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Abstract

We present an algorithm for robustly analyzing point data arising from sam-
pling a 2D surface embedded in 3D, even in the presence of noise and non-
uniform sampling. The algorithm outputs, for each data point, a surface
normal, a local surface approximation in the form of a one-ring, the local
shape (flat, ridge, bowl, saddle, sharp edge, corner, boundary), the feature
size, and a confidence value that can be used to determine areas where the
sampling is poor or not surface-like.

We show that the normal estimation out-performs traditional fitting ap-
proaches, especially when the data points are non-uniformly sampled and in
areas of high curvature. We demonstrate surface reconstruction, parameter-
ization, and smoothing using the one-ring neighborhood at each point as an
approximation of the full mesh structure.

Keywords: Surface reconstruction, normal estimation, shape classification,
unlabeled data, point data, one-ring

1. Introduction

We present an algorithm for estimating surface normals and local shape
from point data that is sampled from a 2D surface embedded in 3D space.
We show that our algorithm is robust in the presence of both noise and
non-uniform sampling. For each data point the algorithm produces a surface
normal, a local surface approximation in the form of a one-ring, a local
estimate of shape (flat, bowl, saddle, ridge, edge, corner, or boundary), a
measure of the feature size, and a confidence value. This value reflects both
the quality of the local sampling and noise in the function and can be used
to detect places where the points do not represent a surface. The one-ring
neighborhood can be used for further mesh processing such as reconstruction,
smoothing or spectral mesh processing.
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Traditional normal estimation approaches usually rely on fitting a local
surface approximation to some subset of the k-nearest neighbors Klasing
et al. (2009). This approach works well most of the time, but it has several
limitations (see Figure 1). First, if the data are non-uniformly distributed,
the fitting error becomes biased — the classic example of this is contour
data, where the best planar fit can be perpendicular to the surface. Second,
the local surface approximation may not have enough flexibility to match
the surface, which introduces additional error and increases the sensitivity
to non-uniformly distributed data. Increasing the flexibility of the represen-
tation, unfortunately, can lead to over-fitting. Third, there is no method for
distinguishing between noisy data and poor local fit, or determining if the
local samples even represent a surface.

Our fundamental idea is to build three different representations of the
local surface — a surface normal, a good-quality one-ring, and a local shape
model — and cross-validate them. If all three representations are mutually
consistent with each other and the data, then we can be reasonably confident
that they are correct. In this we are closer in spirit to approaches that use
robust statistics (Fleishman et al., 2005; Li et al., 2010a). We also gain a lot of
information about the samples, namely how much noise is present, how even
the sampling is, if there are sharp features or boundaries, the local feature
size, and a plausible graph structure. There are several approaches that use
one of these pieces of information to derive another — for example, normals
from the graph structure (Park et al., 2006) — but to our knowledge no-
one else has used cross-validation to improve normal estimation and surface
analysis.

We show that cross-validation produces better-quality normals than stan-
dard fitting approaches, particularly in areas with uneven sampling and high
curvature. Not only are the averages better, but the variance is narrower,
meaning we are less likely to return a “wrong” result. This is particularly true
in saddle and ridge areas. Our approach also behaves well near boundaries
and sharp features, and can explicitly identify them.

We make use of three observations. The first is that, locally, smooth
surfaces are either flat (zero curvature), ridges (zero curvature in one direc-
tion), bowls (positive curvature), or saddles (negative curvature). Given a
known surface normal, we evaluate whether or not the data can be plausibly
explained by one of these models (Section 5). If it can’t, then either the
surface normal is wrong or the data points do not, locally, form a surface.
Second, a good-quality one-ring approximation of the surface — one that has
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(a) Biased (b) Increasing curvature (c) Contour sampling, two
views

(d) Weighted
fit

Figure 1: Black is true normal, red is plane fitting, green is quadratic, and
blue cubic. a) More samples on one side than the other pull the normal
estimation in that direction. b) Increasing the curvature (same samples)
results in error in the normal. c) Two views, contour sampling — more
samples on the right contour pull the normal in that direction. d) Weighted
fit (cyan arrow) can exacerbate the problem.

roughly equal-sized, equilateral triangles — is the best method for estimating
the normal because it does not suffer from inadvertent smoothing or over-
fitting. (Smoothing can always be applied in a post-processing step if desired
— see Section 8.) Third, the one-ring and the normal should be mutually
consistent — projecting the data points onto the tangent plane should yield
the same one-ring (Section 4). This is particularly important around ridges
with high curvature, where the range of valid normals is small.

We use a combination of optimization and validation to find the surface
normal, one-ring, and local surface model that are mutually consistent. We
define evaluation scores for the shape models (Section 5) and for the one-
ring (Section 4) along with cross-validation criteria (Section 3). Note that
the search space is discrete — there are an enumerable number of one-rings.
We use this fact to develop a heuristic algorithm that generates valid one-ring
candidates and then optimizes them (Section 3).

We evaluate our normal construction and shape classification using both
real and test data (Section 7). We demonstrate the usefulness of our one-rings
for both surface reconstruction and smoothing (Section 8). Our contributions
are:

• Robust normals even in the presence of noise in the data and non-
uniform sampling.
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• Construction of a well-behaved, minimal one-ring neighborhood from
the k-nearest neighbors.

• Local shape estimation (flat, bowl, saddle, ridge, corner, sharp edge,
or boundary).

• An optimization algorithm to find the above that cross-validates the
results.

• Identification of outliers and poorly reconstructed areas.

• Two novel surface reconstruction algorithms based on the constructed
one-rings.

Source code is available at https://sourceforge.net/projects/meshprocessing/.

