
Another Look at Graftels

Cindy M. Grimm

Washington Univ. in St. Louis∗

Abstract

We present a hybrid object-image algorithm for the placement of
graftels in a scene. Our algorithm addresses the problem of frame-
to-frame coherency while maintaining image-space constraints.
Graftels are attached to objects in the scene. Each graftel has a be-
havior function that determines its size and orientation based on the
current view direction and image-space size. The placement of the
graftels and the behavior functions are optimized to meet 2D image
design constraints for a given set of views and image sizes. These
constraints may be generated automatically using information such
as the surface normal and object color, or constructed interactively.

CR Categories: I.3.m [Computing Methodologies]: Computer
Graphics—Misc.

Keywords: graftel

1 Introduction

Texturing with graftels [Kowalski et al. 1999] is a technique
for adding visual complexity to a scene. Graftel textures differ
from traditional techniques, such as texture mapping and per-pixel
shaders, in that the placement, scale, and orientation of individual
graftels is determined by 2D design constraints. For example, the
orientation of the graftel might depend on the surface normal pro-
jected into the image plane or on the local curvature of an object.
The number of graftels in an area might depend on the averaged
local shade values near that point in the image.

Graftels are very closely related to stroke-based sys-
tems [Kalnins et al. 2002; Meier 1996; Hertzmann and Perlin
2000; Daniels 1999]. One characteristic that distinguishes graftels
from strokes is that graftels are discrete entities drawn from a small
set of simple shapes, while strokes can differ greatly and are often
composited together in the final image. Both techniques, however,
present similar challenges when animated. In this paper we will
use the term graftel to mean a 2D drawing element, which may be
textured or alpha blended into the image.

The appeal of graftels is their ability to sparsely indicate texture
without overwhelming the visual system. A few, well-placed tex-
ture elements can indicate the general direction and shape of the
local texture, leaving the viewer to “fill in” the remaining texture.
Principles of 2D texturing are fairly well-understood in the art com-
munity, although translating these informal rules and guidelines to
specific algorithms can be challenging [Winkenbach and Salesin

∗email:cmg@wustl.edu

1994]. How to apply these rules to animating 3D scenes is less
well-understood, since there is a fundamental tension between the
2D design rules and frame-to-frame coherency. A graftel rendering
system must provide solutions for two main problems.

First, as the scene changes, the graftels must move, scale, and
re-orient themselves to the new image. Too many graftels appear-
ing (or disappearing) between frames produces “popping” artifacts.
Similarly, graftels that radically change their orientation or scale
can produce visually disturbing artifacts. The system must provide
a mechanism for controlling the introduction and movement of the
graftels.

The second problem is that the specification of graftel behavior
in 3D animation [Pastor and Strothotte 2002; Markosian et al. 2000;
Kaplan et al. 2000] can be quite complex. There are a large number
of variables in the 3D scene that indirectly influence how graftels
are placed in an image: camera angle, image size, rendered shade
values, and projected surface normals, to name a few. The system
must provide a method for specifying 2D design rules which take
into account these 3D data.

We present a system for the placement of graftels that addresses
the problem of frame-to-frame coherence while maintaining desired
2D design constraints. The graftels are attached to objects in the
scene in order to provide coherence. Each graftel has abehavior
functionthat determines the size and angle of the graftel based on
the current camera and image size. The placement of the graftels
on the object, and the parameters of the behavior functions, are
optimized to meet desired 2D design constraints. We explore two
methods for specifying graftel behavior functions and 2D design
constraints. In the first approach, the user specifies constraints for a
(typically) small set of view points. These constraints may depend
on values calculated from 3D data. The system then finds a set
of graftels and corresponding behavior functions that meet those
constraints. In the second approach, the user interactively positions,
scales, and orients the graftels from arbitrary view points.

There are several advantages to our approach over an entirely
image-based or object-based one. First, the behavior functions plus
the object-based placement of the graftels enforce frame-to-frame
coherency. Second, there is no need for costly reads from the im-
age buffer during rendering to enforce 2D design constraints. In
fact, depending on the form of the behavior function, it can be
implemented directly as a hardware pixel shade operation. Third,
unlike a purely object-based approach, the behavior functions are
optimized to meet 2D image constraints, such as density and ori-
entation. Fourth, we present a very free-form behavior function
(and corresponding user-interface) which makes it possible to cre-
ate very complex behavior functions.

