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Figure 1: Creating a surface with spherical topology. a) Sketch mesh (22 faces) and first subdivision level mesh embedded in the spherical
domain. b) Initial geometry of sketch mesh and resulting surface (129 overlapping surface patches). c) Geometry specifying the next
hierarchical level (average patch overlap, 3.4) This geometry is created by drawing on the surface in b). d) The resulting surface, colored by
hierarchical level. e) Editing the first hierarchical level to produce arms and legs. f) Adding and editing a second hierarchical level.

Abstract

We present a surface modeling technique that supports adaptive res-
olution and hierarchical editing for surfaces of spherical topology.
The resulting surface is analytic, Ck, and has a continuous local
parameterization defined at every point. To manipulate these sur-
faces we describe a user-interface based on multiple, overlapping
subdivision-style meshes.
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1 Introduction

In the 1880’s mathematicians began studying the class of surfaces
that are manifold, i.e., surfaces that are locally Euclidean. They
made the observation that any surface of this type, no matter how
complicated, could be locally analyzed by mapping portions of the
surface to the plane. These local maps were, in general, easier to
reason about than studying the entire surface. By taking smaller
or larger portions of the surface, they could analyze properties of
the surface at different scales. This technique also made it possi-
ble to “move” the analysis continuously across the surface without
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encountering seams; the transition from one local map to an over-
lapping one was well-defined.

This paper presents a constructive method, based on the idea of
locally planar maps that overlap, for building analytic surfaces of
spherical topology. These surfaces have the property that we can
define a map from any open disk on the surface to the plane. We
use this property to allow free-form addition of “patches”, at any
resolution and position on the surface. Each patch provides addi-
tional degrees of freedom for manipulating the surface. By placing
patches only where needed, we reduce the total complexity of the
surface. Ck continuity for any k is guaranteed without the use of
geometric constraints between patches.

To support adaptive resolution editing the user constructs detail
patches which then over-ride the coarser geometry. The geometry
of these detail patches is expressed in terms of the coarse geome-
try, so that the detail moves automatically with the coarse geometry.
Unlike previous hierarchical approaches we place no constraints on
where the detail patches are placed or how they are aligned with
respect to the coarse geometry. We also provide a sound mathe-
matical framework for defining how the detail patches are blended
into the existing surface, producing Ck blends without the use of
geometric constraints.

Figure 1 outlines the construction process. Like many existing
approaches, the user first sketches the rough shape by creating a
coarse mesh. They can adjust the surface by editing the coarse mesh
and its subdivision levels. Unlike existing approaches, the user can
now add detail to the current surface by drawing on it to create a
new control mesh. There are no constraints placed on the geometric
shape or location of this new mesh. Changes to this new mesh are
blended into the existing surface. Editing the original mesh results
in the coarse changes propagating appropriately to the detail mesh.

There are two advantages to approaching modeling in this way.
First, any function over the entire spherical domain can be built
from functions defined on planar topologies. Since planar functions
are well-understood, this allows us to leverage off a large body of
previous work. Second, the placement of the additional patches can
be matched to the desired function resolution at that point on the
surface. This makes it possible to add arbitrary amounts of detail



where needed.
Contributions: First, we present a practical method for rep-

resenting, manipulating, and locally parameterizing spheres and
meshes embedded in them. Second, we demonstrate how to build
an analytical surface, with the look and feel of a subdivision sur-
face, from an input mesh. Third, we provide a re-formulation of
the manifold embedding equation [Grimm and Hughes 1995] that
supports adaptive, hierarchical editing. This equation represents
a mathematically sound method for defining Ck surface pasting
functions. Although in this paper we restrict ourselves to spheri-
cal topologies, the approaches described here easily extend to other
topologies.

1.1 Example editing session

The user begins by creating a sketch mesh that approximates the
basic desired shape (see Figures 1). The resulting surface admits
to subdivision-style editing, both of the original mesh and the first,
second, or third level subdivision.

The user next outlines where they want new surface patches to
be placed by drawing on the existing surface. This creates a second
mesh which is embedded in the existing surface. There are no con-
straints on this mesh; it can cover all or some of the surface, it can
overlap itself, and it can be aligned arbitrarily with respect to the
initial sketch mesh.