2. Related work

One approach to normal estimation is surface reconstruction, either lo-
cal (Fleishman et al., 2005) or global (Bernardini et al., 1999; Amenta et al.,
2001). In the case of noise-free and dense sampling, several global, Delaunay-
based techniques exist for accurate normal and feature size approximations (Dey
and Goswami, 2003; Boissonnat and Cazals, 2000; Amenta et al., 2001). In
the presence of noise, however, these reconstructions can be incorrect. Re-
cent work (Dey and Sun, 2005) extends this approach to noisy data by using
an adaptive threshold to cull Delaunay balls that arise due to noise. We com-
pare our local approach to this one and show that, particularly for unevenly
sampled data, our normal reconstruction is more accurate (table 1). How-
ever, the global approach can be more accurate in cases where the between
sample distance is less than the between surface distance (section 7.2).

The most common approach to normal estimation is plane fitting. (Mitra
and Nguyen, 2003) provide a formula for estimating the best number of
neighbors, k, to use based on estimates of the noise and local curvature. They
then calculate the normal by plane fitting and show that adaptively choosing
k increases the accuracy of the normal estimation. The fitting approach was
extended to quadratic and cubic surfaces with normal-based weights (Vančo
and Brunnett, 2007) which provide a better approximation in the presence of
noise. A recent survey (Klasing et al., 2009) also found quadratic fitting more
accurate for moderate noise, although for very high noise planar fitting was
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better. We compare our approach to both planar, quadratic, and cubic fitting
and show that, particularly for areas of high curvature and uneven sampling,
our approach outperforms these surface fitting approaches (section 7). This
is because irregular sampling can easily “pull” the fitted surface away from
the average, due to the nature of linear regression. This effect is worse when
the underlying shape, such as a corner, can not be approximated by the fitted
surface (plane, quadric, or cubic).

(Pauly et al., 2003) present a modification of the plane-fitting algorithm
that weights points by their distance from the point of interest. This is called
locally-weighted regression in the machine learning literature. While this can
help in some cases, it actually exacerbates the contour-sampling problem by
reducing the influence of the points on the nearby contour. In a recent com-
parison of these two plane-fitting techniques with a global, Delaunay-based
one (Dey et al., 2005), the Delaunay and weighted sampling approaches were
comparable, and out-performed the non-weighted, plane-fitting approach.
This result is in line with our experiments.

(Fleishman et al., 2005) and (Li et al., 2010a) provide a statistically
robust method for locally classifying points around sharp features (which
are the intersection of smooth surfaces) into clusters, using robust statistical
approaches. This approach gives much more accurate normals along sharp
features. Similarly, we also use intersecting planes to more robustly calculate
normals at sharp features. Unlike Fleishman’s approach, we do not apply
smoothing before calculating the normal; this allows us to better capture
small surface detail without precluding the subsequent use of smoothing if
desired.

An alternative to local curvature-based feature finding is to use both
the surface locations and the normals (Lai et al., 2007) and examine how
the surface normals vary in a local patch on the surface. The techniques
presented here could easily be applied to this approach to produce better
normal estimation, produce a local parameterization when a mesh is not
available, and identify edges and corners, which are processed differently.

Nearly all point-based methods define the concept of a neighborhood,
typically the k closest points as measured by Euclidean distance. This ap-
proach can cause problems when the surface “folds back” on itself because
nearby points in Euclidean space may not be close from a geodesic measure.
This problem is exacerbated by large k. One solution to this is to use an
approximation of geodesic distance to build large neighborhoods from small
ones (Vančo and Brunnett, 2007). We have experimented with this approach
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but have found it to decrease the quality and accuracy of the normal recon-
struction because a smaller neighborhood reduces the chance of “bridging” a
gap in the sampling and increases the effect of noise. In our approach we only
use a smaller k when the data samples do not constitute a valid surface (end
of Section 6), gaining the benefits of using smaller neighborhoods without
losing the benefits of larger ones. Alternative graphs over all data points,
which could be used to create local neighborhoods, are minimum spanning
trees, relative neighborhood graphs, and Gabriel graphs. These are typically
too sparse for our purposes, although a recent elliptical adaptation to the
Gabriel graph (Park et al., 2006) is denser. We differ from these approaches
in that we both optimize for the quality of the one-ring and verify that it is a
valid approximation to the surface (but we do not create a consistent, global
graph).

Delaunay triangulation also defines a concept of local neighborhood, called
the “natural neighbors” (Boissonnat and Cazals, 2000). This concept is used
in (OuYang and Feng, 2005) to extract a set of mesh neighbors from a global
Delaunay triangulation. Our one ring is usually an ordered subset of the
natural neighbors, and is computed locally, as opposed to requiring a global
construction of the Delaunay triangulation.

As part of our analysis we build local approximations of the surface (plane,
ridge, bowl, saddle, edge, corner) to determine if the k-nearest neighbor
points could have come from that surface (Sections 5 and 6). An alternative
to explicitly representing the surface is to determine if there exists a rigid
motion entirely in the tangent space of the points (Gelfand and Guibas,
2004). This can be used to identify points that lie on a plane, cylinder,
or sphere. This approach is unsuitable for initial shape estimation purposes
because it only handles a subset of the possible surface types, requires surface
normals, and a relatively large number of points. However, it could be a
useful secondary processing step for determining normal consistency across
larger surface patches, particularly for data sets captured from CAD/CAM
models.

3. The algorithm

The input to the algorithm is a set of N data points D = d1 . . . dN , and
whether or not the surface has boundaries, corners, or sharp edges. Let
Q = q1 . . . qk be the k nearest neighbors for the point d (k = 25 in our
implementation). For each data point d the algorithm outputs the following.
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1. A surface normal n̂.

2. An ordered one-ring neighborhood P = p1 . . . pm, with pi ∈ Q. The
one-ring has the following properties:

(a) The surface normal computed from the one-ring neighborhood is
n̂.

(b) The points P , when projected to the tangent plane defined by d
and n̂, form a non self-intersecting polygon.

