
CS523: Advanced Algorithms Spring 2014

Lecture 1: TSP on graphs of bounded branch width
Lecturer: Glencora Borradaile Scribes: Hung Le

1.1 Branch Decomposition

Let G = (V (G), E(G)) be an undirected graph. We denote the number of vertices and edges of G
by n and m, respectively. For a subset X of vertices of G, let G[X] be the subgraph induced by X.

A branch decomposition of G is an unrooted binary tree T such that each leaf of T corresponds to
an edge of G and removing each edge of T partitions the edge set E(G) into two parts. For an edge
e of T , let We be the set of vertices of G such that for each v ∈We, there are two edges f1 and f2
in G incident to v such that the leaves of T corresponding to f1 and f2 are in different component
of T \{e}. |We| is the order of the edge e. The maximum order over all edges of T is the width of
T . The branch width of G is the minimum width over all possible branch decompositions of G.

Figure 1.1: Branch decomposition (right) of the graph (left)1

Note: It is NP-complete to decide whether a graph G has a branch-decomposition of width at
most k [4]. For planar graphs, a minimum-width branch decomposition can be computed in O(n3)
time [2].

1Source: http://en.wikipedia.org/wiki/File:Branch-decomposition.svg

1-1

http://en.wikipedia.org/wiki/File:Branch-decomposition.svg

1-2

1.2 Dynamic Programming for TSP

Suppose we are given a graph G = (V (G), E(G)) with costs on edges and a branch decomposition
of G of width k. We give a naive dynamic programming algorithm to solve TSP for G.

Theorem 1.1 There is an algorithm that solves TSP in graphs of branch-width at most k in
O(k3(2k)2kn) time.

We pick an arbitrary leaf vertex of T and make it become the root of T . For an edge e of T , we call
the partition of T \{e} that does not contain the root of T the “lower” part of the tree. Let Ge be
the subgraph of G containing edges corresponding to the vertices in the lower part T \{e}. We call
the set We the interface between Ge and G. A partial solution of the TSP in Ge is a collection of
subgraphs, each with at least one vertex in the interface We (see Figure 1.2). We define a labeling
scheme ce : We → {0, 1, 2} which assigns labels to vertices in We such that for each vertex v ∈We,
we interpret as:

• ce(v) = 0 if v is not spanned by the partial solution of TSP in Ge.
• ce(v) = 1 if v has odd degree in the partial solution of TSP in Ge.
• ce(v) = 2 if v has even degree in the partial solution of TSP in Ge.

Let w = |We|. A configuration of the interface We is a pair (ce, Pe) in which:

• ce is a labeling scheme of We

• Pe = {S0, S1, . . . , Sw} is a partition of vertices in We in which S0 is the set of vertices labeled
0. For convenience, we allow some sets Si, 0 ≤ i ≤ w, of the partition Pe to be empty . Each
partition in Pe keeps track of vertices of We in the same connected components of the partial
solution. (Refer to Figure 1.2(b).)

Observation 1 The number of vertices labeled 1 in each set of any partition is even.

The Observation 1 comes from the fact that the solution of TSP is an Eulerian subgraph, therefore,
its intersection with interfaces induces an even number of odd-labelled vertices.

Lemma 1.2 For an edge e with interface We, the number of possible configurations is at most
w(2w)w where w = |We|.

Proof: We can think of a partition into w + 1 sets {S0, S1, S2, . . . , Sw} of a set of w vertices
{v1, v2, . . . , vw} as a coloring (it is possible that Si = ∅ for some i). A vertex vi has a color j if it is
assigned to the partition Sj . For each vertex, there are w+ 1 ways of assigning a color. Therefore,
the number of possible partitions of w is ww+1. For each partition Si, i 6= 0, there are 2|Si| different
labellings, since vertices in Si can only be assigned labels in {1, 2}. Vertices in S0 have labels 0
only. Hence, the number of possible configurations of We is bounded by:

ww+12|S1|+|S2|+...+|Sw| ≤ w(2w)w (1.1)

