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Abstract—We describe a complete, end-to-end system for
taking well-composed photographs using a mobile robot. The
general scenario is a reception, or other event, where people
are roaming around talking to each other. The robot serves as
an “event photographer”, roaming around the same space as
the participants, periodically taking photographs. These images
are then sent to a workstation where participants can print the
photographs out, or email them.

I. INTRODUCTION

We describe a complete, end-to-end system for taking well-
composed photographs using a mobile robot. The general
scenario is a reception, or other event, where people are
roaming around talking to each other. The robot serves as an
“event photographer”, roaming around the same space as the
participants, periodically taking photographs. These imaggstween the robot and humans, see the paper by Srait
are then sent to a workstation where participants can prp{.
the photographs out, or email them.

The photography application was developed as a framework Il. THE ROBOT
for investigating algorithms for standard robot tasks, such asThe system is implemented on an iRobot B21r mobile robot,
navigation and localization, as well as novel human-robuetith two cameras, mounted on a Directed Perception pan/tilt
interaction methodologies. The system we describe belawmit (see figure 1). All computation and control is performed
is a baseline from which we can explore more advancet-board using a Pentium-11l 800MHz processor, with 128MB
algorithms. A major feature of the photography applicatioof RAM. Other than the cameras, the only sensor used for the
is that we have, in essence, a “sliding scale” for evaluation wrk reported here is the laser range-finder. This sensor returns
the system — how many “good” versus “bad” pictures did th&80 radial distance measurements, covering the front 480
robot take. While not an objective scale, this evaluation, pltise robot, at a height of approximately 40cm from the floor.
observation of the system in action, can provide a qualitativeThe photography system uses a digital video camera to
measure of how changing a component affects the entaetect and frame subjects, and a digital still camera to actually
system. take the final pictures. Both of these are mounted on the

The current system is entirely event-driven. The robgan/tilt unit. The video camera (the lower one in figure 1)
searches for a potentially “good” photograph location, nais a Sony DFW-VL500 IEEE 1994 (FireWire) camera, with a
igates there (if possible), identifies a good composition, amesolution of 640 by 480 pixels, capable of 30 frames per
adjusts the camera until a “good” composition is found. Agecond. This camera operates continuously, with its output
this point the robot takes a picture and begins the cycle agdieing used to detect possible subjects (see section V).

Since people move, the robot must constantly evaluate itsOnce a photograph is correctly set up, the other camera is
current state and determine if, for example, it needs to looised to take the picture. This camera is a Kodak DC290 digital
for another photograph location because there are no pecgti camera, and has a resolution of 1600 by 1200 pixels. It is
visible from its current location. Currently, our navigatiorconnected to the robot through a USB interface and is capable
is mostly reactive, although we have the ability to “tetherdf taking a flash photograph once every 20 to 30 seconds. The
the robot to a visual landmark. Complete details of systenydotographs are stored on the camera, and then downloaded
software architecture and basic navigation routines are beydodhe robot in batch mode once every few minutes.

the scope of this paper, but can be found in the paper by Byerd-or this project, the system also includes a standard work-
et al [1]. For more information on the quality of interactionstation, connected to the robot through a wireless ethernet link.

Fig. 1. The robot and cameras.
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Fig. 2. All possibleUV colors in a sample image. The colors in the image ‘
that correspond to skin are marked as white in&Hé map, all other colors L
as black. Colors not marked were not identified in the training images. (This
figure will render as uniform grey on a black and white printer.) h = Dtané
D=L-0
This workstation is used to display the photographs that the Hp = Hp + He + Dtanf

robot takes. Participants use a GUI to browse the photographs,

email them, or print them out as souvenirs. Fig. 3. Calculating heights and distances using the laser range-finder.