(c) The points Q, when projected to the tangent plane defined by d
and n̂, lie on, or outside, of that polygon. These two conditions
essentially ensure that the one-ring represents (locally) a disk of
a manifold surface.

3. The local shape type s ∈ S, which is one of: flat, bowl, saddle,
ridge, corner, sharp edge, or boundary. The latter three will
only be used if the user has explicitly said they are present in the data.

(a) The local shape has the surface normal n̂.
(b) An estimate of the curvature of the local shape (feature size).

4. A noise score, es(d, n̂, Q), which represents the average variation of Q
from the fitted shape model. This score is normalized.

5. A quality score, ep(d, n̂, P ), for the one-ring neighborhood. This score
is normalized.

Iterate over candidate normals
Find dense, valid one-ring P
Remove points from P to create P ′

Compute normal n̂′ for P ′

If P ′ still valid

Compute ep(d, n̂′, P
′)

Compute es∈S(d, n̂′, Q) for all shapes S

Keep if ep(d, n̂′, P
′) + mins∈S es(d, ˆn′, Q, minimum

Figure 2: Heuristic algorithm.

The algorithm optimizes for the P , n̂, and s that minimize es(d, n̂, Q) +
ep(d, n̂, P ) while ensuring that the properties in items 2 and 3 hold. The
difficulty is that the one-ring is used to compute the surface normal, which in
turn is used to find a one-ring neighborhood that satisfies the given properties
(and minimizes ep(d, n̂, P )). This is addressed by guessing a surface normal,
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then iterating between computing the one-ring and the normal until both
stabilize (if they do). This initial one-ring is dense; we further optimize it by
removing points. Removing points might change the computed normal; we
check that this candidate one-ring is still valid by re-projecting and checking
the properties in item 2. If the candidate one-ring passes this test then we
calculate ep(d, n̂, P ) and the shape model scores es∈S(d, n̂, Q) for each model.
The score for the candidate one-ring is ep(d, n̂, P ) + mins∈S es(d, n̂, Q). We
return the candidate one-ring, normal, and shape which have the lowest
combined score. This algorithm has the following components, described in
more detail in the following sections and in Grimm and Smart (2008):

• Calculate an initial, cross-validated surface normal and one-ring pair
(Section 4).

– Calculate a surface normal n̂ from a one-ring P

– Calculate an initial one-ring P ⊂ Q from a surface normal n̂.

– Calculate candidate surface normals.

• Optimize surface normal and one-ring pairs using the score ep(d, n̂, P )
(Section 4.1).

– Compute ep(d, n̂, P ).

– Generate candidate one-rings P ′ from P .

• Compute shape models es∈S(d, n̂, Q) (Section 5).

– Fit shape models (bowl, ridge, flat, saddle) to Q given d and n̂.

– Evaluate resulting fitted shape model.

• Specialized shape models (sharp edge, corner, boundary) (Section 6).

– Compute additional candidate normals n̂ from the corner and
sharp edge models.

– Fit corner, sharp edge, and boundary models to Q given d, P , and
n̂.

– Evaluate resulting fitted specialized shape models.

• Optimizing in the presence of boundaries, corners, and sharp edges
(Section 6).
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The outlined heuristic algorithm in Figure 2 works, but can be made more
efficient by not recomputing shape models when the normals are sufficiently
similar (dot products within 0.98 in our implementation). Additionally, we
can make an initial pass with a handful of candidate neighborhoods and
rule out any shape models with scores substantially bigger than the best-fit
models.

We use the angle-weighted normal averaging but we could just as easily
use other normal calculation techniques (Meek and Walton, 2000; OuYang
and Feng, 2005). Because we are optimizing for one-ring quality, which
includes regular triangles, the specific weighting scheme has less effect than
it would for a general mesh with fixed (possibly bad) one-ring topology.

Role of cross-validation: As mentioned in the introduction, our goal is
not just to calculate any normal, one-ring, and local shape type, but to also
ensure that they are mutually consistent. We ensure consistency between the
normal and the one-ring by calculating the normal from the one-ring, then
checking that the one-ring is still valid when created with that normal (cri-
terion 2 above). This consistency check particularly helps with anisotropic
sampling, where simpler approaches often result in normals that are orthog-
onal to the correct one. Any projection of the local neighborhood using any
normal will result in a few of the points in the sparse sampling direction be-
ing included in the one-ring, which results in a one-ring normal that points
(roughly) in the right direction. Projecting with this new normal results in
a one-ring that has an even better sampling of the sparse direction — a few
iterations and the normal and one-ring will agree.

In areas of high curvature or in the presence of outliers simply checking
the normal and the one-ring is not sufficient. It is possible in these cases
for there to be more than one stable normal and one-ring configuration —
a sharp ridge, when viewed sideways, looks like a noisy boundary. For this
reason, we cross-validate with the larger local neighborhood, i.e, the k nearest
neighbors. Most of the time we cross-validate in only one direction — given
the normal, see if the k nearest neighbors form a “valid” shape. For high-
curvature areas this helps to disambiguate a ridge from a boundary, because
the ridge will fit better than the boundary model. Outliers are also less of
a problem because they tend to get removed from the one-ring (if possible)
because the resulting normal is not as good at predicting the local shape.

In the case of edges, corners, and boundaries we also cross-validate in
the other direction by trying the normal predicted by the model. Like most
sharp feature detection approaches, we partition the local neighborhood into

9



d 

ˆ n 

a) Projecting 

qi 
pi 

d 

b) Binning and 

taking closest 

c) Adding missing 

point 

r
i-1 

r
i-1 

r
 

i-1 

i+1 

d) Radius change 

penalty terms 

 

e) Exterior angle 

Figure 3: From left to right: a) Projecting the points to the tangent plane,
then b) binning by angle, to construct a one-ring neighborhood. c) The
highlighted point in the first quadrant is inside the polygon; this point is
added to the polygon. d) Calculating the radius change term. e) An example
of an exterior angle.

two (edge) or three (corner) sets where each set is well-explained by a plane.
Unlike these approaches, we cross-validate by checking that the normal made
by averaging the plane normals agrees with the normal of the one-ring, that
the one-ring can also be partitioned into those planes, and that the normal
produces that one-ring. This is both faster (the one-ring tells us which planes
to try) and more robust (see Figure 7).

