
Say Cheese!: Experiences with a Robot Photographer

Zachary Byers and Michael Dixon and William D. Smart and Cindy M. Grimm
Department of Computer Science and Engineering

Washington University in St. Louis
St. Louis, MO 63130

United States
{zcb1,msd2,wds,cmg }@cse.wustl.edu

Abstract

We have developed an autonomous robot system that takes
well-composed photographs of people at social events, such
as weddings and conference receptions. The robot, Lewis,
navigates through the environment, opportunistically taking
photographs of people. In this paper, we outline the over-
all architecture of the system and describe how the various
components inter-relate. We also describe our experiences of
deploying the robot photographer at a number of real-world
events.

Introduction
In this paper, we describe our experiences with an au-
tonomous photography system mounted on a mobile robot.
The robot navigates around social events, such as wedding
receptions and conference receptions, opportunistically tak-
ing photographs of the attendees. The system is capable of
operating in unaltered environments, and has been deployed
at a number of real-world events.

This paper gives an overview of the entire robot photog-
rapher system, and details of the architecture underlying the
implementation. We discuss our experiences with deploying
the system in several environments, including a scientific
conference and an actual wedding, and how it performed.
We also attempt to evaluate the quality of the photographs
taken, and discuss opportunities for improvement.

The system is implemented with two digital cameras (one
still and one video), mounted on an iRobot B21r mobile
robot platform. The robot stands slightly over four feet tall,
and is a bright red cylinder approximately two feet in di-
ameter. The cameras are mounted on top of the robot on a
Directed Perception pan/tilt unit. All computation is done
on-board, on a Pentium-III 800MHz system. The only sen-
sors used for this project are the cameras and a laser range-
finder, which gives 180 radial distance measurements over
the front 180◦ of the robot, in a plane approximately one
foot above the floor. The robot communicates with a remote
workstation, where photographs can be displayed, using a
wireless Ethernet link.

At a high level, the system works as follows. The robot
navigates around the room, continually looking for “good”

Copyright c© 2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

photograph opportunities. A face-detection system that
fuses data from a video camera and the laser range-finder
locates the position of faces in the scene. These faces are
then analyzed by a composition system, based on a few sim-
ple rules from photography, and a “perfect” framing of the
scene is determined. The camera then pans, tilts and zooms
in an attempt to match this framing, and the photograph is
taken.

In the remainder of the paper, we discuss our motivation
for undertaking this project and describe the various aspects
of the system. We then describe some of the major deploy-
ments of the system, and show examples of the photographs
that it took. Finally, we offer some conclusions, based on
our experiences, attempt to evaluate the performance of the
current system, and suggest future directions for research.

Motivation
Why robot photography? Our primary research interests
are in the areas of long-term autonomy, autonomous navi-
gation, and robot-human interaction. The robot photogra-
pher project started as a framework within which we could
do that research. It was also designed to be appealing to
undergraduates, and to encourage them to get involved in
research. Automated photography is a good choice of ap-
plication, since it incorporates all of the basic problems
of mobile robotics (such as localization, navigation, path-
planning,etc.), is easily accessible to the general public (ev-
eryone knows what a photographer does), and has a multi-
disciplinary element (how do you automate the skill of pho-
tograph composition).

Because the concept of a robot photographer is easily un-
derstood by the public, it is an excellent umbrella under
which to study human-robot interaction. Members of the
public who have seen the system have responded very pos-
itively to it, and have been very willing to interact with the
robot. Since the application is accessible to people without
technical knowledge of robotics and computer science, the
interactions that people have with the system tend to be very
natural.

Our original goals were to create a system that was able to
autonomously navigate crowded rooms, taking candid, well-
composed pictures of people. The intent was to have an au-
tomated event photographer, and to catch pictures of people
interacting with each other, rather than standard “mug-shot”



GUI

Video
Camera

Face
Finder

Selection
Destination

Digital
Camera

Path
Planning Navigation

Framing

Take Picture

Image LocationGrab

Wireless
Link

Photography System

World Location

Figure 1: An overview of the photography system architec-
ture.

types of photos.
We feel that we should note that there is a lot of room

for improvement in the current system. Many of the algo-
rithms are quite basic, and the performance of the system
would be improved if they were improved or replaced. We
believe it is useful to present the system in its current state
because it illustrates the overall level of performance that
can be achieved with very simple components working to-
gether. When working on a mobile robot, there is also util-
ity in using algorithms that are as computationally simple as
possible. Computation costs power, and can lead to signifi-
cantly shorter battery lifetimes. We are, therefore, interested
in the simplest algorithm that we can get away with, even if
performance is not quite as good.

