crash course in theoretical computer science

Glencora Borradaile Oregon State University eecs.orst.edu/~glencora/other/tcscrashcourse.pdf

theoretical computer science

- = complexity (What are the limits of computation?)
- + algorithms (Design within those limits?)

[follow the links to learn more]

what is computation?

- solving problems with a (restricted) set of operations
- a better name for *computer science*

abstract model of computation: the Turing machine

a tape (memory) at any moment reads one scanned symbol (bus) can alter scanned symbol according to a finite set of elementary operations (register)

(remains a good model for modern computers)

what is computable? what is incomputable?

- product of two integers is computable
- Entscheidungsproblem is incomputable

of the computable, what is efficiently computable?

larger problems = longer computation

eg. computing 761498762598 \times 319870897543 takes longer than computing 32 \times 54

 $T(n, X, A) = \underline{\text{time}}$ to solve instance of <u>size</u> n of problem X using algorithm A= $\# \underline{\text{computational steps}} = \#$ bits to represent instance = Turing machine operations

e.g. what is T(2n, product of two n bit numbers, grade-school)?

at most n bit multiplications + n bit additions (for the carry) per row at most n bit additions per column at most 2n columns and n rows or $4n^2$ bit additions/multiplications or at most $k(4n^2)$ Turing machine steps for some constant k $O(n^2)$ computational steps $O(n^2)$ time on any single processor

algorithm analysis: for a particular X and A, what is T(n, X, A)?

algorithm design: for a particular X, find A to minimize T(n, X, A) for all n

efficiently means quickly

when is A efficient? what values of T(n, X, A) are good?

polynomial \approx practical

if T(n, X, A) is $O(n^c)$

- in twice the time, can solve problems $2^{1/c}$ times bigger
- if a processor gets twice as fast, can solve problems $2^{1/c}$ times bigger in the same time

exponential \approx impractical

if T(n, X, A) is $O(c^n)$

- in twice the time, can solve problems bigger by $\log_c 2 \ additively$
- if a processor gets twice as fast, can solve problems bigger by $\log_c 2 \ additively$

million-dollar question: P v NP

- P = set of (decision) problems that can be solved in polynomial time (on a deterministic Turing machine) e.g. is this number divisible by this other number?
- NP = set of (decision) problems that can be solved in polynomial time (on a *non*-deterministic Turing machine) e.g. is this boolean formula satisfiable?

NP = set of (decision) problems with 'yes' answers verifiable in polynomial time (on a deterministic Turing machine)

co-NP = set of (decision) problems with 'no' answers verifiable in polynomial time (on a deterministic Turing machine) e.g. is this boolean formula a tautology?

[Venn diagram of P, NP, co-NP]

a direction for showing P = NP

design a poly-time algorithm for every problem in NP what are all the problems in NP? this could take a long time start with the most computationally-difficult problem

hard problems

problem X is NP-hard \iff poly-time algorithm for $X \implies$ poly-time algorithm $\forall Y \in NP$ $(\implies P = NP)$

Cook-Levin Theorem boolean formula satisfiability is NP-hard

more generally:

problem X is C-hard \iff poly-time algorithm for $X \implies$ poly-time algorithm $\forall Y \in C$

[Venn diagram of P, NP, NP-hard]

reductions

problem X reduces to problem Yif algorithm for X can be designed using algorithm for Y

problem X poly-time reduces to problem Y if a poly-time algorithm for X can be designed using a poly-time algorithm for Y

more definitions of hardness

problem X is NP-hard \iff every problem in NP can be poly-time reduced to X problem X is NP-hard \iff a known NP-problem can be poly-time reduced to X

e.g. boolean-formula satisfiability reduces to graph Hamiltonicity so, graph Hamiltonicity \in NP-hard

take-home lesson

if you can show your problem is NP-hard (by reducing a known NP-hard problem to it), then you shouldn't look for a poly-time algorithm to solve your problem

designing poly-time algorithms

example problem: max subarray

given array of small integers $a[1, \ldots, n]$, compute

$$\max_{i \le j} \sum_{k=i}^{j} a[k]$$

e.g. MaxSubarray([31, -41, 59, 26, -53, 58, 97, -93, -23, 84]) = 187

algorithmic design techniques

- 1. enumeration
- 2. iteration
- 3. simplification & delegation (aka divide & conquer)
- 4. recursion inversion (aka dynamic programming)

enumeration for max subarray

evaluate every possible solution

MAXSUBARRAY(a[1,...,n])
for each pair (i,j) with 1 ≤ i < j ≤ n
 compute a[i]+a[i+1]+...+a[j-1]+a[j]
 keep max sum found so far
 return max sum found</pre>

analysis $(O(n^2) \text{ pairs}) \times (O(n) \text{ time to compute each sum}) = O(n^3) \text{ time}$

iteration for max subarray

don't compute sums from scratch:

 $\sum_{k=i}^{j} a[k]$ can be computed from $\sum_{k=i}^{j-1} a[k]$ in O(1) time

(really just clever enumeration)

```
MAXSUBARRAY(a[1,...,n])
for i = 1, ..., n
    sum = 0
    for j = i, ..., n
        sum = sum + a[j]
        keep max sum found so far
    return max sum found
```

analysis $(O(n) i\text{-iterations}) \times (O(n) j\text{-iterations}) \times (O(1) \text{ time to update sum}) = O(n^2)$

simplification & delegation for max subarray

max subarray either has value

- MaxSubarray $(a[1,\ldots,\frac{n}{2}]),$
- or MaxSubarray $(a[\frac{n}{2},\ldots,n]),$
- or $MaxSuffix(a[1, ..., \frac{n}{2}]) + MaxPrefix(a[\frac{n}{2}, ..., n])$

compute MaxSuffix and MaxPrefix in linear time by modifying previous algorithm

divide & conquer

$$MAXSUBARRAY(a[1,...,n]) = \max \begin{cases} MAXSUBARRAY(a[1,...,\frac{n}{2}]) \\ MAXSUBARRAY(a[\frac{n}{2},...,n]) \\ MAXSUFFIX(a[1,...,\frac{n}{2}]) + MAXPREFIX(a[\frac{n}{2},...,n]) \end{cases}$$

analysis $(O(n) \text{ time for non-recursive work}) \times (O(\log n) \operatorname{depth}) = O(n \log n)$

recursion inversion for max subarray

the max subarray either uses the last element or doesn't:

$$\begin{aligned} \text{MaxSubarray}(a[1, \dots, n]) &= \max \left\{ \begin{array}{l} \text{MaxSubarray}(a[1, \dots, n-1]) \\ \text{MaxSuffix}(a[1, \dots, n]) \end{array} \right. \end{aligned}$$
$$\begin{aligned} \text{MaxSuffix}(a[1, \dots, n]) &= \max\{0, \text{MaxSuffix}(a[1, \dots, n-1]) + a[n]\} \end{aligned}$$

dynamic programming evaluate this non-recursively by computing

- first MAXSUBARRAY(a[1]) and MAXSUFFIX(a[1])
- then MAXSUBARRAY(a[1,2]) and MAXSUFFIX(a[1,2]) from above
- then MAXSUBARRAY(a[1,2,3]) and MAXSUFFIX(a[1,2,3]) from above
- and so on

analysis computing MAXSUBARRAY(a[1,...,n]) and MAXSUFFIX(a[1,...,n])from MAXSUBARRAY(a[1,...,n-1]) and MAXSUFFIX(a[1,...,n-1])takes O(1) time O(n) things to compute = O(n) time

does algorithm design matter?

TABLE 1. Cummury of the Algorithms					
Algorithm		1	2	3	4
Lines of C Code		8	7	14	7
Run time in microseconds		3.4N ³	13N ²	46N log N	33N
Time to solve	10 ²	3.4 secs	130 msecs	30 msecs	3.3 msecs
problem of size	10 ³	.94 hrs	13 secs	.45 secs	33 msecs
	10⁴	39 days	22 mins	6.1 secs	.33 secs
	10 ⁵	108 yrs	1.5 days	1.3 min	3.3 secs
	10 ⁶	108 mill	5 mos	15 min	33 secs
Max problem	sec	67	280	2000	30,000
solved in one	min	260	2200	82,000	2,000,000
	hr	1000	17,000	3,500,000	120,000,000
	day	3000	81,000	73,000,000	2,800,000,000
	•				

TABLE I. Summary of the Algorithms

Digital Equipment Corporation VAX-11/750 in 1984

what if my problem is not in P?

find something else in polynomial time:

- a solution close to optimal *(approximate)*
- an optimal solution in expectation (average-case analysis)
- solutions to problems with particularly good solutions (planted analyses)
- solutions that are small (parameterized analysis)
- solutions to *nice* instances (smoothed analysis)
- a locally optimal solutions (local search)

or you could use a *heuristic* and not guarantee anything or you could spend exponential time and have patience

what if I don't know if my problem is in P or is NP-hard?

your problem could be NP-intermediate such as:

- comparing sums of square roots
- integer factorization
- computing the discrete logarithm