Using the second mesh, and its first, second and third subdivi-
sion levels, the user then edits the surface, only affecting the area
underneath the mesh. If the original sketch mesh is changed, the
second mesh moves along with it, much as a hierarchically-defined
spline patch would.

The user can continue to add new levels anywhere on the sur-
face. Each new level-mesh “over-rides” the surface underneath it;
however, the vertices of the higher level mesh are kept in the co-
ordinate frame of the surface, so changes to lower levels propagate
appropriately to higher levels. The new levels do not need to lie
inside of the previous level.

2 Related work

The problem of analytically modeling surfaces of arbitrary topol-
ogy has attracted a great deal of attention, as has the problem of
editing free-form surfaces. We summarize the primary approaches
to the problem, but a complete summary is beyond the scope of this
paper.

The three basic approaches are hole filling with n-sided spline
patches, subdivision surfaces, and alternative domains. Hole fill-
ing [Peters 2002; Hollig and Mogerle 1990] has a rich history and
has evolved from the desire to extend spline patches to surfaces
of arbitrary topology; a recent review by Peters [Peters 2004] dis-
cusses parameterization and curvature issues with this approach.
The surface is defined by a network of patches which may also de-
fine geometric constraints [Loop 1994; Loop and DeRose 1990;
Warren 1992]. More recent approaches also combine the remain-
ing degrees of freedom into geometrically useful controls [Seder-
berg et al. 2004; Zheng 2001]. Our approach is fundamentally
different than patch filling because we do not use geometric con-
straints to maintain continuity. On a more subtle level, most patch-
filling approaches define some form of parameter-space extension
into neighboring patches in order to construct their continuity con-
straints. In our approach, the overlapping parameterization is inher-
ent in the surface construction process.

Subdivision surfaces [Doo and Sabin 1978; Catmull and Clark
1978] were originally developed as an alternative approach to ex-
tending splines to arbitrary topology surfaces. Interactive, multi-
resolution editing was first described by Zorin [Zorin et al. 1997]

and Pulli [Pulli and Lounsbery 1997]. Detail editing [Khodakovsky
and Schröder 1991; Biermann et al. 2002b] creates fine-level fea-
tures using a combination of special-purpose refinement rules.
Stam [Stam 1998] showed that, except at extraordinary points, sub-
division surfaces can be represented by spline patches, which pro-
vides a local parameterization for most points on the surface, and
can be extended in most places [Stam 2003] to adjacent areas. De
Rose [DeRose et al. 1998] also demonstrated local parameteriza-
tion in terms of texture mapping, and explicit control over crease
features. A hybrid approach [Gonzalez-Ochoa and Peters 1999]
uses a hierarchical mesh to specify a network of patches and geo-
metric constraints that maintain continuity. Our surfaces support
subdivision-style editing, but produce an analytical surface of any
continuity. We also support both hierarchical editing and the ad-
dition of detail anywhere and at any scale. Subdivision surfaces
provide editing at any point by subdividing enough — however,
the influence of an individual vertex shrinks with every subdivision
step.

Several papers describe surface construction techniques using
manifolds or alternative domains. Grimm’s approach [Grimm and
Hughes 1995] begins with a mesh and builds a manifold with one
chart per mesh element. The approach of Navau and Garcia [Navau
and Garcia 2000] first subdivides the mesh to isolate extraordinary
vertices. They then embed sections of the mesh in the plane so
that the overlap regions are rectangular and blend together in the
middle in a Ck fashion. Subdividing the mesh to isolate the ex-
traordinary vertices can result in a large number of patches; how-
ever, the patches themselves are simpler than the ones presented
by Grimm [Grimm and Hughes 1995]. Ying [Ying and Zorin 2004]
creates a manifold over a mesh by “unwinding” the faces of a vertex
into the plane, then building blend and embedding functions over
these vertex charts. Gu et. al. [Gu et al. 2005] construct an affine
manifold over the mesh structure. These manifold approaches are
similar to ours in that they produce a smooth surface from a mesh;
however, they do not support adding additional patches at arbitrary
places and sizes on the manifold. Grimm [Grimm 2002] describes
an approach that also uses charts defined on the sphere except that
they define only a fixed number of charts (six) and no hierarchical
support.