4. One-ring computation

To find an initial, valid P and n̂ pair we iterate between computing a
one-ring from a normal, then computing the one-ring from the normal. We
iterate at most four times for a given starting normal; if no valid pair is found
then we either mark the point as invalid or try other normals as directed by
the user (Section 6).

Validating P , n̂: To cross-validate a one-ring P with a normal n̂ we
perform the following checks: 1) Calculate the new normal n̂′. Check that
< n̂, n̂′ >> 0.95, ie., the normals are essentially the same. 2) Re-project the
points Q (which includes P ) onto the d, n̂′ tangent plane. Verify that all of
the projected points lie on, or outside of, the polygon formed by projecting
the P points. Check that the re-projected polygon P does not cross, or fold
back on, itself. These checks ensure that our one-ring is a “tight” disk around
d (Section 3).

One-ring from normal: To construct a one-ring from a normal we
project all of the points Q to the tangent plane centered at d with normal
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n̂ (this places the projection of d at the origin). We bin the points into 32
even wedges, keeping only the closest point found in the wedge (if any). This
forms an initial, dense one-ring P with at most 32 points. We then check
that all of the projected points lie inside of this polygon, adding in any that
do not – this can happen when points in neighboring bins are at greatly
differing distances from d (see Figure 3c). This ensures that our one-ring
meets criterion 2c) in Section 3.

Normal from one-ring: We use the standard angle-weighted normal
averaging (Meek and Walton, 2000) with one exception; we use a decreasing
weight for angles bigger than 25% of the total. These represent gaps in the
data.

Initial normals: We compute the singular value decomposition of the
k × 3 matrix Qj − d and use all three vectors as initial, candidate normals.
Other candidate normals may be added if we detect edges, corners, or bound-
aries (Section 6).

4.1. One-ring evaluation

The ideal one-ring neighborhood P is one that surrounds d, with d roughly
in the center and the points in P evenly distributed around d. We evaluate
the quality of P not in 3D, but using the 2D polygon created by projecting
the points P onto the tangent plane. Our metric ep(d, n̂, P ) is the average of
three terms: even angle spacing, minimal change in radius length, and how
centered the point d is. We then add to ep(d, n̂, P ) an additional term which
penalizes concave polygons (see Figure 3e).

Let n be the number of points in the projected polygon P , and pi be
the projection of the ith point of P . The angle term ea(i) is the difference,
squared, of the angle αi from the average, divided by the average. The radius
change term er(i) is the difference between the radius at pi and the average
of the previous and next radii (weighted by angle) and scaled by the overall
radius. The centered term ec is the difference between the polygon’s centroid
and the origin, divided by the maximum polygon radius R. The convexity
term ex is the exterior angle (divided by π) for any convex boundary point.
The first three terms are normalized so they can be combined; the convexity
term grows as the one-ring becomes concave.

ea(i) =

(
αi − 1

n

∑
j αj

1
n

∑
j αj

)2

(1)
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er(i) =


(
ri − 1

2

(
αi−1

αi−1+αi+1
ri−1 + αi+1

αi−1+αi+1
ri+1

))
ri + ri−1 + ri+1

2

(2)

ec(P ) =
|| 1
n

∑
i pi||
R

(3)

ex(P ) =
∑
i

βi
π

2

, βi > π (4)

ep(d, n̂, P ) = ex(P ) +

(
ec(P ) +

1

n

∑
i

ea(i) +
1

n

∑
i

er(i)

)
/3 (5)

This combination was arrived at experimentally using the test cases (Sec-
tion 7).

We have also experimented with other error metrics, including a subset of
the ones listed, distance to a fitted ellipse (tended to favor neighborhoods that
zig-zagged across the ellipse), average distances (unfairly punishes elongated
one-rings), length of polygon boundary relative to its radius, and barycentric
coordinates. For the barycentric approach, we calculated the barycentric
coordinates of the projected point d. The error was the measure of how
close the barycentric coordinates were to 1/n. We tried both Laplacian and
shape-preserving weights Floater (1997). Although this approach promised
to combine both angle and distance in a single metric, it unfortunately is not
very discriminating for more than 4 points and is not stable.

4.2. One-ring optimization

Once we have an initial valid one-ring, we optimize it by picking a point
that reduces ep when removed. We score each point by the change in ep(d, n̂, P )
when that point is removed. We use importance sampling (Duda et al., 2000)
to actually pick the point to remove; this introduces stochasticity into the
algorithm and helps prevent local minimum. In particular, we can replace
step 3 in algorithm 2 with a routine that removes several points from P
at once before evaluating, but restarts from the initial candidate one-ring
several times (three in our implementation).

5. Shape models

The shape models are shown in Figure 4. Each shape model is fit to the
points Q by optimizing the free parameters, given that we know what the
surface normal must be. These models are deliberately simplistic with few
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free parameters; their role is to determine what the local surface shape is,
and provide a noise estimation. To this end, the model error functions (es)
are carefully constructed so that the measured error is consistent between
models. The error rises linearly with noise (eg, if the original fit score was
0.01, introducing 10% noise increases the error to 0.1. In general, a good fit
has an error around 0.001, rising to 0.2 for a tolerable fit. Errors bigger than
that indicate problems or outliers.