The paper is organized as follows. We begin with a review of
related work (Section 2). Section 3 outlines the approach we take.
This consists of defining graftels (Section 4), the 2D design con-
straints (Section 5), and behavior functions (Section 7. The heart
of our approach is an optimization routine, which consists of an
algorithm for initial placement of the graftels (Section 6.1) and a
behavior optimization algorithm (Section 6.2). The interactive sys-
tem is discussed in Section 8. We conclude with the discussion of
several examples (Section 9).

2 Related work

There are two basic approaches to graftel or stroke placement and
movement. The first is to attach the graftels to a 3D object [Meier
1996; Kaplan et al. 2000; Pastor and Strothotte 2002], the second is
to place the graftels in image space [Markosian et al. 2000; Kalnins
et al. 2003] and, as much as is possible, re-use the previous frame’s
strokes in the next frame.

There are also two approaches to determining where and how
to draw the graftels. The first approach projects the 3D scene data
to 2D, then uses just the 2D information [Kowalski et al. 1999;
Winkenbach and Salesin 1994]. The second approach begins with
points already attached to the 3D object, and determines, based on
how the 3D graftel projects to 2D, how to draw it. Meier [Meier
1996] uses projected screen size and orientation to determine the
direction of the strokes. Kaplan [Kaplan et al. 2000] extend this to
a function based on the viewing direction, lighting, surface normal,
and camera view point distance. Pastor and Strothotte [Pastor and
Strothotte 2002] use a fairly complicated method based on subdi-
viding the surface to place stipples on the object. Their method has
the advantage that the user can zoom in arbitrarily close, and the
surface will continue subdividing as needed.

There are also hybrid 2D-3D systems that have incorporated
3D viewing parameters into essentially 2D drawing systems. Co-
hen [Cohen et al. 2000] allows the user to draw 3D billboards which
then rotate to continuously face the viewer. Disney [Daniels 1999]
has developed a system that lets the artist paint a 2D scene onto a
3D model. Each individual brush stroke is attached to the corre-
sponding 3D geometry. As the view point is changed, the strokes
are re-painted in their new locations, with an adjustment made for
changing screen-size and orientation. Fiore [Fiore et al. 2003] uses
a combination of 3D geometry and user-defined 2D strokes to ren-
der trees in a cartoon style. WYSIWYG NPR [Kalnins et al. 2002]
combines many traditional non-photorealistic rendering techniques
with the ability to paint strokes which attach themselves to objects.
Kowalski [Kowalski et al. 2001] uses a set of composition rules to
define how objects are rendered and combined based on their ex-
pected screen-space projection.

Tone or art maps [Praun et al. 2001; Webb et al. 2002; Klein
et al. 2000] are used for applying a certain class of stroke textures
to surfaces. They automatically cope with changing tone values
and changing resolutions in a smooth, continuous way by blending
in (or fading out) additional strokes where needed. This is imple-
mented as a series of mip-maps, with strokes in the lowest level of
the mip-map appearing in all higher levels. This approach works
very well for textures that are self-similar and can be procedurally
generated, such as hatching or stippling. Since the textures are ap-
plied as texture maps to the object, the strokes’ directions can only
depend on the orientation of the object, not on image-space con-
straints. Also, it is not clear how to extend tone maps to more arbi-
trary textures.

3 Automated approach overview

The following sections describe the first of two basic approaches
for placing graftels and defining behavior functions. The second
approach is interactive and is discussed in Section 8. In the first
approach, the user first defines 2D design constraints, such as the
desired density, size and angle (Section 5). These constraints may
be calculated from 3D data such as the surface normal, shade val-
ues,etc. They next choose a set of view angles and image sizes
over which to optimize. These views may be evenly distributed in
view space, or follow a pre-determined camera path. The user also
specifies the form of the behavior function and its free parameters
(Section 7). Note that we must have a behavior function for each
graftel, but that more than one graftel can share a behavior function.