He et. al. [He et al. 2005] present a technique for defining splines
directly on the sphere.

Surface pasting [Chan et al. 1997; Biermann et al. 2002a; Le-
ung and Mann 2003] and hierarchical editing [Forsey and Bartels
1988] are approaches to adding local detail to the surface with-
out adding more degrees of freedom across the entire surface. For
spline patches, this involves creating a new patch that is “glued”,
using geometrical constraints, to the original patch. Continuity is
not always guaranteed. Detail patches are also constrained to lie
within the boundary of an original patch. We allow new patches to
be placed anywhere, guarantee continuity, and require no geometric
constraints.

3 Initial surface construction

Our surface is represented by a set of patches (which are defined by
the mesh) and information about how to glue those patches together.
Unlike traditional spline approaches, these patches are overlapped
and then blended together; they are not joined by matching conti-
nuity along the edges. This provides a great deal of freedom —
patches can overlap arbitrarily and are not confined to lie within, or
abut, existing patches.

The key to this approach is defining the patches using local, in-
vertible, C∞ parameterizations of the sphere [Grimm 2004]. The
overlap regions and glue functions then arise naturally by looking
at how the domains of these local functions overlap on the sphere.
There exist standard techniques for creating local parameterizations
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Figure 2: Defining a mapping between a subset of the sphere and
a disk in the plane. Left: Mapping the circle to an ellipse using a
projective transform M−1

w . Right: Mapping the ellipse to a disk on
the sphere using the inverse of a stereographic projection M−1

D .

of any size anywhere on the sphere. Theoretically, we can cover all
but one point of the sphere with a single parameterization; in prac-
tice we limit ourselves to a maximum size of one hemisphere to
prevent undue distortion.

Unlike previous approaches [Ying and Zorin 2004; Grimm and
Hughes 1995; Navau and Garcia 2000; Gu et al. 2005] that use the
topology of the sketch mesh to define their overlaps and glue func-
tions, we only use the sketch mesh to define the number of patches
and their locations on the sphere. This enables us to subsequently
add more patches that overlap the existing ones in arbitrary ways.

After defining the overlap structure we need to create geome-
try. We do this by defining geometry and a blend function for each
patch (Section 4 discusses how to add patches that over-ride ex-
isting geometry). We define a bijection between the subdivision
surface of the sketch mesh and the sphere. Each individual patch
is then fit to its corresponding part of the subdivision surface; this
insures that the patches already mostly agree where they will be
blended together.

In the following sections we provide formal definitions of the
domain S2, how we build patches (charts) on S2, and how we blend
the results together.

3.1 Overview

More formally, we begin with a concrete representation of the
sphere S2. We next define a general method for creating a chart
on S2 using the composition of a stereographic projection (which
takes all but one point of the sphere to the infinite plane) and a pro-
jective transform. The latter function allows us to better control the
shape of the chart. We define the amount of the sphere covered by
the chart by defining the co-domain of the chart, then taking the
inverse of the above. The co-domain of the chart is defined to be
a unit circle centered at the origin; the inverse projective transform
takes the circle to an ellipse in the plane, then the inverse stere-
ographics projection takes the ellipse to a disk on the sphere (see
Figure 2).

Each chart maps a portion of S2 to a circle in the plane. This
saves us from having to define an embedding function on a part
of S2 itself; instead, we first map the portion of S2 to the plane.
Then, we can use any standard plane embedding function on the
circle (polynomial, spline, etc.) to define the local shape. The final
patch is then a composition of the chart mapping and the planar
embedding function.

More formally, to embed S2 we define an embed Ec : R2 →R3

and a blend Bc : R2 → R function for each chart. The final em-
bedding E : S2 →R3 is a blended combination of these individual
embeddings:

E(P) = ∑c Bc(αc(P))Ec(αc(P))
∑c Bc(αc(P))

(1)

Embedded sketch Vertex charts

Face chartsEdge charts All charts

Figure 3: Upper left: The sphere with the base mesh from Figure 1
embedded on it. Upper right: The charts corresponding to the faces
in the mesh. Lower left: The edge charts. Lower right: The vertex
charts.

where Bc is defined to be zero where αc is not defined. If the fol-
lowing hold, than E(P) is Ck [Grimm and Hughes 1995]:

• The functions αc, Ec, and Bc are all at least Ck.

