CS 325 Visible Lines Notes By Spencer Hubbard

Let $n \in \mathbb{N}$ and $m_{1}<\cdots<m_{n}$. Now, for each $i \in\{1, \ldots, n\}$, let $b_{i} \in \mathbb{R}$ and $y_{i}(x)=m_{i} x+b_{i}$, for each $x \in \mathbb{R}$.
Definition. A point $\left(x, y_{i}(x)\right)$ is a visible point on y_{i} if for each $j, y_{i}(x) \geq y_{j}(x)$. A line y_{i} is a visible line if there exists a visible point on y_{i}.

Note. Let $i \neq j$. Then the intersection of lines y_{i} and y_{j} is the unique point on y_{i} and y_{j} with x-coordinate $x_{i, j}=\left(b_{i}-b_{j}\right) /\left(m_{j}-m_{i}\right)$. Moreover, if $i<j$, then

$$
\begin{align*}
& x \leq x_{i, j} \Rightarrow y_{i}(x) \geq y_{j}(x) \tag{1}\\
& x \geq x_{i, j} \Rightarrow y_{i}(x) \leq y_{j}(x) \tag{2}
\end{align*}
$$

Claim 1. y_{1} and y_{n} are visible lines.
Proof. Let y_{i} be the first line that intersects y_{1}-as x increases. Then by (1), we have $y_{1}\left(x_{1, i}\right) \geq y_{j}\left(x_{1, i}\right)$, for all j, and so y_{1} is a visible line. Now, let y_{i} be the last line that intersects y_{n}-as x increases. Then by (2), we have $y_{n}\left(x_{i, n}\right) \geq y_{j}\left(x_{i, n}\right)$, for all j, and so y_{n} is a visible line.
Note. Let y_{i} be a visible line and $\left(x, y_{i}(x)\right)$ a visible point on y_{i}. Then

$$
\begin{align*}
& i<n \Rightarrow \exists j>i \text { s.t. } x \leq x^{\prime} \leq x_{i, j} \Rightarrow\left(x^{\prime}, y_{i}\left(x^{\prime}\right)\right) \text { is a visible point on } y_{i} \tag{3}\\
& 1<i \Rightarrow \exists j<i \text { s.t. } x_{i, j} \leq x^{\prime} \leq x \Rightarrow\left(x^{\prime}, y_{i}\left(x^{\prime}\right)\right) \text { is a visible point on } y_{i} \tag{4}
\end{align*}
$$

Claim 2. If y_{i} is not visible, then there exist j, k with $j<i<k$ such that $y_{j}\left(x_{j, k}\right)>y_{i}\left(x_{j, k}\right)$.
Proof. Suppose y_{i} is not visible. Then by claim 1, it follows that $1<i<n$. Let j be the greatest index with $j<i$ such that y_{j} is visible and let k be the least index with $k>i$ such that y_{k} is visible. Since y_{j} is visible, there exists x such that $\left(x, y_{j}(x)\right)$ is a visible point on y_{j}. Moreover, since $j<i<n$, it follows by (3) that there exists $\ell>j$ such that for each x^{\prime} with $x \leq x^{\prime} \leq x_{j, \ell},\left(x^{\prime}, y_{j}\left(x^{\prime}\right)\right)$ is a visible point on y_{j}. Since y_{i} is not visible and k is the least index with $k>i$ such that y_{k} is a visible line, it must be the case that $\ell=k$ and so $\left(x_{j, k}, y_{j}\left(x_{j, k}\right)\right)$ is a visible point on y_{j}. In particular, $y_{j}\left(x_{j, k}\right)>y_{i}\left(x_{j, k}\right)$.

Claim 3. If there exist j, k with $j<i<k$ such that $y_{j}\left(x_{j, k}\right)>y_{i}\left(x_{j, k}\right)$, then y_{i} is not visible.
Proof. Suppose there exist j, k with $j<i<k$ such that $y_{j}\left(x_{j, k}\right)>y_{i}\left(x_{j, k}\right)$. First, we will show $x_{i, k}<x_{j, i}$. Since $i<k$ and $y_{k}\left(x_{j, k}\right)>y_{i}\left(x_{j, k}\right)$, it follows by (1) that $x_{i, k}<x_{j, k}$. Since $j<i$ and $y_{j}\left(x_{j, k}\right)>y_{i}\left(x_{i, k}\right)$, it follows by (2) that $x_{j, k}<x_{j, i}$ and so $x_{i, k}<x_{j, i}$. Now, we will show y_{i} is not visible. Choose an arbitrary x. Then either $x<x_{j, i}$ or $x \geq x_{j, i}$. If $x<x_{j, i}$, then by (1) we have $y_{j}(x) \geq y_{i}(x)$ and we're done. So, assume $x \geq x_{j, i}$. Since $x_{i, k}<x_{j, i}$, it follows that $x>x_{i, k}$ and so by (2) we have $y_{k}(x) \geq y_{i}(x)$.

Note. Suppose $j<k$. Then it follows by elementary algebra that $y_{j}\left(x_{j, k}\right)>y_{i}\left(x_{j, k}\right)$ if and only if $m_{j}\left(b_{j}-\right.$ $\left.b_{k}\right)+b_{j}\left(m_{k}-m_{j}\right)>m_{i}\left(b_{j}-b_{k}\right)+b_{i}\left(m_{k}-m_{j}\right)$. If all slopes and y-intercepts are integers, then this means we may test if $y_{j}\left(x_{j, k}\right)>y_{i}\left(x_{j, k}\right)$ using only addition, subtraction, and multiplication of integers, i.e., no division.