Figure 1: The grass graftel. Shown are two possible mesh varia-
tions, each with a “big” and a “small” version. The small versions
are shown shaded “dark” and “light”, using the texture map at the
bottom.

Once the user has specified the necessary information, the sys-
tem searches for a set of graftels and behavior functions that meet
the desired 2D design constraints. This optimization routine alter-
nates between placing graftels and optimizing the behavior function
parameters. Graftel locations are chosen based on the desired local
density and graftel size in one of the chosen viewpoints. Addition-
ally, we try to place the new graftel next to an existing graftel at
the desired spacing. Note that as graftels are placed in one image,
they will also appear in any other view that contains that part of the
scene.

When a graftel is first created, its behavior function is set to a de-
fault value. The second part of the optimization procedure adjusts a
graftel’s behavior function to better meet the 2D design constraints
over the entire set of specified views.

4 Graftel definition

Each graftel has a positionp, surface normal~n, screen space an-
gle α, rotation matrixr, 3D sizes3, screen sizes2, texture-mapped
mesh, minimum pixel sizem, and maximum pixel sizeM. The po-
sition, screen space angle, and screen size are used by the behavior
function to calculate the graftel’s drawing position. The graftel’s
position and surface normal are found by intersecting the object
with a ray through the pixel.

The mesh for the graftel is centered at(0,0.5) and is 1 unit in the
y direction. The base of the graftel is at(0,0), allowing the graftel
to grow “up” and to rotate around its base point.

The texture values for the graftel are calculated, in part, from
the shaded value of the graftel [Kulla et al. 2003]. Thev texture
coordinate for each vertex is fixed, but theu texture coordinate is set
to the shade value for the graftel, plus 0.05 of the vertex’sx position.
The shade value is calculated from the lights, the position, and the
surface normal using the standard lighting equation. See Figure 1.

For each graftel type we allow the user to edit one or more shapes
for the graftel, with each shape having a big and a small version.
The 2D size parameter calculated by the behavior function (Eq. 9)
is used to interpolate between the two graftel sizes.

To render the graftel from an arbitrary camera we “undo” the
rotation in the camera (screen-space alignment). Screen-space size

and orientation are accomplished by scaling and rotating the graftel
in its coordinate system before applying the camera transformation.

Let Pc = PSzSxyRT be a standard camera defined by an eye point
Ec, alook vector~l , and anup vector~u. Then the matrixVg applied
to the graftel is:

sp =
s2

||Pcp−Pc(p+~u)||
(1)

~v = R(p−Ec) (2)

Vg = PSzSxyT(~v)R(z,α)S(sp,sp,1) (3)

whereT(~v) is translation by~v, R(z,α) is a rotation around thez
axis, andS(sp) is a scale matrix that compensates for perspective
scaling.

The rotation matrixr is used by the graftel’s behavior function to
align the local graftel’s coordinate system with that of the behavior
function. This matrix is applied to the camera’slook vector before
passing it to the behavior function.
This equation determines the projected size of a sphere placed at
the graftel’s location and scaled by the 3D size of the graftel. We
normalize by the maximum size of the graftel.

5 Image optimization

The 2D design constraints are stored as data at each pixel. How
this data is constructed depends on the desired constraint. Here we
describe the format of the required image-space data in general;
specific equations for constructing the data will be provided in Sec-
tion 9. Example images are shown in Figure 2. For each pixel we
store the following:

• Depth channel: This is the standard depth buffer created by
rendering the object.

• Spacing channel: The valueIsp specifies the desired spac-
ing between graftels. This is used during the placement algo-
rithm.

• Overlap channel: The value Io specifies the maximum
amount of overlap allowed at the pixel. This is used during
the optimization algorithm to determine the best size of the
graftel.

• Angle channel: The valueIα specifies the desired screen
space angle.

• Size channel: The valueIs specifies the desired maximum
size of a graftel at that pixel.

• Coverage channel:This channel indicates how much overlap
there is of graftels at that location. Letog be the overlap value
assigned to one graftel, andIc be the pixel value. ThenIc/og
is the number of graftels overlapping that pixel.