The free parameters are chosen so that the distribution of the points has
little, or no, effect, provided there are enough points to recognize the shape
(ie, for a ridge there must be points both along the ridge and on either side).
Because the shapes are simplistic they tend not to hold for large regions; for
that reason we use a fall-off weight when solving for the parameters. This
weight is

la =
1

k

∑
i

||qi − d|| (6)

wi = max

(
1, 1.1− ||qi − d|| − la

maxi ||qi − d|| − la

)
(7)

We include the point d when solving for the parameters.
A point Qi is considered to be on the tangent plane through d with normal

n̂ if it’s projected distance is less than 0.1 of the average distance:

1

10k

∑
i

||Qi − d|| (8)

Flat model: For the flat model we know the surface normal; all that’s left
to find is where the tangent plane is located along n̂ (one degree of freedom).
We find this location using a weighted least-squares solve (Eq. 7). The error
es is the residual error of the solve.
Bowl model: The bowl model assumes that the surface lies entirely on one
side of the tangent plane passing through d with normal n̂, and that points
further from d are further below the plane (this ensures that a flat region is
not marked as a bowl). We assume the curving can be modeled by a simple
polynomial, y = ax2 + b, where x is the distance in the tangent plane from
d and y is the distance below the tangent plane. We solve for a, b using a
weighted least-squares solve. The reason we include b is to allow the tangent
plane to slide up or down, accounting for noise in the normal direction at d.
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Figure 4: Idealized shape models. n̂ is the normal used to fit the shape
model at the point d. All curves (ridge, bowl, saddle) represent a polynomial
y = ax+ b. The flat model has one free parameter, the location of the plane
along n̂. The ridge model has three free parameters, the orientation of the
line L in the tangent plane and two parameters for the curve (a and b). The
bowl model has two free parameters (a and b). The saddle model has four —
two each for the up and down curves. The edge model has eight parameters
(the two intersecting planes). The corner has twelve (three planes). Any
one-ring that is incomplete (the gap is bigger than a threshold) is marked as
a potential boundary.
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We measure how much the bowl curves down by calculating the angle α
between the starting point of the polynomial (x = 0) and the ending point
x = maxi ||qi − d||. Angles less than π/16 indicate a plane, not a bowl.
For angles between π/16 and π/8 we introduce a penalty term 0.1(π/8 −
α)/(π/16− π/8). This penalty is added to the residual fit error to give es.
Ridge model: The difference between the ridge model and the bowl one is
that the surface is flush with the tangent plane in one direction. Given the
direction ~t in which the surface is flush, we calculate a fall-off polynomial as
in the bowl model, except we use the distance to the line d+ ~t for x.

We try three different ~t directions, taking the one with the best fit value.
1) Take all of the points that lie on, or near, the tangent plane and fit a
line to them; project this line onto the tangent plane. 2,3) Calculate a sharp
edge model (Section 6). Intersect each of the two resulting planes with the
tangent plane.
Saddle model: A saddle is formed by radially alternating upward curving
areas with downward curving ones, ie, there are points both above and below
the tangent plane, and the further from d the point Qi is, the further from
the tangent plane it is. To measure the curving, we divide the points into
two groups (above and below), putting points that are close to the tangent
plane into both groups. We then fit a bowl model to each group. The es
term is the average of the two bowl models.

To prevent a noisy local neighborhood from looking like a saddle, we add
an additional penalty term to ensure that, in any given radial direction, the
points all curve up (or down). We bin the points by angle, then count the
number of bins that have points that belong to both the up and down group.
We use 4π/k bins. The penalty term is 0.1 times the number of bad bins.
Feature size: For the curved models we use the angle α to provide an
absolute measure of the local feature size. For flat models we use the angle
α of the best-fit smooth model.

6. Edge, corner, boundary models

If there are sharp edges or corners in the data than we can explicitly fit
a model to them, which results in better normal estimation.The boundary
model assumes that the one-ring is incomplete and is used to flag boundary
points in the data set. It is safe to include these models even if these features
are not present in the data set; however, it increases the computation cost,
which is why they are optional.
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An edge is formed when two planes with sufficiently different orientations
meet. Similarly, a corner is formed when three planes meet. To determine if
we have an edge (or corner) we need to first find those two (or three) planes.
The observation we use is that the triangle wedges of the one-ring (formed
by d, Pi, Pi+1) are a good approximation to the planes. We therefore look at
all pairs (triplets) of wedges who’s normals are sufficiently different (angle
difference greater that π/3 for edges, π/4 for corners). If there are no pairs
(triplets) then there is no edge (or corner).
Normal calculation: To calculate the normal, we assign each point in Q
to one of the candidate planes, assigning it to both planes if it’s close enough
(Eq. 8). We then fit planes, as in the flat model. To ensure the normals are
oriented correctly, they are flipped if they do not point in the same direction
as the candidate planes. The normal is the average of the two (three) plane
normals. We only keep normals that pass the validity check in Section 4.

If we find a valid edge or corner model we add that normal to the list
of candidate normals. We cross-validate edge and corner models slightly dif-
ferently. We use the normal found by the candidate planes and only try
one-rings which are valid when projected by that normal. We additionally
check that, when walking around the one-ring, the triangle wedges split into
two consecutive groups (three for corner) where the normals are approxi-
mately that of the fitted planes.
Edge model: The edge model is a combination of how well the planes fit
(flat model ef (d, n̂, Q)), the angle α between the planes, whether or not the
points lie below the tangent plane (h), and how close d is to each plane. Let
Q1 be the group of points assigned to plane one, and similarly for Q2. Let
d1 be the distance from d to plane one, divided by the average size of the
neighborhood ( 1

k

∑
i ||qi − d||), and similarly for d2.

h =
∑

max 0,
li

1
k

∑
i ||qi − d||

− 0.1 (9)

es(d, n̂, Q) = 0.25
|Q1|ef (d, n̂1, Q1) + |Q2|ef (d, n̂2, Q2)

|Q1|+ |Q2|
(10)

+0.75

(α− π
2

π
2

)2

+
d1 + d2

2
+ h

 (11)

where |Q| is the number of points in the set Q. li is the signed distance of qi
to the tangent plane.
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Corner model: The corner model is identical to the edge model, except
we place the points in three groups, sum over three planes, and compare the
normals pair-wise.
Boundary model: Unlike the other shape models, there is no natural,
simple shape for boundaries because they arise when when the sampling
process is incomplete, leaving a gap in the data. Therefore, the “correct”
shape could be any one of the smooth models, with a piece missing. We use
the flat model score for the boundary model score and additionally mark all
smooth models as being boundaries if they satisfy either of the following:

• The point (0, 0) is not in the projected polygon, i.e., the one-ring is less
than half a circle.