• The k derivatives of Bc go to zero by the boundary of the do-
main of the function αc.

• There is at least one non-zero function Bc at every point in S2.

In order to define a complete, initial embedding of S2 we need
every point of S2 to be covered by some chart. This is the role of the
sketch mesh� (see Figure 3). We first embed� into the domain
S2 using any existing technique [Gotsman et al. 2003; Grimm 2004;
Saba et al. 2005]. Each element v,e, f of� now covers some por-
tion of the domain (Dv,e, f ⊂ S2). For each face f we create a chart
that covers the interior of the spherical polygon D f . For each edge
e we create a chart that covers the edge and extends midway into
the adjacent face polygons. The vertex v charts are centered on the
vertex and also extend midway into the adjacent face polygons.

To build the surface geometry we create geometry for each chart
that approximates the subdivision surface of� . We can apply the
subdivision process to both the mesh� and the mesh embedded
in the domain. The former defines the desired geometry; the latter
creates a one-to-one correspondence between points in the domain
S2 and points on the desired R3 geometry.

3.2 Domains

Here we define S2, and how we represent points, edges, and poly-
gons on S2. In traditional Euclidean geometry i.e., a mesh in R3,
it suffices to store the topological information of the mesh, and the
geometric information just at the vertices. The geometric informa-
tion of the edges and faces1 is constructed from the vertex informa-
tion:

G(v) = (x,y,z) (2)
G({v1,v2}) = (1− t)G(v1)+ tG(v2), t ∈ [0,1] (3)

G({vi}) = ∑
i

βiG(vi), ∑βi = 1,0 ≤ βi ≤ 1 (4)

1We extend barycentric coordinates to n-sided faces, n > 3, by introduc-
ing a vertex in the middle [Levy 2001].



Obviously, if we simply take convex geometric combinations of
points on the sphere we will produce points that lie inside of the
sphere, not on it. We solve this problem by re-projecting the points
back onto the sphere by casting a ray from the origin through the
point to the sphere. This is called the Gnomonic mapping [Praun
and Hoppe 2003] and is invertible.

We keep vertices as points on the unit sphere, (x,y,z) : x2 + y2 +
z2 = 1. Note that we do not need a parameterized definition of the
sphere domain — the charts will provide us with a local parameter-
ization.

3.3 Charts

Each element in the mesh produces a chart; informally, a chart takes
a portion Uc of S2 to a portion c of the plane. The term chart refers
to the combination of the mapping function αc, Uc (the domain),
and c (the co-domain). We will use the term chart to refer to all or
one of the three, disambiguating where necessary.

Charts are constructed in a two-step process (see Figure 2). We
first define a mapping MD from Uc ⊂ S2 to the plane (stereographic
projection) and then apply a second warping transformation (pro-
jective transform) Mw : R2 → R2 that takes part of the plane to
itself. Both of these mappings must be C∞ and invertible over the
region of interest. They will not, in general, be globally invertible.
The final chart mapping is then a composition of the two:

αc : Uc ⊂ S2 → c ⊂R2 = Mw ◦MD (5)

A stereographic projection is specified by a point P on the sphere
around which the projection is centered. It is radially symmetric, in-
vertible except for the point opposite the center of projection, and
the distortion is minimal for small portions of the sphere. The gen-
eralized form first rotates the sphere to bring the point P to the north
pole, then projects the north pole to the origin, flattening out the
sphere around it. A point (Qx,Qy,Qz) is mapped to the plane as
follows:

θ0 = tan−1(Py/Px) φ0 = sin−1(Pz) (6)

θ = tan−1(Qy/Qx) φ = sin−1(Qz) (7)

k =
2

1+ sinφ0 sinφ + cosφ0 cosφ cos(θ −θ0)
(8)

MD(Q) =
(
k
(

cosφsin(θ −θ0)
)
,

k
(

cosφ0 sinφ − sinφ0 cosφ cos(θ −θ0)
))

(9)

Note that if Qx = Qy = 0 we define θ = 0. The inverse M−1
D (s, t) is:

r =
√

s2 + t2 c = 2tan−1(r/2) (10)

φ = sin−1(coscsinφ0 +(t/r)sinccosφ0) (11)

θ = θ0 + tan−1
(

ssinc
r cosφ0 cosc− t sinφ0 sinc

)
(12)

M−1
D (s, t) =

(
cosθ cosφ ,sinθ cosφ ,sinφ

)
(13)

The projective transform is a 3× 3 matrix m that is invertible
except for points (x,y) that lie on the line given by the last row of
the matrix (m20x+m21y+m22 = 0).