Now that the basic system is in place we are finding that it
is a good platform for general mobile robotics research. The
system is purposefully designed to be modular, so that more
advanced algorithms can be easily added and evaluated. It
also provides a vehicle for research into areas not specifi-
cally tied to the photography project, such as navigation and
path-planning. Our efforts are currently directed at evalu-
ating the system, and the effects that adding more sophisti-
cated algorithms will have, in terms of overall performance,
battery life, responsiveness,etc.

Robot Photography
We have broken the task of photography into the following
sequential steps: locating potential subjects, selecting a pho-
tographic opportunity, navigating to the opportunity, fram-
ing and taking a shot, and displaying the final photograph.
These are summarized in figure 1.

Locating Potential Subjects
In order to locate potential subjects, we search for faces in
the images from the video camera. A common strategy in
face detection is to use skin color to help isolate regions as
potential faces. Because skin occupies an easily definable
region in color space, we are able to define a look-up table
which maps from a color’s chromaticity to its likelihood of
being skin. Applying this function to each pixel of an image
allows us to construct a binary image representing each pixel
as either skin or non-skin. We then segment this image into
contiguous regions with each region representing a potential
face.

The next step is to determine the size and relative location
in space of the object associated with each skin region in

the image. The pixel location of a region can be translated
into a ray extending from the camera through the center of
the object. This ray’s projection onto the ground plane can
then be associated with one of the 180 rays of laser data. If
we make the assumption that all perceived objects extend to
the floor, as is usually the case with the bodies associates
with faces, then this laser reading will tell us the horizontal
distance to the object. Knowing this distance allows us to
calculate the position in space and the absolute size of each
object.

All regions whose geometric and spatial properties fall
within the range of expected face sizes and heights are clas-
sified as faces.

Selecting a Photographic Opportunity
The relative positions of potential photographic subjects are
then used to calculate the location of the best photographic
opportunity. We discretize the floor plane into a grid with
squares 20cm on a side. For each grid square within a given
range of the robot, we calculate the value of an objective
function that measures the potential quality of a photograph
taken from that position. This objective function is calcu-
lated using knowledge about good picture composition.

• The best pictures are taken between 4 and 7 feet from the
subject.

• One subject should not occlude another.

• Photographs should not be taken from the perpendicular
bisector of two subjects.

• Positions that are closer to the current robot position
should be preferred.

• If the direct path to a position is obstructed, that position
should be less desirable.

These rules are encoded as parts of the objective function.
For example, the first rule could be implemented by calcu-
lating the distance,di, from the position under considera-
tion to each person in the environment. This rule would
then contribute a value,v1, to the objective function, where

v1 =
∑

i exp
(
− (d− 5.5)2

)
. There will be one such term,

vj , for each of the rules above, and the total value,v, is just
the sum of them,v =

∑5
j=1 vj . This is illustrated in fig-

ure 2. Once we calculate values for all cells within a set dis-
tance of the robot, we select the one with the highest value
as the next destination.

Navigation
Given a photographic opportunity, the system will attempt to
move the robot to the given destination while avoiding obsta-
cles. If obstacles prevent the robot from traveling along the
ideal heading, a clear heading nearest to the ideal is chosen
instead. The system continually reassesses the ideal head-
ing, choosing either that or the closest clear heading until
the desired position is achieved. After a specified number of
deviations from the ideal heading, the robot will give up on
that photograph, preventing it from endlessly trying to reach
an impossible position.



(a) (b) (c) (d) (e)

Figure 2: Constructing the objective function to take into account (a) distance, (b) occlusion, (c) bisection, (d) movement, and
(e) reachability. Lighter shades represent larger values of the objective function. The lowest white dot represents the robot
position. The other dots are detected people.