1-3

Figure 1.2: (a) The TSP solution are marked by red edges. Verices in the interface We are blue.
(b) A simplified view of interface and partial solution. (c) Partition and labelling of vertices of the
interface We

A TSP tour H is said to induce a configuration (ce, Pe) if H ∩Ge satisfies the following conditions:

• For a vertex v ∈We:
– ce(v) = 0 if the degree of v in the subgraph H ∩Ge is 0.
– ce(v) = 1 if the degree of v in the subgraph H ∩Ge is odd.
– ce(v) = 2 if the degree of v in the subgraph H ∩Ge is even.

• Vertices in the same set of the partition Pe belong to the same connected component of H∩Ge

Our dynamic programming table is indexed by edges of T and configurations associated with each
edge. Precisely, Ae[ce, Pe] is the minimum cost subgraph of Ge which induces the configuration
(ce, Pe). We visit the tree T in post-order and update the dynamic programming table of a node
given tables of its children.

Leaf Edge of T Let e be a leaf edge and let (u, v) be a single edge in Ge. The interface We consists
of two vertices We = {u, v}. There are only two valid configurations (ce = [1, 1], Pe = {{∅}, {u, v}})
and (ce = [0, 0], Pe = {{u, v}}). We have:

Ae[ce = [1, 1], Pe = {{∅}, {u, v}}] = cost(e(u, v))

Ae[ce = [0, 0], Pe = {{u, v}}] = 0

Ae[ce, Pe] = +∞ for all other configurations

(1.2)

1-4

Figure 1.3: A possible combination of partitions. The red edges are in the partial solution restricted
to Ge1 and the blue edges are in the partial solution restricted to Ge2

Internal Edge of T Let e be an internal edge with two children e1 and e2. Initially, we set
Ae[ce, Pe] = +∞ for all possible configurations of We, and then combine two tables Ae1 and Ae2 to
update Ae. Let X1 = We−We2 , X2 = We−We1 , X3 = We ∩We1 ∩We2 and X4 = We1 ∩We2 −We

(Refer to Figure 1.3).

Observation 2

We = X1 ∪X2 ∪X3

We1 = X1 ∪X3 ∪X4

We2 = X2 ∪X3 ∪X4

(1.3)

Let (c1, P1) and (c2, P2) be two configurations associated with interfaces We1 and We2 , respectively
and let (ce, Pe) be a configuration of We which is the combination of (c1, P1) and (c2, P2). Note that
not all pairs of configurations (c1, P1) and (c2, P2) can be combined. If they can, we say (c1, P1)
compatible with (c2, P2). One example of a pair of incompatible configurations is when merging two
partitions P1 and P2 results in an isolated connected component, which is a connected component
containing no vertex of We. We define compatibility more formally by showing how to merge two
partitions P1 and P2. Initially, we set P = ∅. For any u ∈ We, we have following color assignment
rule:

• if u ∈ X1, then c(u) = c1(u)
• if u ∈ X2, then c(u) = c2(u)
• if u ∈ X3 and

– if c1(u) = c2(u) 6= 0, then c(u) = 2
– if c1(u) = 1 ∧ c2(u) = 2 or c1(u) = 2 ∧ c2(u) = 1, then c(u) = 1
– otherwise, c(u) = max{c1(u), c2(u)}

For two partitions P1 = {S1
0 , S

1
1 , . . . , S

1
w} and P2 = {S2

0 , S
2
1 , . . . , S

2
w}, we build a bipartite graph

Gb = A ∪B in which A is a set of w vertices corresponding to w sets {S1
1 , . . . , S