• Any wedge of the polygon is bigger than 0.8π.

Note that sharp edges and corners can also masquerade as boundaries
with noise. If the best smooth shape model is flagged as being a boundary
then the point is marked as a boundary. If the best shape model is an edge
or corner one we check for sufficiently different planes; if the planes are close
to at we return a boundary. Otherwise, we return the best shape model as
usual.

6.1. Modifications to heuristic algorithm

The regular algorithm uses just three initial, orthogonal vectors. If, after
trying these three vectors, all of the smooth models are marked as boundaries
we do a more exhaustive search to see if there is a projection direction that
results in no gaps. We try 12 normal directions, evenly distributed on the
sphere; if any of these pass the no boundary test (items listed above) we add
it as a candidate normal in the outer loop.

If we get a boundary model, or the best model score is greater than 0.1
we try both adjusting the neighborhood size down (minimum size 6) and up
(maximum size 50) in increments of 25% of the current size. Shrinking the
neighborhood is helpful where the surface passes close to another piece of
surface, and growing the neighborhood helps with bridging sampling gaps.
Provided the inter-surface distance is greater than the intra-sample distance,
the shape model that comes from only one surface will have a better score
than one that has samples from both surfaces.
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7. Evaluation

We evaluated the algorithm in three ways: 1) known surfaces, 2) real
data, 3) comparison to exhaustive search.

7.1. Known data sets

Our test suite consists of six shapes (flat, cylinder, sphere, saddle, edge,
corner) cross five sampling patterns (grid, hexagonal grid, contours, random
but evenly distributed, and random, see Figure 5). We can adjust the cur-
vature of each shape, and add both tangential noise and normal noise to
the data points. By changing which point is d we create a boundary case
as well (see Figure 5). C++ and Matlab code to generate these shapes is
provided. For our tests we used a neighborhood size of 24 (a 5 x 5 grid),
with the contour pattern having 10 × 3 samples. For each test shape and
grid pattern we generated 10 x 10 examples with tangential and normal noise
each incrementing independently in steps of 0.1. Figures 6 and 7 summarize
the results of these tests across all 3,000 examples. The graphs show the
effects of increasing tangential (top) and normal (bottom) noise, broken out
by shape type. Tangential noise is relative to the spacing of the data points;
a value of 1 means the points can be moved up to 1/2 of the average spacing
between the points. A value of 1 for the normal noise means the points can
be displaced up to 1/10 of the width of the shape.

We used the test cases to validate the shape, one-ring, and normal be-
havior under increasing levels of noise for both the boundary and the interior
case. Except for some extreme noise cases, the algorithm returned the ex-
pected shape. In high-noise cases (> 0.8 noise) the method had trouble
distinguishing saddles from flat areas, ridges from edges, bowls from cor-
ners, and missed some boundary cases. For the grid and hexagonal sampling
patterns with interior points we know that the LN should have eight and
six points, respectively. The algorithm returned the correct one-ring neigh-
borhood in these cases. For the remaining test cases, we have verified the
neighborhoods by hand which is, unfortunately, a somewhat subjective eval-
uation. Some examples are shown in Figure 5.

Figures 6 and 7 (right-most) plot the accuracy of the recovered normal
for our algorithm as the noise levels increase for each shape. The normal
reconstruction is fairly insensitive to both increased sampling and function
noise. Except for the boundary corner and saddle cases, the dot product of
the expected and found normal is > 0.95. We compare our results to three
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Grid PoissonContourHexagonal Random

Flat Ridge Bowl Saddle Edge Corner 

Figure 5: Top row: Sampling patterns. Test shapes with example local
neighborhoods. Middle row: interior points. Bottom row: boundary points.
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Figure 6: Behaviour of normals as function (top row) and sample (bottom
row) noise is varied for (from left to right) SVD, quadratic, and cubic fitting,
and our approach. Each curve corresponds to a specific test case shape (flat,
ridge, bowl, saddle, edge, and corner). The data is averaged over the different
sampling distributions (figure 5) and the sample (top) or function (bottom)
noise. Vertical bars show the standard deviation. Note that bars for each
shape are offset slightly to make them visible.

approaches: plane-fitting normal reconstruction (Mitra and Nguyen, 2003)
and quadratic and cubic fitting (Vančo and Brunnett, 2007). These three
approaches perform well on flat regions, but deteriorate as the curvature
increases, as the plots show. Note that adding sampling bias can also cause
these methods to deteriorate, even when there is no noise (see figure 1). The
only shape for which these algorithms have comparable results is the flat one.
For all other shapes the average is worse, and the standard deviation higher.

There are several parameters in our heuristic algorithm (such as when a
one-ring neighborhood should be considered a boundary). These parameters
were set by experimentation with the complete test data set.