Face Edge Vertex

v0

v1

f0

f1

v

Figure 4: Defining the projective transform for each chart type.
Shown are the 2D point locations of the neighboring vertices af-
ter the spherical projection, and the mapping of the unit circle (via
M−1

w ) to this intermediate stage. Face: The ellipse is inscribed
in the polygon formed by the face’s vertices. Edge: The ellipse
passes through the two vertices and extends midway into the adja-
cent faces. Vertex: The ellipse covers the vertex and extends mid-
way into the adjacent faces.

[x,y,w]T = m[s, t,1]T (14)
Mw(s, t) = (x/w,y/w) (15)

[s, t,w]T = m−1[x,y,1]T (16)

M−1
w (x,y) = (s/w, t/w) (17)

It takes straight lines to straight lines and conics to conics so the
image of the circle under M−1

w is an ellipse (see Figure 2). We only
need to guarantee that the transform is invertible over the circle,
i.e., the line formed by the last row of the matrix does not intersect
the circle. We use this transformation to better control the coverage
of the chart. Note that if all of the charts have circular co-domains,
then we can restrict Mw to affine transformations; if we allow square
co-domains then the projective transform allows for “keystoning”.

We create a chart for each vertex, edge, and face in the sketch
mesh. Recall that we have embedded the mesh in the sphere; we
use the element’s embedded location to determine the center point
for the stereographic projection. The vertex charts use the corre-
sponding vertex’s position, the edge charts the center of the edge,
and the face chart the centroid of the face. Once we have defined
the stereographic projection, we can project the local neighborhood
of the element to the plane, i.e., the faces adjacent to the vertex, the
two faces adjacent to the edge, and the vertices of the face.

We use slightly different heuristics for each of the element types
to determine the best projective transformation (see Figure 4). We
actually solve for the inverse of Mw, or the map from the unit circle
to the projection of the element’s local neighborhood. For the face
charts, we are looking for the projection that takes the unit circle to
the largest ellipse that still lies within the projected vertices of the
face. For the edge charts, we are looking for a projection that places
one diameter of the ellipse on the edge (so that the boundary passes
through the edge’s vertices) and extends the other diameter so that
it covers the adjacent face centers, or crosses the face boundary,
whichever comes first. Similarly, the ellipse for the vertex chart is
centered on the vertex and extends out to cover the adjacent faces’
centroids and adjacent edges’ mid-points.

The above heuristics balance two competing goals. The first goal
is to ensure that every point on S2 is covered by at least one chart
(preferably three). The second goal is to bound the complexity of
the chart’s embedding function. Each chart is fit to the correspond-
ing part of the subdivision surface; if a chart stretches over too much
of the embedded mesh then we will need a very high-order polyno-
mial to capture the corresponding degrees of freedom.



3.3.1 Face charts

Let n be the number of vertices of the face. We first build a unit
polygon with n sides so that the unit circle is inscribed in the poly-
gon. Let pi be this polygon’s vertices, and qi be the location of the
projected face’s vertices. We then solve a least-squares problem of
the form:

m00 px +m01 py +m02 −m20 pxqx −m21 pyqx = qx

m10 px +m11 py +m12 −m20 pxqy −m21 pyqy = qy

...

which has 2n rows. We set m22 = 1, which fixes the overall scale
of matrix. If n = 3 we remove the projective transform, setting
m20 = m21 = 0. Note that n = 4 exactly constrains the solution,
up to a scale factor. If this fails to produce a non-folding projec-
tive transform (only possible with n > 4) we can employ the vertex
optimization strategy. This has never happened in practice.

3.3.2 Edge charts

For the edge charts we build a four-sided polygon, with q0 and q2
set to the projection of the edge’s two vertices. q1 and q3 are con-
structed by taking a line perpendicular to q0q2 that passes through
the mid-point of q0q2. To figure out how far along this line to place
the points, we take the minimum of the distance from the mid-point
to the projected face centroids, or the intersection of the line with
the projected face polygons.