The system also has a random navigation mode, where
it randomly wanders through the environment, opportunisti-
cally taking photographs. We found that this actually works
better in very crowded environments. In these cases, the
robot spends so much time avoiding people, that it hardly
ever gets to its goal in time. Also, since there are so many
people about, most positions are reasonable for taking pho-
tographs.

Framing
When a suitable photographic opportunity has been reached,
the system attempts to find a pleasing composition and take
a photograph (Byerset al. 2003). Given a set of detected
faces and their positions in the image, a framing algorithm
calculates the image boundary of the ideal photo. The spe-
cific composition rules used to calculate this ideal framing
is beyond the scope of this discussion, but our design allows
us to easily vary the framing algorithm based on the level of
complexity required.

This ideal framing is then converted into the amount of
pan, tilt, and zoom required to align the image boundary
with the frame. The system continually calculates this fram-
ing and adjusts its camera orientation until the ideal frame
and current frame are sufficiently similar or until a prede-
termined amount of time has elapsed. Both of these values
can be adjusted to adapt to different situations in order to ac-
commodate a balance between precision and speed. When
either condition is reached, a photograph is taken with the
still camera.

Displaying Photographs
We have a separate viewing station for displaying the robot’s
results. As the robot takes photographs, they are transmitted
to the viewing station. Attendees at the event can browse
through the photographs and print them out, or email them
to someone. The number of photographs printed or emailed
is one of our evaluation metrics. We reason that if the robot
is taking better photographs, more of them will be printed or
emailed. We discuss this in more detail later in the paper.

System Overview
The current system consists of two layers of control and a
sensor abstraction. The control layer takes care of all low-
level navigation, localization, and obstacle avoidance. The

task layer contains the code for the actual photography ap-
plication, including the cameras and pan/tilt unit. We also
include a sensor abstraction to allow us to restrict the robot’s
motion more easily. Both layers deal with the sensor abstrac-
tion, rather than directly with the sensors themselves.

The main reason for arranging the system in this man-
ner is to promote reuse of code across future applications.
All of the photography-specific code is contained in the task
layer, while all of the general-purpose navigation systems
are implemented in the control layer. This will allow us to
more easily deploy other applications without significantly
rewriting the basic routines.

We should also note that we use a serial computation
model for this system. We take a snapshot of the sensor read-
ings, compute the next action, write that action to the mo-
tors, and then repeat the process. This makes debugging of
the system significantly easier, since we know exactly what
each sensor reading is at every point in the computation. this
would not be the case if we were reading from the sensors
every time a reading is used in a calculation. This model also
allows us to inject modified sensor readings into the system,
as described below.

The Control Layer

The control layer has three modules running concurrently:
obstacle avoidance, relative motion, path planning, and lo-
calization.

Obstacle Avoidance The obstacle avoidance system is
purely reactive, and attempts to keep the robot from collid-
ing with objects in the world. If there is an obstacle within
a given range in the path of the robot, the heading is varied
appropriately to avoid it. Obstacles closer to the robot tend
to cause more drastic changes in course than those further
away.

Relative Motion This module causes the robot to move
towards a new position, specified relative to the current one.
It is responsible for local movement, and is superseded by
the obstacle avoidance module.

Path Planning The path planning module is responsible
for movement to non-local destinations. It sequences partial
paths, and uses the relative motion module to actually move
the robot. Currently, this module is extremely simple. We
orient the robot in the desired direction and drive towards



the goal point.

Localization The localization module is responsible for
keeping track of where the robot is, and for correcting odom-
etry errors. The robot counts the rotation of its wheels to
keep track of position, but this is notoriously prone to cumu-
lative errors due to wheel slippage.

We have a simple localization strategy which involves
finding two or more visual landmarks, and using triangu-
lation to calculate the robot position. We currently localize
only when needed, trusting localization for short periods of
time (about 5 minutes). In certain environments, for exam-
ple when the robot is physically confined in a room, we have
found that we do not need to localize at all.

The Task Layer
The task layer contains all of the application-specific code
for the photography system. It requests robot motions
from the control layer, and directly controls the camera and
pan/tilt unit. The details of this layer were discussed in the
previous section.