IlIl. PREVIOUSWORK
IV. FINDING SUBJECTS

We are not aware of any previous work in the area of mobile The first step in the photography process is to identify po-

.mkiﬁt photogra;p_hy. However, t_r;_ere arz t;odmg cif rilated Wotréﬁtial subjects. Since we are interested in taking photographs
In the arefas _O image COVT‘POS' lon and face detec 'O_n' . of people, this problem can be reduced to finding faces, and
The majority of composition-related work appears in virtughe approximate location of the associated person with respect

worlds, and uses composition rules to position a Virtugh the robot. We assume that most of our subjects will be

camera [3], [4], [5], [6], choose a location for a virtualsianging and will be adults. Currently, we are not detecting or

cinematographer [7], [8], [9], [10], or control how & scengqing any information about the direction in which people are
changes [11]. In a virtual world the system has the advanta@l%ing.

of knowing exactly where all of the individuals are, so framing The face detection algorithm first finds all skin-colored

a shotis a well-defined optimization problem. Also, the camefyg in an image. It then relates these blobs to readings from
is free to move anywhere, unlike a physical camera mountg, |5ser range-finder to calculate the position and size of likely

on a robot. Many of the on-line systems also employ strategigzes. skin blobs that are the correct shape, size, and height

for dealing with a constantly changing environment. from the ground are classified as faces. We discuss each of
Rules from cinematography and TV interviews have al§fiese steps in detail below.

been used to control cameras in video teleconferencing [4].
There is also a growing area of research that uses a tight visfalSkin detection
feedback loop to control robotic manipulators [12]. We share The first step is to find skin-colored pixels in the image.
the feedback nature of these systems, but we differ in theturns out that skin, even skin from different races, clusters
required accuracy and on the fixed location of the camera. Wifghtly in many color spaces [13]. It has been shown that, for
do not need to position the robot or the camera with a grefe type of application that we are interested in, the actual
deal of accuracy. Our feedback loop is also operating inchoice of color space has little impact on the performance of
relative coordinate system (the robot's position) without anyassification [22]. For this work, we use tHéV plane of
knowledge of an absolute coordinate system. the YUV color space, which is a format our camera supports.
Face detection and tracking have been widely studiegle should reiterate at this point that we do not need perfect
Approaches include simple skin detection [13], [14], learningkin detection for our application, since we can heuristically
from examples [15], [16], Eigenspace approaches [17], ansinove false positives using data from other sensors. Using the
template matching [18]. One of the best current approaches/is/V color space allows us to be fast, but without incurring
the system by Viola and Jones [19], [20], which uses featuneany false negatives (skin patches not being identified in an
detection combined with fast feature comparison and discadmlage).
to quickly find objects in an image. Although much of the previous work in identifying faces
Somewhat close in spirit to our approach is the work bip an image has superior performance to our approach, it is
Flecket al [21], which identifies patches of skin in an imagealso significantly more computationally expensive, and often
and uses heuristics about the structure of the scene to relagkes assumptions about forward-facing faces. For example,
the skin patches to human bodies. the work by Viola and Jones [19] would require most of our
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Fig. 4. Constructing the objective function to take into account (a) distance, (b) occlusion, (c) bisection, (d) movement, and (e) reachability. Lighter shades
represent larger values of the objective function. The lowest white dot represents the robot position. The other dots are detected people.

processor resources in order to run at a reasonable rate. While between four and seven feet tall. We also assume that all
it can be argued that this is not a limitation (since we could budgces lie within a certain size range. Based on the distance
a faster processor), it does consume power. We are interestecktnrned by the range-finder, we can calculate the height and
long deployments of the system, and reduced processor usagelal size of the skin patches corresponding to the candidate
equates directly to longer battery life. It is also not clear wh#dces, as shown in Figure 3. Any candidates that are outside
the benefits of having a better face detection algorithm woutd the height or size limits are eliminated.

be, and if they would justify the increased computational cost.
This is something that we are currently evaluating.