If the edge is on the boundary, we use the distance from the sin-
gle adjacent face.

3.3.3 Vertex charts

We first build a 2n polygon from the adjacent face’s centroids and
adjacent edge’s mid-points, where n is the number of adjacent faces.
We then iteratively smooth this polygon and shift it until it is convex
and its center is within some epsilon ε of the projected vertex. To
smooth, we move each polygon vertex closer to the average of its
two neighbors. ε is set to be 0.15 of the width of the polygon.

Next, we solve the same least-squares problem as we did for the
face. Finally, we run a gradient descent algorithm that moves the
center of the ellipse towards the projected vertex and the vertices qi
outside of the ellipse (with a small weighting factor, 1/10, to bring
the ellipse boundary close to the qi to prevent excessive shrinking.

Both iterative procedures converge within 5-15 iterations.
If a vertex is on the boundary then we reflect the existing edge

and face points to create a complete polygon.

3.4 Embedding the domain

The embedding functions we use are general polynomials of order
K, and hence are C∞:

Ec(s, t) = ∑
i j⊂[0,K]

ai jsit j (18)

where K = 5 for the images in this paper. This number was arrived
at experimentally, but can be justified as follows: Each chart cov-
ers roughly 16 faces of the second level subdivision mesh. Each
of these faces is essentially a C2 spline patch with one interval per
side [Stam 1998], i.e., it is a degree three polynomial. To capture all
of the degrees of freedom needed for the 16 patches would require a

degree 3∗4 = 12 polynomial; however, there is substantial smooth-
ing in the subdivision process which allows us to use a lower-degree
polynomial. Implementation note: We use Horner’s Rule [Borwein
and Erd 1995] for evaluating the polynomial. This method is com-
putationally stable and reduces the number of multiplications.

To solve for the ai j, we take the standard least-squares approach
(Ax = B). We generate a n×n grid of points over the chart (discard-
ing those that do not fall in the unit circle). For each chart point p
we calculate the corresponding point q on the final subdivision sur-
face [Stam 1998]. We then solve for the polynomial that minimizes

∑
i
||Ec(pi)−qi|| (19)

We set n = 10 for the examples here.
To map from the chart point p to the subdivision surface we sub-

divide the sketch mesh embedded in S2 three times. We do not ap-
ply the geometric averaging step when subdividing in the domain,
since we are not trying to smooth the domain mesh, just establish
a correspondence between points in S2 and the subdivision mesh.
New edge vertices are placed at the midpoint of the original edge,
and the new vertices placed where the old vertex was. Every point
in S2 can then be mapped (using barycentric coordinates) to a face
in the subdivided, embedded mesh, and from there to the corre-
sponding subdivided sketch mesh.

The blend function is a Ck 1D radial spline surface formed by
rotating a Ck spline basis function with support (−1,1) around the
origin. The knot vector is uniformly spaced, starting at −1 and
ending at 1 (which places the maximum value at 0). The blend
functions determine the continuity of the final surface. Because the
sketch mesh covers S2, the charts overlap, and the blend functions
are non-zero over the chart (reaching zero exactly at the boundary
of the chart) the sum in the denominator of Equation 1 will be non-
zero.

3.5 Sketch mesh

To create an initial set of charts, blend, and embedding functions
we must first embed the mesh into S2 [Grimm 2004; Gotsman et al.
2003; Saba et al. 2005; Praun and Hoppe 2003]. We currently split
the mesh in half, embedding each half into a hemisphere. Once the
mesh is embedded, we run an optimization2 routine that moves the
vertices toward the centroid of their star in S2. Matching the orig-
inal mesh’s geometry is not important; it is more important for the
embedded mesh to be as regular as possible. This prevents exces-
sive skew in the charts.

We create the charts as described in Sections 3.3. At this step we
guarantee that the charts cover the sphere; if not, we can increase
the size of the charts until they do (we have not had a problem in
practice). We can conservatively check the coverage using the GPU
as follows. Create a mesh for each chart (see Figure 3), shrinking
the meshes slightly so that their projection is one pixel from their
true projection. Now render all of the charts simultaneously from
the six cardinal directions; any uncovered pixel inside the center
of the rendered sphere indicates a gap (we ignore the edge portion
because the chart mesh faces lie slightly inside of the sphere).