The Sensor Abstraction
We have introduced a sensor abstraction layer in order to
separate the task layer from concerns about physical sensing
devices. We process the sensor information (from the laser
range-finder in this application) into distance measurements
from the center of the robot. This allows consideration of
sensor error models and performance characteristics to be
encapsulated, and easily re-used across applications.

This encapsulation, and the serial computation model, al-
lows us to alter the sensor values before the task and control
layers ever see them. We have found that this is a convenient
mechanism for altering the behavior of the robot. For exam-
ple, if we want to keep the robot within a particular area
of a room, we can define an “invisible fence” by artificially
shortening any sensor readings that cross it. The robot then
behaves as if there was a wall in the position of the fence,
and avoids it.

Deployments
We have deployed the robot photographer system at a num-
ber of events. In this section, we describe the more important
deployments. We cover the amount of control we had over
the environment, the configuration used, and perceived suc-
cesses and failures. At the time of writing, the three most
significant deployments of the robot photographer system
are at a major computer graphics conference, at a science
journalist meeting, and at a wedding reception.

SIGGRAPH 2002 The first major deployment of the sys-
tem was at the Emerging Technologies exhibit at SIG-
GRAPH 2002, in San Antonio, TX. The robot ran for a to-
tal of more than 40 hours over a period of five days during
the conference, interacted with over 5,000 people, and took
3,008 pictures. Of these 3,008 pictures, 1,053 (35%) were
either printed out or emailed to someone.

The robot was located in the corner of the exhibit space,
in an open area of approximately 700 square feet. The area

was surrounded by a tall curtain, with an entrance approxi-
mately eight feet wide. Other than a small number of techni-
cal posters and some overhead banners the space was mostly
filled with grey or black curtains. Light was supplied by
overhead spotlights, and three large standing spotlights in
the enclosed area were added at our request to increase the
overall lighting.

Deployment at SIGGRAPH took several days, in part be-
cause this was the first deployment, and in part because it
took some time to adjust the lighting so that it illuminated
faces without washing them out. We initially had plans for
more advanced navigation and localization. Due to time
constraints, we ended up fielding a bare-minimum system,
which turned out to be surprisingly effective.

We used a landmark (a glowing orange lamp) to prevent
the robot from straying from the booth. Since there was only
one door it was sufficient to “tether” the robot to the lamp.
Navigation was random, except when the robot re-oriented
itself or was avoiding objects.

CASW Meeting The second major deployment was at a
meeting of the Council for the Advancement of Science
Writing (CASW), which took place in the dining room of
the Ritz-Carlton hotel, in St. Louis, MO. The robot operated
in an unaltered area of about 1,500 square feet, as an evening
reception took place. The robot shared the space with the
usual furnishings, such as tables and chairs, in addition to
approximately 150 guests, mostly science journalists. The
robot operated for two hours, and took a total of 220 pic-
tures. Only 11 (5%) of these were printed out or emailed by
the reception guests, although several more were printed and
displayed in a small gallery.

We spent three evenings calibrating the system in the ho-
tel. Primarily, this was to calibrate the face-finding software
to the lighting in the room and determine if there were any
serious potential problems. At this event we added two new
modules to the SIGGRAPH system; a digital camera to take
better quality photographs, and navigation software that at-
tempted to place the robot at a “good” place to take pictures.
The success of this navigation module varied with the num-
ber of people present and how active they were. It performed
best with a small number of people who did not move around
too much.

As the room became more crowded and active the robot
spent a lot of time navigating to places (while avoiding peo-
ple) only to discover that the people had moved. At this point
it would have been ideal to swap out the current navigation
module and return to the simpler one.

An Actual Wedding The system was deployed at the wed-
ding reception of one of the support staff in our department.
At this event, it ran for slightly over two hours and took 82
pictures, of which only 2 (2%) were printed or emailed. The
robot shared a space of approximately 2,000 square feet with
70 reception guests, some of whom were dancing.

We took a camera to the reception hall before the event,
but the calibration was largely done on-site an hour before
the reception. The robot ran a system that was nearly identi-
cal to the one used in the CASW meeting.