• Placement channel: This channel indicates where graftels
should be placed in order to maintain the desired spacing. The
higher the valueIp, the better the pixel choice.Ip/og is ap-
proximately how many graftels would be adjacent to a graftel
placed at that pixel.

5.1 Coverage and placement channels

The coverage and placement channels are created by rendering the
graftels at different sizes (see Figure 2) and summing each graftel
contribution.

Figure 3: Left: Placing the coverage mask on the coverage chan-
nel to determine if a graftel at the indicated location would overlap
an existing graftel. Right: A similar calculation to determine how
good the placement would be.

To create the coverage image we first render the object, shifted
slightly in thelook direction. We then clear the color buffer, and
turn off writing to the depth buffer. This insures that occlusion
of graftels by the object happens correctly. Next, we render each
graftel at intensityog, summing the color contributions of each
graftel. The graftel has a sizegs, calculated by the behavior func-
tion (Section 7). The graftel also has a desired spacing provided by
the spacing channel. We render the graftel scaled bysr so that it is
the desired size plus half of the spacing on either side:

sr =
Isp/2+gs

gs
(4)

We currently setog to 0.2, which lets us distinguish between 0 to 5
graftels overlapping at one point, while still being able to visualize
the coverage channel.

The placement channel is created in a similar manner, except
that the intensity of the graftel isog at the boundary, and fades to
0.1og in the interior. The graftel is translated down by 1/2 and
scaled by 2sr . This places a halo around the graftel at the desired
spacing. Pixels with the highest placement values are those that are
the desired distance away from one or more graftels.

6 Image optimization

The goal of the optimization algorithm is to determine where to
place the graftels, how to orient them, and how to set their behavior
functions. Both optimization algorithms (placement and behavior
function) operate on the image-space data defined in the previous
section. We alternate between one pass of the placement algorithm,
and one pass of the behavior optimization algorithm. The optimiza-
tion terminates when there are no more places to add graftels.

6.1 Placement algorithm

The goal of the placement algorithm is to add a new graftel near
an existing graftel, separated by the desired spacing. If no suit-
able graftel is found, we simply pick an image point at random that
meets certain criteria.

We first create a mask of the graftel. We place this mask (scaled
and rotated appropriately) at the pixel under consideration and add
up the contributions of the channels (see Figure 3). If the mask
does not overlap an existing graftel, but is adjacent to one, then we
add that pixel to the list of pixels under consideration. We visit
every pixel in every image, keeping a list of all candidate pixels.
For each candidate we store how many graftels the pixel is adjacent
to. We sort this list, and begin adding candidate graftels. After a

Figure 2: Image-space constraint data for the grass and ground. The lower right image shows the pixels visited in the placement algorithm.
Red pixels were automatically discarded because they lie inside existing graftels (including graftels added from other viewpoints during one
pass of the placement algorithm). Blue pixels were discarded because the coverage mask would overlap an existing graftel. Grey pixels were
too far away from an existing graftel to be considered. Green and yellow pixels are the candidate pixels. White pixels show the two graftels
that were added from this viewpoint. (The placement, coverage, and visited images only show a blow-up of the lower-left corner.)

graftel is added, we find its projection in all images and update the
corresponding coverage channels appropriately. (The depth buffer
is used to determine if the graftel is occluded). Candidate pixels
still in the queue are checked against the updated coverage channel
before being added.

We use two masks, each at a different scale. The coverage mask
is scaled so that it is the expected size of the graftel, plus the ex-
pected spacing. The coverage mask scale value is:

Isp(x,y)/2+ Is(x,y)
Is(x,y)

(5)

The value mask is used to calculate the size, density, overlap,
angle, and placement values; it is scaled toIs(x,y). For example,
to calculate how “good” a pixel is, we place the mask at that pixel,
and sum the values of the placement channel where the mask is
non-zero, and divide by the number of non-zero mask pixels.

Candidate pixels are those that meet the following criteria:

• The coverage mask does not overlap any non-zero values in
the coverage channel.

• The value mask does not overlap any zero values in the density
channel (zero indicates that there should be no pixels here).

• The value mask overlaps at least one non-zero value in the
placement channel.