4 Adaptive resolution editing

Here we discuss how to add detail to an existing surface Si. The user
specifies the detail using a detail mesh; we again construct charts,
blend, and embedding functions as described earlier for this new

2We do not optimize the spherical case beyond a few iterations because
it collapses to the zero solution [Saba 2005].



Embedded mesh and charts Polygons Coverage

Figure 5: Left: The detail mesh embedded on the sphere. Each dis-
joint mesh component is covered by a chart. Middle: The bound-
aries of the mask function. It is one inside of the red polygon, and
fades to zero by the blue polygon. Right: The corresponding charts.

mesh. To smoothly blend the new detail charts into the existing
surface we define a mask function, νi+1, which is one where we
want the detail, and smoothly fades to zero outside of this area. We
use this mask function in three ways. First, we use it to mask-out the
blend functions of all of the patches in the existing surface Si that
overlap the detail region. Second, we use it to fade-out the blend
functions of the new patches. Third, we use it in the embedding
fitting step (Equation 19) to blend the boundary patches’ geometry
into the existing surface.

We keep the detail mesh vertex locations in the coordinate frame
of the surface Si. When the user picks a point on Si, this automat-
ically determines a location on S2 for that point. Therefore, as the
user creates the detail, they simultaneously create a matching mesh
embedded in the domain, and set the coordinate frame for the ver-
tices.

We first discuss how the mask function is built from the detail
mesh. Second, we define a new blend function that incorporates the
mask function. Third, we define a modification to the chart fitting
step; this last step is not necessary to ensure mathematical continu-
ity, but it does increase visual smoothness in the blend region.

4.1 The mask function

To build the mask function we first create a chart that covers each
disjoint mesh component (see Figure 5). The projection point is
placed at the average of the vertices of the mesh component. We
solve for the projective transform that takes the unit circle to the
smallest-area ellipse that completely contains the projected mesh
component. To find this transform, we use a Simplex solver [Nelder
and Mead 1965] which typically converges in 100-200 iterations.
The error function we use is the area of the ellipse plus a heavy
(100 times the ellipse size plus the distance to the ellipse) penalty
for each point outside of the ellipse.

Once we have the chart we can project the mesh component, and
its second-level subdivision, into the chart. We form a polygon from
the first ring of the second-level subdivision, taking every fourth
vertex. This produces a polygon that is inset inside of the original
boundary polygon by approximately 1/2 the width of the original
faces. The mask function is the built using the projected interior
polygon by taking the convolution of it with a radial B-spline basis
function of support 2r, where r is the smallest distance from the
boundary of the interior polygon to the exterior one. The continuity
of the mask function is the determined by the continuity of this basis
function.

4.1.1 The blend functions

We use νi+1 to mask-out the blend functions of Si and to prevent
the blend functions of Si+1 from influencing the surface outside of
the mask region. Label the blend functions B̂i

c, where i ≥ 0 is the

detail level. We modify the blend functions before we include them
in the sum in Equation 1:

Bi
c = νiB̂i

cΠ j>i(1−ν j) (20)

where we again define B̂ j
c to be zero outside of the domain of c. ν0

is defined to be one everywhere.

4.1.2 Chart fitting

We also use the mask function when fitting charts at higher levels
(Equation 19). Where the mask function is one we use the subdivi-
sion surface exclusively to find the qi. Where the mask function is
zero we use Si−1(pi), blending in the blend region by νi.

Implementation note: Although this equation (and equation 1),
appear to have a large number of terms, in practice there are usu-
ally only 2 to 7 terms, corresponding to the charts that overlap at
that point, which need to be evaluated. By keeping track of which
charts actually overlap, we only need to check a handful of charts
for inclusion in the sum or product.

5 Implementation Details

To enable derivatives, we use a C++ template-based differentiation
approach [Stauning and Bendtsen n. d.]. In general, derivative cal-
culation is within three to five times the speed of the original cal-
culation. All of the normals used when rendering were calculated
from the analytical derivatives.

