose in a pattern- 
matching procedure designed by Ulf Grenander of 
Brown University in the two-dimensional form de- 
scribed in Problem 7. In that form, the maximum sum 
subarray was the maximum likelihood estimator of a 
certain kind of pattern in a digitized picture. Because 
the two-dimensional problem required too much time 
to solve, Grenander simplified it to one dimension to 
gain insight into its structure. 

Grenander observed that the cubic time of Algorithm 
I was prohibitively slow, and derived Algorithm 2. In 
1977 he described the problem to Michael Shamos of 
UNILOGIC, Ltd. (then of Carnegie-Mellon University) 

TABLE II. The Tyranny of Asymptotics 

N 
Cray-1, 

FORTRAN, 
CubicAIgonthm 

TRS-80, 
BASIC, 

LinearAIgonthm 

10 
100 

1000 
10,000 

100,000 
1,000,000 

3.0 microsecs 
3.0 millisecs 

3.0 secs 
49 mins 
35 days 
95 yrs 

200 millisecs 
2.0 secs 
20 secs 
3.2 mins 
32 mins 
5.4 hrs 

2 VAX is a trademark of Digital Equipment Corporation. 

868 Communications of the ACM September 1984 Volume 27 Number 9 

Digital Equipment Corporation VAX-11/750 in 1984

http://dl.acm.org/citation.cfm?doid=358234.381162
http://blogs.oregonstate.edu/glencora/2011/11/18/how-osu-professors-learnt-to-program-short-personal-histories/


what if my problem is not in P?

find something else in polynomial time:

• a solution close to optimal (approximate)

• an optimal solution in expectation (average-case analysis)

• solutions to problems with particularly good solutions (planted analyses)

• solutions that are small (parameterized analysis)

• solutions to nice instances (smoothed analysis)

• a locally optimal solutions (local search)

or you could use a heuristic and not guarantee anything
or you could spend exponential time and have patience

what if I don’t know if my problem is in P or is NP-hard?

your problem could be NP-intermediate
such as:

• comparing sums of square roots

• integer factorization

• computing the discrete logarithm

http://theory.stanford.edu/~tim/f11/f11.html
http://cstheory.stackexchange.com/questions/79/problems-between-p-and-npc/4010
http://maven.smith.edu/~orourke/TOPP/P33.html
http://en.wikipedia.org/wiki/Integer_factorization
http://en.wikipedia.org/wiki/Discrete_logarithm