1
w} of P1 and B is

1-5

a set of w vertices corresponding to w sets {S2
1 , . . . , S

2
w} of P2. Two vertices ui ∈ A and vj ∈ B

have an edge if the two corresponding sets S1
i and S2

j satisfy S1
i ∩ S2

j 6= ∅. We decompose Gb into
a collection of connected components {Ck} and sets from P1 and P2 in each component Ck will be
merged into a single set of Pe. Consider a pair of two sets S1

i and S2
j of a component Ck such that

S1
i ∩ S2

j 6= ∅ and let v be a vertex in S1
i ∩ S2

j . If v ∈ X4 and c1(v) 6= c2(v), then P1 and P2 are

not compatible. Two sets S1
0 and S2

0 in P1 and P2 are rather special and we need to treat them
differently. For S1

0 , if S1
0 ∩ S2

t 6= ∅ for some t ∈ {1, 2, . . . , w}, we just include vertices in S1
0 ∩ S2

t to
the partition of Pe which contains S2

t and assign colors following color assignment rule above. For
S2
0 , we assign colors and merge vertices in S2

0 similarly. The vertices in S1
0 ∩ S2

0 that have not been
assigned to any set of Pe will be S0 of Pe. Finally, we check that combination of two partitions
(c1, P1) and (c2, P2) does not lead to an isolated component, that can be done by checking whether
a new set in Pe formed by merging sets in P1 and P2 containing a vertex in We or not. Clearly,
building bipartite graph, finding connected components and checking compatibility can be done in
O(w) time.

If (c1, P1) and (c2, P2) are compatible, we update:

Ae[ce, Pe] = min(Ae[ce, Pe], Ae1 [c1, P1] +Ae2 [c2, P2])

Obtaining Solution For the root edge r, let (u, v) be the only edge of G\Gr. The minimum
cost of TSP is given by

cost(TSP) = min(A[cr = [2, 2], Pr = {∅, {u, v}}], A[cr = [1, 1], Pr = {∅, {u, v}}] + cost(e(u, v)))

Proof of Theorem 1.1 For each pair of configurations (c1, P1) and (c2, P2), checking the com-
patibility and update (c, P) takes at most O(w) time. There are at most O(w2(2w)2w) possible
pairs of configurations, therefore, for each edge e of T , the time required to update the dynamic
programming table is O(w3(2w)2w). Since w ≤ k for all interfaces We and the size of T is O(n),
the total running time of the algorithm is bounded by O(k3(2k)2kn)

TSP for planar graphs of bounded branch width If the given graph is planar, we can exploit
planarity to speed up the dynamic programming algorithm. Since the graph is planar, the partition
P in the configuration (c, P) is non-crossing [1]. The number of non-crossing partitions from a set
of n points arranged around a circle is the Catalan number:

Cn = 1
n+1

(
2n
n

)
∼ 4n

n
3
2
√
π

Therefore, the number of possible configurations in the Lemma 1.2 is at most:

O(w
4w

w
3
2
√
π

) ∼ O(
4w√
w

) (1.4)

and the total running time of the algorithm is reduced to O(k
(

4k√
k

)2

n) = O(16kn). By more clever

combination, we are able to further improve the running time of the algorithm, see [1].

1-6

References

[1] Frederic Dorn, Eelko Penninkx, Hans L. Bodlaender, and Fedor V. Fomin. Efficient exact
algorithms on planar graphs: Exploiting sphere cut branch decompositions. In Gerth Stølting
Brodal and Stefano Leonardi, editors, Algorithms ESA 2005, volume 3669 of Lecture Notes in
Computer Science, pages 95–106. Springer Berlin Heidelberg, 2005.

[2] Qian-Ping Gu and Hisao Tamaki. Optimal branch-decomposition of planar graphs in O(n3) time.
In Lúıs Caires, Giuseppe F. Italiano, Lúıs Monteiro, Catuscia Palamidessi, and Moti Yung,
editors, Automata, Languages and Programming, volume 3580 of Lecture Notes in Computer
Science, pages 373–384. Springer Berlin Heidelberg, 2008.

[3] Neil Robertson and P.D Seymour. Graph minors. X. Obstructions to tree-decomposition. Jour-
nal of Combinatorial Theory, Series B, 52(2):153 – 190, 1991.

[4] P. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica, 14(2):217–241,
1994.

	Branch Decomposition
	Dynamic Programming for TSP