The robot performed well while people were standing in



the buffet line, but after this the lights were lowered and we
had to re-calibrate the system again. At this point, most peo-
ple were sitting so there were few potential shots. Then the
lighting was lowered again for dancing, and the face-finding
system was unable to function at those lighting levels.

Successes
The modules that are least susceptible to environment
changes are the low-level people-avoidance routines, camera
control, image-capture communication, and the random nav-
igation. Framing shots is also fairly robust, provided the face
detection algorithm is functioning. The localization system
worked well in the SIGGRAPH environment, but was not
needed at the other events, because of the configuration of
the environment. Random navigation worked surprisingly
well in crowded situations.

Failures
The most fragile component of the system is face-finding,
which is highly dependent on the color and intensity of the
lights and the background wall colors. In most environments
we had very little control over the lighting. Even at SIG-
GRAPH we were constrained to use the types of lights they
could provide us, although we could position them where
we wanted to.

The other area where we had variable success was high-
level navigation. Our two navigation strategies perform best
in different environments — crowded versus sparse. At
the CASW event and the wedding the number of people
changed throughout the evening. In this case it would have
been very useful to be able to automatically swap navigation
strategies depending on the situation.

Evaluation
A system like the robot photographer is inherently hard to
evaluate. Most natural characterizations of performance
are highly subjective. We also know of no similar system
with which to compare ours. Based on the performance at
SIGGRAPH, approximately one third of the pictures that
the robot takes are at least good enough to qualify as sou-
venirs. This agrees with some recent evaluations we have
begun. People were asked to classify randomly-selected
photographs from the robot’s portfolio as either “very bad”,
“bad”, “neutral”, “good”, or “very good”. Roughly one third
of the photographs were classified as “good” or “very good”.
While this is certainly not conclusive, we believe that it is
encouraging, especially given the early stage of the overall
system.

We are currently planning more extensive evaluations.
These include double-blind studies, where some human-
taken photographs will be randomly mixed in with the
robot’s to see if people have a significant preference. We
also plan evaluations by subjects who do not know a robot
took the photographs, to see if there is a bias in our current
results.

Conclusions and Further Work
Several other robots have been fielded in similar real-world
deployments. For example, Minerva gave tours of the

Smithsonian Museum of American History over a period of
14 days (Burgardet al. 1999). This is certainly a longer
deployment than we have had, with a similar level of en-
vironmental complexity. Other robots have been deployed
for longer, but generally with much simpler tasks and envi-
ronments (Hada & Yuta 2000). Another notable long-term
deployment involves a robot that provides assistance for el-
derly persons (Montemerloet al. 2002), which included sev-
eral day-long deployments.

Although each of these robot systems has proven very
successful, they all share something in common. They are
all designed for a single environment, or for a very simi-
lar set of environments. This allows them to be optimized
for that particular task. We believe that our experiences in a
range of widely different indoor environments adds a dimen-
sion that this previous work does not address: the beginnings
of general design principles for a robot system that must be
deployed across several different environments.

Our robot photography system is still very much a work-
in-progress. However, based on a number of real-world de-
ployments, we believe that there are a few general design
rules that can be extracted from our experiences. These
specifically apply to the design and implementation of an
autonomous mobile robot system that must accomplish a
complex task in an unaltered environment, while still being
portable to other environments. More details of the system,
and example photographs, are available on the project web
site athttp://www.cse.wustl.edu/ ∼lewis .

Adaptable to the Environment The complexity that any
successful robot system must deal with is a combination of
the complexities of both the task and the environment. Even
simple tasks can be hard to accomplish in complex environ-
ments. Although we have control over the task complexity,
we often have little or no control over the environment.

Even simple environments, such as our SIGGRAPH de-
ployment, can have hidden complexities. These are almost
impossible to predict with accuracy ahead of time. This ar-
gues for a software architecture that can be altered easily at
the site of the deployment. Since we really do not want to
be writing and compiling code on-site, we would like that
system to be composed of relatively small modules that can
be combined as necessary to get everything working.

Our experiences also argue for using as simple a system
as possible to accomplish the task. Any complete robot sys-
tem is, by definition, a complex collection of software that
must all work at the same time. The fewer elements that are
present, the less there is to go wrong.