In practice, we only need to look at pixels that are near places
where the placement channel is non-zero and the coverage channel
is zero. This is typically an expanding ring in each image. If we
find no pixels that meet all three of the above criteria, then we pick
a random pixel that meets all but the last criteria.

6.2 Behavior function optimization

We optimize each behavior function independent of the others;
theoretically, we could achieve better results by optimizing all of
the functions simultaneously. Unfortunately, this would be pro-
hibitively expensive. Instead, we randomly pick a small number of

graftels (typically 10-20), optimize them using the same coverage
channels, then repeat.

We first find all of the views in which a graftel is visible. For each
of these views we find the ideal size and angle for the graftel from
the coverage and angle images. These<view, size, angle>
triplets are then sent to the behavior function; the actual optimiza-
tion depends on the type of behavior function (Section 7).

The ideal angle value is fairly straightforward to calculate: we
simply place the value mask from the previous section on top of the
graftel’s location and sum the overlapped angle values.

The ideal size is the biggest possible graftel size such that the
coverage value is less than the allowed overlapIo(x,y). We do a
brute-force search over the sizes, from zero up, stopping when the
coverage mask overlap exceeds the allowed threshold or we reach
the biggest allowed size.

Figure 4 shows the inter-relation between the desired spacing and
the allowed overlap. The spacing channel controls where graftels
are added, but the overlap channel controls their sizes across the
images.

7 Behavior functions

The purpose of the behavior function is to map information about
the current camera and the graftel’s position and orientation to a size
and orientation on the screen. Rather than use all of the camera’s
parameters (which would be prohibitive) we extract two pieces of
information from the camera. The first is the direction of thelook
vector of the camera relative to the local coordinate system of the
graftel. The second is the projected size of the graftel, or how far
the graftel is from the camera.

Each graftel has a rotation matrixr that defines its orientation;
this rotation matrix can either be based on the local surface frame or
on the viewing coordinate system in which the graftel was created.
We multiply thelook vector of the camera by this rotation matrix
to give the actual view vector that is passed to the behavior function.

Each graftel has a 3D size, which is the size of a sphere placed
around the graftel’s position. This is calculated at creation time by
finding the sphere size that, when projected, has radiusgs on the
screen, wheregs is the size of the graftel. More specifically,

Figure 4: Left: The grass with a desired spacing of four, and an allowed overlap of zero. Right: The same grass with a desired spacing of
four, but an allowed overlap of approximately 30

ratio =
gs

(W+H)/2
(6)

lenU p = 2||Ec− p|| tan(θ/2) (7)

s3 = ratio∗ lenU p (8)

whereEc is the eye point of the camera,θ the zoom angle,W, H
the size of the window,p the graftel’s point.

The screen space of the graftel is then found by mappingp and
p+ ~ups3 to the image and taking the difference (in pixels) of their
length. IfV(p) is the function that maps a point to the screen:

s2 =
||V(p)−V(p+ ~up)||

gs
(9)

7.1 Look and Size behavior function

This function depends on the screen-sizes2 of the graftel and the
relative orientation of the viewing direction~l with respect to the
surface normal~n. We use a standard 2D→ 3D spline patch to
represent the function:

S(s2,~l ·~n) → (sx,sy,α) (10)

We use this behavior function for the grass and the Looks-A-Lot
character (Figure 6). The default values are constant(1,1,0). To
fit the patch we use a least-squares approach [Fowler and Bartels
1991]. The domain of the patch is set to be slightly bigger than the
maximum and minimums2 and~l ·~n values for the user-defined view
set. For the examples in this paper we used a degree 1 patch with

6 control points on a side. We also include a smoothing parameter
in the least-squares fit which controls how much the derivative is
allowed to change.

7.2 Arbitrary behavior

This behavior function is very general, but more space-intensive
than the previous one. We define a 3D spline function on the
sphere [Grimm 2002], with the first two parameters corresponding
to the view direction in spherical coordinates(θ ,φ), and the third
parameter to the screen-space size. The total number of degrees of
freedom is 4×4×4×6 for aC1 spline with four control points in
each dimension.