7.2. Real-data comparison

We verify the normal accuracy results observed in the test cases with real
data sets. Figure 8 shows comparisons of the real versus estimated normals
for two models, a low-resolution version of the bunny and a marching-cube
sampled dragon. We categorize the normals based on feature shape in or-
der to more clearly show that the performance depends on the local shape.
We compare with the (local) SVD (Mitra and Nguyen, 2003) and quadratic
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Figure 7: Same as figure 6, except for a point located on the boundary of
the test shape.

reconstruction (Vančo and Brunnett, 2007) and with the (global) Delaunay
approach (Dey and Sun, 2005). The SVD and quadratic fits were calculated
using one round of normal-based weighting (Vančo and Brunnett, 2007). The
sampling of the dragon is much denser than the bunny, with a corresponding
increase in accuracy for all algorithms. The “real” normals for the meshes
were deliberately calculated using an area-weighted average, not the angle-
weighted one we use, in an attempt to reduce bias (if we find the same
one-ring in the mesh we would get an exact match otherwise). Note that,
not only does our technique produce more accurate normals on average, but
that the standard deviation is less, indicating fewer cases where the normal
is substantially wrong.

Average and standard deviation values for several different types of mod-
els are given in table 1, corresponding images in Figure 9. Note that the
first two data sets are problematic because there are many places where the
surfaces are closer than the corresponding sampling rate. In general, our
algorithm is the best, followed by the global algorithm. In the mug case, the
global algorithm out-performs ours, although our algorithm does successfully
identify where there are problems (see Figure 9). Although the global algo-
rithm does use one-rings (essentially) to compute normals, the one-rings it
creates must be consistent across the entire mesh; we do not have this re-
striction, which allows our algorithm to pick the “optimal” one-ring for each
point. As in the test cases, all approaches do well when the local neigh-
borhood is flat. It is when the surface curves that our approach is better.
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Bunny Mug Dragon Gargoyle Figure Radius
Ours .981, .057 .909, .215 .996, .033 .999, .063 .984, .063 .989, .057
SVD .935, .149 .758, .348 .990, .053 .995, .019 .974, .086 .973, .116
Quad .880, .204 .747, .321 .968, .102 .974, .073 .928, .147 .961, .115
Cubic .860, .230 .678, .341 .968, .105 .977, .071 .924, .162 .956, .131
Del .952, .121 .951, .102 .985, .032 .991, .022 .974, .080 .979, .083

Table 1: Comparison to known normals. Bunny is a sparse (2002) down-
sampling of the original data set, 2-holed mug is a contoured, undersampled
smooth surface, dragon is a Marching Cubes mesh, gargoyle is a full laser
scan data set, figure is an evenly-sampled, C4 surface with known normals,
and radius is a contour data set from a CT SCan. Given is the average
and standard deviation of the dot product of the calculated normal with the
known one. Best is in bold.

Figure 8 illustrates this by breaking out the normals by local shape type.
Figure 10 shows this trend gets worse when noise is introduced.

Figure 10 illustrates the behaviour of the different algorithms under the
addition of Gaussian noise. Each point was perturbed by up to 0.2 percent
of the average edge length at each iteration. The comparison was to the
normals from the original data set. As the graph in figure 10 shows, our
approach out-performed both the SVD and the (global) Delaunay approach.
This is because the average local shape, even with noise, remains similar,
and the algorithm picks the one-ring (and hence surface normal) that best
predict the local shape. This is particularly true for non-flat regions; we plot
the reconstruction error separately for the two categories to illustrate this.

7.3. Optimization evaluation

The algorithm is heuristic and therefore not guaranteed to find the opti-
mal solution. We implemented an exhaustive search algorithm for the test
cases to compare to. In all cases the heuristic score was within 2% of the
optimal, with a mean of 0.88%, variance 0.5%. This is largely because the
normal “snaps” into place for most cases — the normal for all valid one-rings
is very similar, even if their “quality” varies. The cases when the normal does
not snap or there are more than one stable position are 1) high curvature
areas, such as edge of the bunny ears, 2) the existence of multiple outliers,
either because of noise or samples that come from a nearby surface, 3) highly
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Figure 8: Comparison to SVD, quadratic, cubic, and a Delaunay approach
on real data sets (Top – low-res bunny, Bottom – marching cubes dragon).
Normals are grouped by shape classification (from left to right: Flat, ridge,
bowl, saddle, edge, corner, boundary). Standard error bars are shown slightly
separated for clarity. On the right are plots of the percentage of points for
which the dot product is below 0.95, 0.97, and 0.99.
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Model type: Blue: flat   Purple: ridge   Cyan: bowl   Green: saddle   Red: edge   Yellow: corner   Grey: boundary 

Model Score: Blue < 0.03  Purple < 0.05  Red < 0.1  Yellow > 0.1 

Figure 9: Model type and model score for the bunny, 2-holed mug, dragon,
gargoyle, figure, and radius data sets.

Filtered Noisy Original 

0 0.2 0.4 0.6 0.8 1 

LN 

Flat 

SVD 

Flat 

Quad 

Flat 

Cubic 

Flat 

LN 

NF 

SVD 

NF 

Quad 

NF 

Cubic 

NF 

1 

.9 

Ours 

Ours 

Figure 10: Behaviour under the addition of noise for our approach, SVD,
Quad, and Cubic. Shown are average normal error for all data points split
into flat (63%) and not flat (37%) sets. Model error as noise increases:
0.035, 0.042, 0.047, 0.051, 0.055, 0.058. Right: Surface reconstruction result
for original, maximum noise, and filtered data sets.
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Total Model Alg. logic One-ring Validation Normal
17.6 σ 5.1 1.5 σ 2.3 3.2 σ 1.2 4.0 σ 1.1 4.3 σ 1.6 4.5 σ 4.0

Table 2: Running time, in ms, with standard deviation. Test set size is
6× 5× 121 = 3630 samples, varying both parameter and function noise from
0 to 1 in increments of 0.1. Includes edge, corner, and boundary models.
Platform: Pent-M 1.5GHz, 768 MB Ram.

uneven distribution of samples, such as boundaries or widely separated con-
tours.

The exhaustive search algorithm is not practical; it takes minutes to
run per point because it evaluates all

∑
i∈4,k

(
k
i

)
possible one-rings, which is

exponential.