Because the chart and blend functions do not change when the
embedding functions change (Equation 1), we can cache much of
this equation and only update the individual embedding functions
and the final sum. This enables real-time manipulation of the sur-
face.

To create the tessellation the user first specifies a desired edge
length l, usually as a percentage of the average edge length in the
sketch mesh. For each mesh (the sketch and any mask meshes) we
take the first-level subdivision mesh (which has 4-sided faces) and
determine a sampling rate for each face that produces points spaced
roughly l distance apart in the interior of each face, and 0.5l from
the boundary of the face. At this point we have a set of samples
which are fairly evenly spaced with respect to the geometry of the
surface. We next use QHull to generate a convex hull of the points.
This triangulation is water-tight, but is a Delauney triangulation for
the sphere geometry, not our actual geometry, and tends to have
long, skinny triangles.

To produce better triangles we do a combination of edge-swaps
and Laplacian-style filtering. The edge-swap routine swaps any
edge where the opposite diagonal is closer to the desired length l
(after the first iteration we calculate a new desired length by taking
the average length of all of the edges). The filtering step moves a
vertex towards the centroid of its neighbors on the surface, not in
the sphere. To find the vertex’s new sphere location, we find the
geometric average of its neighbors, then project that average point
back onto the surface (a closest-point routine). Since the surface is
in a 1-1 correspondence with the sphere, this also gives us the de-
sired sphere point. We perform a total of three edge swaps and two
filtering steps, starting with the edge swap. This produces a very
regular tessellation with nearly equilateral triangles.

The running time of this algorithm is dominated by the time it
takes to calculate E(p) for each vertex. Calculating the final mesh
in Figure 1 (42568 vertices) took approximately 10 seconds.

Like splines, the interaction time during editing is proportional
to the number of surface vertices influenced by the changed controls
and the number of charts that need to be re-fit, not the total number
of surface vertices. Editing one vertex of the top-level subdivision



mesh for a given level typically requires 16-30 charts to be re-fit
and 100-300 surface vertices to be re-calculated, leaving aside cas-
caded hierarchical changes. The system response is real-time when
editing 10-20 control vertices, with a tessellation of approximately
25 surface vertices per chart.

6 Remarks

The use of a subdivision mesh at each level makes it simpler to con-
struct surfaces which are visually smooth as well as mathematically
continuous. In addition to providing a target smooth surface to ap-
proximate, the mesh also helps to structure the blend functions of
a given adaptive level so that they are close to being a partition of
unity.

Similarly, by embedding the boundaries of the adaptive meshes
in the previous level surface, we automatically create adaptive
geometry that blends with the existing surface even before applying
the embedding equation. The user is, of course, free to “tear” the
adaptive levels off of the previous surface — the result will still be
mathematically continuous, if ugly.

7 Conclusion

We have presented a constructive method for building manifold sur-
faces of spherical topology that allows charts to be created at any
scale and position. The use of S2 as a domain both separates the
representation of the topology from the geometry of the surfaces
and simplifies the construction of charts. Although in this paper
we discuss only spherical topologies, the approach extends to other
topologies as well [Grimm 2004; Grimm and Hughes 2003].

We provide a re-formulation of the manifold embedding function
that supports hierarchical surface editing by selectively masking out
blend functions at lower levels. Unlike traditional surface pasting,
this approach is mathematically simple, requires no geometric con-
straints, and can create joins of any continuity.

There are, of course, drawbacks to this approach. It is more
computationally expensive to compute than traditional splines are.
It also loses some of the basis function independence qualities and
convexity normally associated with spline-based techniques.

The main benefit of our approach is the ability to treat functions
on the sphere in a uniform manner, as a collection of local, planar
maps. By blending between functions on local maps we eliminate
the need to explicitly compute constraints and ad-hoc transitions
between adjacent local functions. We also eliminate the need to
decide a priori where we will need additional charts.
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points. ACM Transactions on Graphics 11, 2 (Apr.), 127–139.

YING, L., AND ZORIN, D. 2004. A simple manifold-based construction of
surfaces of arbitrary smoothness. ACM Transactions on Graphics 23, 3
(Aug.), 271–275.

ZHENG, J. J. 2001. The n-sided control point surfaces without twist con-
straints. Computer Aided Geometric Design 18, 2 (Mar.), 129–134.
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