We currently need to train the skin detection algorithm for Once we have identified potential subjects, we use simple
every new environment that the system operates in. We tdes from cinematography to pick desirable photograph lo-
this by taking a small number of images, typically five teations. We favor locations where the robot is approximately
ten, and annotating them by hand, using a simple graphi¢iae feet from the subject. We do not want to take pictures
interface. For all pixels identified as skin in the GUI, thavhere one person is occluding another. We do not want to
corresponding areas in tH&V plane are labelled as “skin”. take pictures directly down the perpendicular bisector of two
We similarly identify all pixels that are “not-skin”. Once thispeople, but would rather take pictures “over” the shoulder.
initial assignment is done, we locally blur the regions in the To calculate the best possible position we construct an
table, and expand them a little. This has the effect of removindjective function, which represents the expected quality of
noise and making the regions more contiguous. Empirically, picture taken from any given point. The space around the
we have found that this leads to more robust skin detectiowbot, which contains the people that we want to photograph,
Figure 2 shows the portion df' V' space that is classified asis discretized into a grid. In each grid cell we store a number
skin for a particular set of training images. corresponding to how good we think a picture would be from

After the system is trained, we build a lookup table, indexdtat point. Our composition rules are written in terms of these
by U andV values, and use this to classify every pixel in amalues, so it is easy to experiment with different rules and rule
incoming image as “skin” or “not-skin”. These classificationsombinations.
are then grouped together into blobs, and labelled as a potential
face. At this point, we can throw out any potential faces th
do not have a reasonable aspect ratio, since faces are generaljhe objective function encompasses the robot’s current

V. NAVIGATION

Creating the objective function

taller than they are wide. position and the positions of people it has found. The function
) is initially zero everywhere, and is updated as follows.
B. Range detection Distance from subject (Figure 4(a)). The ideal operating

The laser range-finder retur80 distance readings approx-distance of the still digital camera’s zoom and flash is between
imately one degree apart over the front 180 the robot. The four and seven feet. Therefore, the robot should be in this
camera pan/tilt unit is mounted in a fixed position on top aknge for at least one of the subjects. We increase the values
the robot. Given a pan angle we can determine which las@rthe objective function in a band around each subject, with
reading corresponds to a given pixel of the image, using simplhe value peaking at a distance of 5.5 feet.
geometry. Occlusion (Figure 4(b)). Locations where faces appear to

The laser range-finder is not mounted directly under ttewerlap will not yield good photographs. For each pair of
camera, and this offsef), must be accounted for by subtractsubjects, we calculate the line that runs through them, and
ing it from the reading from the range-finddr, The height of reduce the value of the cells along that line. Cells that lie on
the robot,Hr, and the height of the camerH, are constants. the line segment between the two subjects, however, are left
We assume that the floor is a level plane, and that the targechanged.
is standing more-or-less upright. Bisector (Figure 4(c)). Photos taken from along a perpendic-

Once we have identified the corresponding laser rangdar bisector between two subjects will result in both subjects
finder readings for each candidate face, we can apply dweing the same distance from the camera. If they are talking to
remaining heuristics. We assume that people are standing aagdh other, this results in two profile shots, which we would
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Fig. 5. Framing an image. (a) Optimal framing (large box) of the two detected faces (small boxes). (b) Optimal framing, with the rule-of-thirds lines.

like to avoid. We calculate the perpendicular bisector of aNo-middle: Do not place a single subject exactly on the mid-
subjects within five feet of each other and decrease the vallieg of the photograph.

of the objective function along this line. Edge: Subjects should not be placed at, or crossing, the edge
Movement (Figure 4(d)). We want to minimize the distanceof the photograph.

the robot travels to reduce the possibility that a photo opportu-

nity will disappear. We also wish to discourage the robot frof8- Grouping Subjects

remaining at the same location for multiple photographs. We Once a set of candidate subjects has been identified, using
decrease the objective function to zero for all points closer théie techniques described in section 1V, we must determine
2 feet from the robot, or further than 20 feet. Between thegghat subset of these candidates to photograph, and how to
extremes, we decrease the values linearly based on distangest frame the shot, according to the above rules.