We use this behavior function when doing user interaction (the
dinosaur, see Figure 5). The user chooses a view and a screen size
by positioning the camera, then re-scales the graftel. The appropri-
ate degrees of freedom in the spline function are then changed to
meet the new constraint; this is identical to least-squares direct ma-
nipulation of spline curves [Fowler and Bartels 1991; Grimm 2002].
Essentially, we find the minimal movement of the spline control
points such that the new output of the spline function matches the
user change at that point.

Note that we can make this a pure view-based function by using
a 2D spline function (dropping the third, size-based parameter).

8 User interface

The user interface is very straightforward. The user can “comb”
the graftels by drawing directions in the image. Graftels that lie
underneath the cursor are combed in the indicated direction.

Similarly, the user can paint the graftels with a size brush, mak-
ing them either shrink or grow by some amount. If the user scales

the graftel past the maximum pixel size for that graftel then we up-
date the maximum size accordingly.

Once the user has finished painting, we fit the behavior function.
We currently use the 3D arbitrary function for screen size, and the
2D arbitrary function for the angle.

To add new graftels the user just clicks on the object and draws a
line in the desired direction. This sets the initial screen-space size,
screen orientation, and 3D orientation. The graftel’s rotation matrix
r is set to the matrix that takes the camera frame to the coordinate
axes.

Multiple graftels can use the same behavior function. In this
case, every graftel that was edited contributes to the least-squares
fitting (i.e., one constraint row for each graftel).

9 Specific models

9.1 Grass

The size and density images were constructed from the texture
mapped object. Areas that were primarily green had a graftel size
of 32 assigned to them. The remainder of the image had a graftel
size of 24. Areas that were blue were marked as no graftels, while
the remainder of the pixels were set to have a spacing of 4 pixels.

The screen-space angle for every pixel was set to zero, and we
used a constant angle behavior function. We used the Look and
Size behavior function for the graftel size. We used a set of 25
optimization images evenly spaced along the camera path through
the scene.

Figure 4 shows some images from the grass scene. We per-
formed two optimizations, one with an allowed overlap of zero,
and one with an allowed overlap of approximately 30%, which pro-
duces much denser grass.

9.2 Dinosaur

The dinosaur (Figure 5) was constructed by hand, using the arbi-
trary behavior function, in approximately 10 minutes. There are
four different grafel behavior functions; the neck, body, feet, and
eyes. Note that, by repositioning the camera, we can use the same
behavior function for both sides of the dinosaur, and re-orient the
graftels along the tail.

9.3 Looks-A-Lot

The 2D constraints for the Looks-A-Lot (Figure 6) character were
specified by painting the canonical views. The angle was set to be
the normal projected into the image plane. We used a total of 14
images, seven small and seven big. The Look and Size behavior
function was used for the graftel size. The size image was scaled
from 0 to 10 pixels, the overlap image from 0 to 30%, and the spac-
ing image from 0 to 3 pixels.

10 Conclusion

In conclusion, we have described a system that uses 2D image-
space constraints to define general behavior functions for graftels.
The system maintains frame-to-frame coherency while meeting 2D
design constraints. The user can adjust the trade-off between co-
herencey and the 2D constraints by changing the smoothness of the
behavior function (ı.e., number of control points and continuity of
the spline function). The user can also specify design functions by
sketching the desired results, rather than specifying equations.

There are some limitations in the current system. For example,
we do not take into account theup vector of the camera. For most
applications (walk throughs, characters) this is acceptible because

there is a default orientation and the viewer is not expected to look
at the scene upside down. If orientation were important, the system
could be extended by using a quaternion (four variables) to repre-
sent the view direction.

The behavior functions are valid outside of their set range, but
they may not give the desired behavior. Therefore, the canonical
view set should cover the desired camera angles for the best results.

References

COHEN, J. M., HUGHES, J. F.,AND ZELEZNIK , R. C. 2000. Harold: A
world made of drawings. InNPAR 2000 : First International Symposium
on Non Photorealistic Animation and Rendering, 83–90.

DANIELS, E. 1999. Depp canvas in disney’s tarzan. InSiggraph sketches,
200.