7.4. Timings

Running times for the heuristic algorithm, broken down by algorithm
stages, are given in Table 2. The timings represent the total amount of time
spent in that stage. Extracting the k-nearest neighbors for all data points
is is O(nlogn) using a kd tree (Arya et al., 1998). The running time per
data point depends on the neighborhood size k and the number of candidate
one-rings tried. Our algorithm employs a maximum cap on the number of
candidates, so the running time is O(nlogn+nk), as is the traditional fitting
approach. Practically speaking, our algorithm is roughly a factor of 10 - 20
times slower than single-pass quadratic fitting for the fitting stage if we use
all of the models.

8. Applications

We demonstrate using local neighborhoods for two applications, surface
reconstruction and smoothing. Figure 11 shows several genus zero, manifold,
water-tight mesh reconstructions from point clouds and figure 10 shows the
result of applying simple isometric smoothing on the point sets before recon-
struction. Many existing surface reconstruction algorithms perform better
with good normal and noise or outlier estimates. We have used our normal
estimation in a moving least squares reconstruction (Li et al., 2010b) and
surface reconstruction by using Polymender (Ju, 2004).
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8.1. Surface reconstruction via sphere embedding

Our surface reconstruction is a novel approach which first parameterizes
the data set using a modified spherical parameterization algorithm (Saba
et al., 2005). Once the point data set is embedded on the sphere we run a
convex hull algorithm (Barber et al., 1996) to triangulate it. This is guar-
anteed to produce a water-tight, manifold mesh of spherical topology. The
mesh is a Delaunay triangulation on the sphere; when we move the vertices
back to their original positions in 3D the triangles will no longer be Delaunay.
We therefore run an edge-swap optimization to improve the triangulation.

To create the initial hemispheres we grow two disks starting with two
widely-separated points, as in the original algorithm, using the local neigh-
borhoods as the graph structure. If a point’s local neighborhood lies in both
disks we mark it as belonging to the boundary. This results in a band of
points, instead of a single, closed curve, around the equator. To sort these
points we use a modified version of Isomap (Pless and Simon, 2002) which
maps the points to a circle. From here, the algorithm proceeds as before,
placing each point at the (weighted) center of its local neighborhood instead
of the one ring of a mesh.

For the filtering examples we use a very simple filter (80% of own location
summed with 20% of average of local neighborhood locations) to adjust the
3D point locations. Figure 10 shows the gargoyle model with Gaussian noise
added in then filtered out (20 iterations of filtering).
Polymender reconstruction: The one-ring can be treated as a collection of
triangles and sent to Polymender (Ju, 2004). All Polymender reconstructions
(see Figure 11) were run with a depth of 8 and a 70% volume fill.

8.2. Feature size

We can vary k in order to get features at different scales. Figure 12 shows
an example of this for the dragon and the fan-disk models. Feature size is an
absolute measure (see section 5) based on how fast the surface curves away
from the tangent plane.

9. Conclusion

We have presented a point-set analysis approach that uses a combina-
tion of local surface models and one-rings to produce robust surface normal
estimation. The algorithm produces a local shape classification (including
boundaries and sharp edges) and a measure of feature size. The algorithm
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a) Point set b) Embedded c) Convex hull d) Reconstruction 
Before      After 

e) Edge swap details 

Polymender Spherical 
embedding 

Figure 11: Top: Reconstructing a surface. From left to right: a) The initial
point set, colored by feature size. b) The points embedded on the sphere.
c) Tessellating the sphere using a convex hull algorithm. d) Moving the
mesh vertices back to their original positions and performing edge swaps. e)
Ear before and after edge swaps. Bottom, left: Horse and fan-disk model
reconstructed using spherical embedding. Bottom, right: Rocker arm, fish,
and spiderweb reconstructed using Polymender.
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12% features 

3% >0.5 
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Figure 12: Using the same local neighborhoods, but increasing shape neigh-
borhoods (10, 35), for labeling features. Blue is flat, yellow is a sharp fold.
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also identifies places where the sampling is inadequate or too noisy to be sure
of the reconstruction. Although specifically design to handle non-uniform
sampling cases, it performs better on uniformly sampled data sets than pre-
vious algorithms.

Although this approach by itself can not bridge large gaps in the data
set or correctly disambiguate when surfaces are closer together than their
sampling rate, it does provide feedback (in the model score) indicating where
potential problems lie. The average model scores also correlate directly with
the noise in the samples, particularly when restricted to data points labeled
as flat.

The approach was originally designed to deal with sparse or uneven sam-
pling. In areas of dense sampling the one-rings will tend to have more neigh-
bors (up to 32 in our implementation) but will still be regularly spaced. In
particular, if there is a grid pattern to the samples then the one-rings will
consist of 9 neighbors. Similarly, hexagonal patterns result in one-rings with
6 neighbors. In practice, we have rarely seen more than 12 neighbors, in
part because our heuristic scoring system tends to favor a smaller number of
neighbors, provided they are evenly spaced.

An alternative, global approach to constructing one-rings is to create a
Delaunay triangulation of the surface. Both our approach and the Delaunay
one try to produce reasonable triangles; the major difference is that we get
to selectively choose which points to include in the one-ring and this choice
does not have to be consistent across the point set. A potentially interesting
area of future work would be to do a global optimization that reconciles the
one-rings.

Although our approach is more computationally intensive than simple
fitting, we believe that the extra cost is warranted in several cases: 1)
Where accuracy is important. 2) The data samples are non-uniformly dis-
tributed (eg, contour data). 3) Further processing (such as consistent nor-
mal orientation) requires good estimates of the validity of the normal. 4)
Extraction of sharp features or boundaries. To facilitate the usefulness of
this approach we have provided a complete C++ implementation at https:
//sourceforge.net/projects/meshprocessing/.
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