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Abstract— We describe a complete, end-to-end system for
taking well-composed photographs using a mobile robot. The
general scenario is a reception, or other event, where people
are roaming around talking to each other. The robot serves as
an “event photographer”, roaming around the same space as
the participants, periodically taking photographs. These images
are then sent to a workstation where participants can print the
photographs out, or email them.

I. I NTRODUCTION

We describe a complete, end-to-end system for taking well-
composed photographs using a mobile robot. The general
scenario is a reception, or other event, where people are
roaming around talking to each other. The robot serves as an
“event photographer”, roaming around the same space as the
participants, periodically taking photographs. These images
are then sent to a workstation where participants can print
the photographs out, or email them.

The photography application was developed as a framework
for investigating algorithms for standard robot tasks, such as
navigation and localization, as well as novel human-robot
interaction methodologies. The system we describe below
is a baseline from which we can explore more advanced
algorithms. A major feature of the photography application
is that we have, in essence, a “sliding scale” for evaluation of
the system — how many “good” versus “bad” pictures did the
robot take. While not an objective scale, this evaluation, plus
observation of the system in action, can provide a qualitative
measure of how changing a component affects the entire
system.

The current system is entirely event-driven. The robot
searches for a potentially “good” photograph location, nav-
igates there (if possible), identifies a good composition, and
adjusts the camera until a “good” composition is found. At
this point the robot takes a picture and begins the cycle again.
Since people move, the robot must constantly evaluate its
current state and determine if, for example, it needs to look
for another photograph location because there are no people
visible from its current location. Currently, our navigation
is mostly reactive, although we have the ability to “tether”
the robot to a visual landmark. Complete details of system’s
software architecture and basic navigation routines are beyond
the scope of this paper, but can be found in the paper by Byers
et al [1]. For more information on the quality of interaction

Fig. 1. The robot and cameras.

between the robot and humans, see the paper by Smartet al
[2].

II. T HE ROBOT

The system is implemented on an iRobot B21r mobile robot,
with two cameras, mounted on a Directed Perception pan/tilt
unit (see figure 1). All computation and control is performed
on-board using a Pentium-III 800MHz processor, with 128MB
of RAM. Other than the cameras, the only sensor used for the
work reported here is the laser range-finder. This sensor returns
180 radial distance measurements, covering the front 180◦ of
the robot, at a height of approximately 40cm from the floor.

The photography system uses a digital video camera to
detect and frame subjects, and a digital still camera to actually
take the final pictures. Both of these are mounted on the
pan/tilt unit. The video camera (the lower one in figure 1)
is a Sony DFW-VL500 IEEE 1994 (FireWire) camera, with a
resolution of 640 by 480 pixels, capable of 30 frames per
second. This camera operates continuously, with its output
being used to detect possible subjects (see section IV).

Once a photograph is correctly set up, the other camera is
used to take the picture. This camera is a Kodak DC290 digital
still camera, and has a resolution of 1600 by 1200 pixels. It is
connected to the robot through a USB interface and is capable
of taking a flash photograph once every 20 to 30 seconds. The
photographs are stored on the camera, and then downloaded
to the robot in batch mode once every few minutes.

For this project, the system also includes a standard work-
station, connected to the robot through a wireless ethernet link.
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Fig. 2. All possibleUV colors in a sample image. The colors in the image
that correspond to skin are marked as white in theUV map, all other colors
as black. Colors not marked were not identified in the training images. (This
figure will render as uniform grey on a black and white printer.)

This workstation is used to display the photographs that the
robot takes. Participants use a GUI to browse the photographs,
email them, or print them out as souvenirs.

III. PREVIOUS WORK

We are not aware of any previous work in the area of mobile
robot photography. However, there are bodies of related work
in the areas of image composition and face detection.

The majority of composition-related work appears in virtual
worlds, and uses composition rules to position a virtual
camera [3], [4], [5], [6], choose a location for a virtual
cinematographer [7], [8], [9], [10], or control how a scene
changes [11]. In a virtual world the system has the advantage
of knowing exactly where all of the individuals are, so framing
a shot is a well-defined optimization problem. Also, the camera
is free to move anywhere, unlike a physical camera mounted
on a robot. Many of the on-line systems also employ strategies
for dealing with a constantly changing environment.

Rules from cinematography and TV interviews have also
been used to control cameras in video teleconferencing [4].
There is also a growing area of research that uses a tight visual
feedback loop to control robotic manipulators [12]. We share
the feedback nature of these systems, but we differ in the
required accuracy and on the fixed location of the camera. We
do not need to position the robot or the camera with a great
deal of accuracy. Our feedback loop is also operating in a
relative coordinate system (the robot’s position) without any
knowledge of an absolute coordinate system.