FIORE, F. D., HAEVRE, W. V., AND REETH, F. V. 2003. Rendering
artistic and believable trees for cartoon animation. InComputer Graphics
International, 144–151.

FOWLER, B., AND BARTELS, R. H. 1991. Constraint based curve manip-
ulation. Siggraph course notes 25(July).

GRIMM , C. 2002. Simple manifolds for surface modeling and parameteri-
zation.Shape Modelling International(May).

HERTZMANN, A., AND PERLIN, K. 2000. Painterly rendering for video
and interaction. InNPAR 2000 : First International Symposium on Non
Photorealistic Animation and Rendering.

KALNINS , R. D., MARKOSIAN, L., MEIER, B. J., KOWALSKI , M. A.,
LEE, J. C., DAVIDSON, P. L., WEBB, M., HUGHES, J. F., AND

FINKELSTEIN, A. 2002. Wysiwyg npr: Drawing strokes directly on
3d models.ACM Transactions on Graphics 21, 3 (July), 755–762.

KALNINS , R. D., DAVIDSON, P. L., MARKOSIAN, L., AND FINKEL -
STEIN, A. 2003. Coherent stylized silhouettes.ACM Transactions on
Graphics 22, 3 (July), 856–861.

KAPLAN , M., GOOCH, B., AND COHEN, E. 2000. Interactive artistic
rendering. InNPAR 2000 : First International Symposium on Non Pho-
torealistic Animation and Rendering, 67–74.

KLEIN , A. W., LI , W. W., KAZHDAN , M. M., CORREA, W. T., FINKEL -
STEIN, A., AND FUNKHOUSER, T. A. 2000. Non-photorealistic vir-
tual environments. InProceedings of ACM SIGGRAPH 2000, Computer
Graphics Proceedings, Annual Conference Series, 527–534.

KOWALSKI , M. A., MARKOSIAN, L., NORTHRUP, J. D., BOURDEV, L.,
BARZEL, R., HOLDEN, L. S., AND HUGHES, J. F. 1999. Art-based
rendering of fur, grass, and trees. InProceedings of SIGGRAPH 99,
Computer Graphics Proceedings, Annual Conference Series, 433–438.

KOWALSKI , M. A., HUGHES, J. F., RUBIN , C. B., AND OHYA , J. 2001.
User-guided composition effects for art-based rendering. In2001 ACM
Symposium on Interactive 3D Graphics, 99–102.

KULLA , C., TUCEK, J., BAILEY, R.,AND GRIMM , C. 2003. Using texture
synthesis for non-photorealistic shading from paint samples. InPacific
Graphics, 477–481.

MARKOSIAN, L., MEIER, B. J., KOWALSKI , M. A., HOLDEN, L. S.,
NORTHRUP, J. D., AND HUGHES, J. F. 2000. Art-based rendering
with continuous levels of detail. InNPAR 2000 : First International
Symposium on Non Photorealistic Animation and Rendering, 59–66.

MEIER, B. J. 1996. Painterly rendering for animation. InProceedings
of SIGGRAPH 96, Computer Graphics Proceedings, Annual Conference
Series, 477–484.

PASTOR, O. E. M., AND STROTHOTTE, T. 2002. Frame-coherent stip-
pling. In Eurographics short papers.

PRAUN, E., HOPPE, H., WEBB, M., AND FINKELSTEIN, A. 2001. Real-
time hatching. InSIGGRAPH 2001, Computer Graphics Proceedings,
E. Fiume, Ed., 579–584.

Figure 5: Graftels produced using the user-interface.

Figure 6: Top row: Images painted by the user to indicate the desired size, allowed overlap, and spacing (same as overlap images). Bottom
row: Images from an animation.

WEBB, M., PRAUN, E., FINKELSTEIN, A., AND HOPPE, H. 2002. Fine
tone control in hardware hatching. InNPAR 2002: Second International
Symposium on Non Photorealistic Rendering, 53–58.

WINKENBACH , G., AND SALESIN, D. H. 1994. Computer-generated pen-
and-ink illustration. InProceedings of SIGGRAPH 94, Computer Graph-
ics Proceedings, Annual Conference Series, 91–100.