Highly Modular Framework On-site customization is
much easier if the system is designed to be highly modu-
lar. It also allows it to be more readily expandable, as new
sensors and algorithms become available. More importantly,
however, it allows new experimental modules to be easily
added to the system and evaluated. For example, a student
working on a new navigation algorithm can add it to the sys-
tem, and quickly be able to evaluate it against all of the cur-
rent strategies, in the context of a whole application.

Being highly modular also suggests an incremental design
strategy. As new problems crop up due to new environmen-



Figure 3: Some well-composed examples (top row), and some less well-composed ones (bottom row).

tal complexities, we might be able to write a new module to
deal with them. The provides us with two benefits. First,
it means that if we do not need the new solution in a par-
ticular environment, we can easily remove it from the sys-
tem (reducing the overall complexity of the system, as noted
above). The second benefit is that it stops us from engineer-
ing solutions to problems that do not exist, at least to some
extent. If we follow a demand-driven approach to software
design, it forces us to concentrate on fixing problems that
actually matter. If in doing so we discover a generally appli-
cable improvement, it can be incorporated into an existing
module.

As we pointed out previously, the only way to really be
sure what the problems will be in an environment is to ac-
tually try out the system in that environment. When making
changes to the system to accommodate the new location, a
highly modular design allows compartmentalization of these
changes, and prevents “creeping-featuritis”. We have ob-
served this problem first-hand on other projects. If the code
is in one monolithic system, the temptation to change some
of it for a particular demo is large. Such changes often get
left in the code, sometimes commented out, sometimes not.
After a few such incidents, the source code for the system is
likely to be a tangled mess of special cases.

Serial Computation Model Our main control loop fol-
lows a serial computation model. The sensors are read,
computation is done on them, then commands are sent to
the motors. This ensures that the sensor values are con-
stant throughout the computation, which makes debugging
of codemucheasier. These snapshots of the robot state can
also be saved for later replay and analysis. Because it is im-
possible to accurately recreate the state of the robot’s sensors
from run to run, this is an invaluable debugging tool. This
has proven to be the single design decision that has saved
the most development time overall. It should be noted that
only the actual control of the robot follows this model. We
use multiple threads to handle communications, and other
computations as needed.

No One-Size-Fits-All Solution Perhaps the most impor-
tant general observation that we can make is that there is
currently no single best solution for our task. Even the same
physical location changes from deployment to deployment,
making it necessary to adapt the solutioneverytime it is de-
ployed. Although a completely autonomous system is our
ultimate goal, at the present time we believe that it is not
practical for the system to decide which modules are most
appropriate on its own. By selecting and testing the mod-
ules actually used for a specific deployment, we can separate
two possible sources of error: error from selecting the wrong
modules, and errors caused by poorly-designed modules.

Acknowledgements
This work was supported in part by NSF REU award
#0139576, and NSF award #0196213. The help of Michal
Bryc, Jacob Cynamon, Kevin Goodier, and Patrick Vail-
lancourt was invaluable in the implementation, testing, and
tweaking of the photographer system.

References
Burgard, W.; Cremers, A.; Fox, D.; Ḧahnel, D.; Lake-
meyer, G.; Schulz, D.; Steiner, W.; and Thrun, S. 1999.
Experiences with an interactive museum tour-guide robot.
Artificial Intelligence114(1-2):3–55.
Byers, Z.; Dixon, M.; Goodier, K.; Grimm, C. M.; and
Smart, W. D. 2003. An autonomous robot photographer.
Under review. Available from the authors on request.
Hada, Y., and Yuta, S. 2000. A first-stage experiment of
long term activity of autonomous mobile robot — result
of repetitive base-docking over a week. InProceedings of
the 7th International Symposium on Experimental Robotics
(ISER 2000), 235–244.
Montemerlo, M.; Pineau, J.; Roy, N.; Thrun, S.; and
Verma, V. 2002. Experiences with a mobile robotic
guide for the elderly. InProceedings of the AAAI National
Conference on Artificial Intelligence. Edmonton, Canada:
AAAI.