Face detection and tracking have been widely studied.
Approaches include simple skin detection [13], [14], learning
from examples [15], [16], Eigenspace approaches [17], and
template matching [18]. One of the best current approaches is
the system by Viola and Jones [19], [20], which uses feature
detection combined with fast feature comparison and discard
to quickly find objects in an image.

Somewhat close in spirit to our approach is the work by
Fleck et al [21], which identifies patches of skin in an image,
and uses heuristics about the structure of the scene to relate
the skin patches to human bodies.
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Fig. 3. Calculating heights and distances using the laser range-finder.

IV. F INDING SUBJECTS

The first step in the photography process is to identify po-
tential subjects. Since we are interested in taking photographs
of people, this problem can be reduced to finding faces, and
the approximate location of the associated person with respect
to the robot. We assume that most of our subjects will be
standing and will be adults. Currently, we are not detecting or
using any information about the direction in which people are
facing.

The face detection algorithm first finds all skin-colored
blobs in an image. It then relates these blobs to readings from
the laser range-finder to calculate the position and size of likely
faces. Skin blobs that are the correct shape, size, and height
from the ground are classified as faces. We discuss each of
these steps in detail below.

A. Skin detection

The first step is to find skin-colored pixels in the image.
It turns out that skin, even skin from different races, clusters
tightly in many color spaces [13]. It has been shown that, for
the type of application that we are interested in, the actual
choice of color space has little impact on the performance of
classification [22]. For this work, we use theUV plane of
theY UV color space, which is a format our camera supports.
We should reiterate at this point that we do not need perfect
skin detection for our application, since we can heuristically
remove false positives using data from other sensors. Using the
Y UV color space allows us to be fast, but without incurring
many false negatives (skin patches not being identified in an
image).

Although much of the previous work in identifying faces
in an image has superior performance to our approach, it is
also significantly more computationally expensive, and often
makes assumptions about forward-facing faces. For example,
the work by Viola and Jones [19] would require most of our
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Fig. 4. Constructing the objective function to take into account (a) distance, (b) occlusion, (c) bisection, (d) movement, and (e) reachability. Lighter shades
represent larger values of the objective function. The lowest white dot represents the robot position. The other dots are detected people.

processor resources in order to run at a reasonable rate. While
it can be argued that this is not a limitation (since we could buy
a faster processor), it does consume power. We are interested in
long deployments of the system, and reduced processor usage
equates directly to longer battery life. It is also not clear what
the benefits of having a better face detection algorithm would
be, and if they would justify the increased computational cost.
This is something that we are currently evaluating.

We currently need to train the skin detection algorithm for
every new environment that the system operates in. We do
this by taking a small number of images, typically five to
ten, and annotating them by hand, using a simple graphical
interface. For all pixels identified as skin in the GUI, the
corresponding areas in theUV plane are labelled as “skin”.
We similarly identify all pixels that are “not-skin”. Once this
initial assignment is done, we locally blur the regions in the
table, and expand them a little. This has the effect of removing
noise and making the regions more contiguous. Empirically,
we have found that this leads to more robust skin detection.
Figure 2 shows the portion ofUV space that is classified as
skin for a particular set of training images.

After the system is trained, we build a lookup table, indexed
by U andV values, and use this to classify every pixel in an
incoming image as “skin” or “not-skin”. These classifications
are then grouped together into blobs, and labelled as a potential
face. At this point, we can throw out any potential faces that
do not have a reasonable aspect ratio, since faces are generally
taller than they are wide.

B. Range detection

The laser range-finder returns180 distance readings approx-
imately one degree apart over the front 180◦ of the robot. The
camera pan/tilt unit is mounted in a fixed position on top of
the robot. Given a pan angle we can determine which laser
reading corresponds to a given pixel of the image, using simple
geometry.

The laser range-finder is not mounted directly under the
camera, and this offset,O, must be accounted for by subtract-
ing it from the reading from the range-finder,L. The height of
the robot,HR, and the height of the camera,HC , are constants.
We assume that the floor is a level plane, and that the target
is standing more-or-less upright.

Once we have identified the corresponding laser range-
finder readings for each candidate face, we can apply our
remaining heuristics. We assume that people are standing and

are between four and seven feet tall. We also assume that all
faces lie within a certain size range. Based on the distance
returned by the range-finder, we can calculate the height and
actual size of the skin patches corresponding to the candidate
faces, as shown in Figure 3. Any candidates that are outside
of the height or size limits are eliminated.

V. NAVIGATION

Once we have identified potential subjects, we use simple
rules from cinematography to pick desirable photograph lo-
cations. We favor locations where the robot is approximately
five feet from the subject. We do not want to take pictures
where one person is occluding another. We do not want to
take pictures directly down the perpendicular bisector of two
people, but would rather take pictures “over” the shoulder.

To calculate the best possible position we construct an
objective function, which represents the expected quality of
a picture taken from any given point. The space around the
robot, which contains the people that we want to photograph,
is discretized into a grid. In each grid cell we store a number
corresponding to how good we think a picture would be from
that point. Our composition rules are written in terms of these
values, so it is easy to experiment with different rules and rule
combinations.

A. Creating the objective function

The objective function encompasses the robot’s current
position and the positions of people it has found. The function
is initially zero everywhere, and is updated as follows.
Distance from subject (Figure 4(a)). The ideal operating
distance of the still digital camera’s zoom and flash is between
four and seven feet. Therefore, the robot should be in this
range for at least one of the subjects. We increase the values
of the objective function in a band around each subject, with
the value peaking at a distance of 5.5 feet.
Occlusion (Figure 4(b)). Locations where faces appear to
overlap will not yield good photographs. For each pair of
subjects, we calculate the line that runs through them, and
reduce the value of the cells along that line. Cells that lie on
the line segment between the two subjects, however, are left
unchanged.
Bisector (Figure 4(c)). Photos taken from along a perpendic-
ular bisector between two subjects will result in both subjects
being the same distance from the camera. If they are talking to
each other, this results in two profile shots, which we would
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Fig. 5. Framing an image. (a) Optimal framing (large box) of the two detected faces (small boxes). (b) Optimal framing, with the rule-of-thirds lines.

like to avoid. We calculate the perpendicular bisector of all
subjects within five feet of each other and decrease the values
of the objective function along this line.
Movement (Figure 4(d)). We want to minimize the distance
the robot travels to reduce the possibility that a photo opportu-
nity will disappear. We also wish to discourage the robot from
remaining at the same location for multiple photographs. We
decrease the objective function to zero for all points closer than
2 feet from the robot, or further than 20 feet. Between these
extremes, we decrease the values linearly based on distance.
Reachability (Figure 4(e)). To make navigation simple, we
avoid destinations which would require sophisticated path
planning and obstacle avoidance. A point is considered un-
reachable if the robot cannot drive in a straight line to it
without going through something. We use the laser range-
finder information to calculate the horizon of all reachable
points, and we set the objective function to zero for all points
beyond this horizon.

Once the objective function is constructed, we simply look
for the point with the greatest value and drive towards it.
If an obstacle is encountered on the way, the destination
is recalculated based on the new obstacles and the current
location of faces.

VI. PHOTOGRAPHCOMPOSITION

Once the robot has identified some possible subjects for
the photograph, and has moved into an appropriate position,
it must determine a good composition for the picture. Simply
taking a photograph with people in it is unlikely to result in
a “good” picture; there are some basic composition rules that
must be followed. In this section, we describe the composition
rules that we use, and how they affect the pan, tilt and zoom
of the camera as we take photographs.

A. Composition Rules

We use four well-accepted rules from photography: the rule-
of-thirds, the empty space rule, the no-middle rule, and the
edge rule [23]. The use of these rules is illustrated in figure 5.
Rule-of-thirds: It is best to place the faces in a photograph
at, or near, the one-third and two-thirds horizontal lines in an
image.
Empty space: The faces in an image should occupy at least
the middle third of the image, either horizontally or vertically.

No-middle: Do not place a single subject exactly on the mid-
line of the photograph.
Edge: Subjects should not be placed at, or crossing, the edge
of the photograph.

B. Grouping Subjects

Once a set of candidate subjects has been identified, using
the techniques described in section IV, we must determine
what subset of these candidates to photograph, and how to
best frame the shot, according to the above rules.

We use an iterative procedure to determine the subset of can-
didates to include in the photograph. We begin by considering
only the center-most candidate in the image. This candidate is
framed using the single person framing rules, described below.
If the framed area includes any new candidates, it is expended,
using the group framing rules. This procedure iterates until the
framing for the current subset does not cut across any other
candidate faces. The two framing algorithms that we use for
this procedure are as follows.

Single person:Candidate subsets with only one face require
a tighter framing than those with groups of people. The rules
applied here are the no-middle rule, the empty space rule, and
the rule-of-thirds. The ideal framing is calculated by placing
the face slightly to the left or right of the vertical center line,
and ensuring that it takes up two-thirds of the image height
(see Figure 6(a)). The center of the face is positioned slightly
below one-third down the image. This takes into account
people’s hair and necks, which typically extends beyond the
bounding box (which is based on skin-colored regions).
Groups of people: The rules applied here are the rule-of-
thirds and the empty-space rule. The ideal framing is found
from the width of the enclosing box for all of the faces. Again,
the centerline of this box is conservatively placed slightly
below one-third down the image, but is now centered in the
image, as is shown in Figure 6(b). Wide groups of faces,
wherew > 1.6h, are dealt with differently than narrow ones.
This threshold, and the ratios in Figure 6, were determined
empirically to result in pleasing compositions.

C. Taking the Shot

Once we have established the ideal framing for a particular
shot, we pan, tilt and zoom the camera to achieve this framing.
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Fig. 6. Calculating the ideal framing for (a) a single face, and (b) a wide group of faces, and (c) a narrow group of faces.

This control is done in a closed-loop fashion, with the ideal
framing constantly being compared to the current framing.
This allows much more reactivity in the case where subjects
are not completely static, and are likely to move as the shot
is being composed.

The closed-loop control of the framing does introduce a
potential problem, however. We have noticed that the robot
sometimes has trouble converging on the correct framing, and
can oscillate back and forth for a relatively long period of
time. To counteract this problem, we have introduced a notion
of timeliness to the system. It is more important to take a
reasonable picture quickly than it is to take a perfect one
slowly. We have implemented a decaying threshold for how
close the actual framing has to be to the ideal framing for a
picture to be taken. As the robot spends more and more time
trying to get the ideal framing, the less accurate the actual
framing has to be to be considered good enough. Empirically,
we have found that this removes the seeking problems around
the perfect framing, without significant loss of quality in the
resulting pictures.

VII. R ESULTS

We have deployed the robot photographer at several real-
world events, including a major computer graphics conference
and a wedding reception. In this section, we describe the
results of some of these deployments, and attempt to measure
the success of the photography system.

The most significant deployment to date was at the SIG-
GRAPH 2003, as part of the Emerging Technologies exhibit.
The robot ran for 40 hours, over a period of five days, and in-
teracted with over 5,000 people. Other significant deployments
are described in the paper by Byerset al [1].

There are no hard success metrics for this application.
One possible way to evaluate performance is to see how
many of the photographs that were taken are (subjectively)
considered to be “good”. At SIGGRAPH, the robot took 3,008
photographs. Of these, 1,053 (35%) were either printed out, or
emailed to someone. This means that slightly over one-third
of the photographs that the robot took could be considered
good enough for someone to want to keep them. We believe
that this compares favorably to average human performance.

Rating Percentage
Very Bad 18%

Bad 25%
Neutral 28%
Good 20%

Very Good 9%

TABLE I

EVALUATION OF THE PHOTOGRAPHS TAKEN.

In order to get a more reliable estimate of the quality of the
photographs, we have also run a set of evaluation experiments.
Subjects, who were not associated with the project, were asked
to rate sets of randomly-selected photographs taken by the
robot. Each photograph was rated as either “very bad”, “bad”,
“neutral”, “good”, or “very good”. Over 2,000 photographs
were evaluated, with the results shown in table I. Roughly
one third of the photographs were evaluated as being “good”
or “very good”. While this does not sound like a very large
number, we believe it is very encouraging, especially given
the simplicity of our algorithms. We are aiming at an “am-
ateur snapshot” level of photography, and even professional
photographers discard a large number of the photographs that
they take. A selection of the rated pictures, taken from each
of the five categories, is shown in figure 7.

VIII. C ONCLUSIONS ANDFUTURE WORK

We have demonstrated a baseline system that is capable of
navigating through crowds taking “snapshot” quality pictures.
Using a number of straightforward algorithms, combined with
data from more than one sensor, and a knowledge of the task
and environment, we have achieved a surprising performance
level.

We believe that there are many avenues for continued
research within this application. Our future research will use
the framework of the robot photographer to investigate more
general problems in mobile robotics, including the following.
Navigation and localization: Can we use information about
where people are to build more robust behaviors, especially in
crowded environments?
Advanced subject-finding: Can we incorporate more ad-
vanced face-finding routines or stereo vision to derive better
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Fig. 7. Example photographs.

information about where people are? Can we use this infor-
mation to build maps of likely photograph positions, and then
use these to inform the navigation routines?
Human-robot interaction: What is the best model for robot-
human interaction in this environment? Do we need to know
more about human state (such as, are they waving to get the
robot’s attention) and if so, how do we capture it? How can
we most easily externalize the robot’s state (or what we want
people to believe the robot’s state to be) to human observers?
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