Reachability (Figure 4(e)). To make navigation simple, we e use an iterative procedure to determine the subset of can-
avoid destinations which would require sophisticated paffidates to include in the photograph. We begin by considering
planning and obstacle avoidance. A point is considered Ushly the center-most candidate in the image. This candidate is
reachable if the robot cannot drive in a straight line to §amed using the single person framing rules, described below.
without going through something. We use the laser rangg+the framed area includes any new candidates, it is expended,
finder information to calculate the horizon of all reachablgsing the group framing rules. This procedure iterates until the
points, and we set the objective function to zero for all pointfaming for the current subset does not cut across any other
beyond this horizon. candidate faces. The two framing algorithms that we use for

L L ) this procedure are as follows.
Once the objective function is constructed, we simply look

for the point with the greatest value and drive towards i§ingle person:Candidate subsets with only one face require
If an obstacle is encountered on the way, the destinatignighter framing than those with groups of people. The rules
is recalculated based on the new obstacles and the currghtblied here are the no-middle rule, the empty space rule, and
location of faces. the rule-of-thirds. The ideal framing is calculated by placing
VI. PHOTOGRAPHCOMPOSITION the face slightly to the left or right of the vertical center line,

Once the robot has identified some possible subjects gnd ensuring that it takes up two-thirds of the image height

the photograph, and has moved into an appropriate posit elow one-third down the image. This takes into account

it must determine a good composition for the picture. Simp , . . .
taking a photograph with people in it is unlikely to result irgeoples hair and necks, which typically extends beyond the

p o . : - (%unding box (which is based on skin-colored regions).
a “good” picture; there are some basic composition rules th L ups of people: The rules aoplied here are the rule-of-
must be followed. In this section, we describe the compositi? P People: PP

rules that we use, and how they affect the pan, tilt and zoqg jrds and the empty-space rule. The ideal framing is found
of the camera as ’we take photographs ' rom the width of the enclosing box for all of the faces. Again,

the centerline of this box is conservatively placed slightly

A. Composition Rules below one-third down the image, but is now centered in the
We use four well-accepted rules from photography: the rulgnage, as is shown in Figure 6(b). Wide groups of faces,

of-thirds, the empty space rule, the no-middle rule, and thherew > 1.6h, are dealt with differently than narrow ones.

edge rule [23]. The use of these rules is illustrated in figure Bhis threshold, and the ratios in Figure 6, were determined

Rule-of-thirds: It is best to place the faces in a photograpempirically to result in pleasing compositions.

at, or near, the one-third and two-thirds horizontal lines in an i

image. C. Taking the Shot

Empty space: The faces in an image should occupy at least Once we have established the ideal framing for a particular

the middle third of the image, either horizontally or verticallyshot, we pan, tilt and zoom the camera to achieve this framing.

sﬁrée Figure 6(a)). The center of the face is positioned slightly
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Fig. 6. Calculating the ideal framing for (a) a single face, and (b) a wide group of faces, and (c) a narrow group of faces.

This control is done in a closed-loop fashion, with the ideal V;‘?,“ggd Perf;;)tage
framing constantly being compared to the current framing. Bad 25%
This allows much more reactivity in the case where subjects Négé?' ggz;o
are n_ot completely static, and are likely to move as the shot Very Good 9%"
is being composed.
The closed-loop control of the framing does introduce a TABLE |
potential problem, however. We have noticed that the robot EVALUATION OF THE PHOTOGRAPHS TAKEN

sometimes has trouble converging on the correct framing, and
can oscillate back and forth for a relatively long period of

time. To counteract this problem, we have introduced a notion ) ) )
of timeliness to the system. It is more important to take a In order to get a more reliable estimate of the quality of the

reasonable picture quickly than it is to take a perfect 0,@o§ographs, we have also run a set pf evaluati.on experiments.
slowly. We have implemented a decaying threshold for howMbiects, who were not associated with the project, were asked
close the actual framing has to be to the ideal framing for'@ rate sets of randomly-selected photographs taken by the
picture to be taken. As the robot spends more and more tiff@0t- Each photograph was rated as either “very bad”, *bad",

trying to get the ideal framing, the less accurate the actugeutral’, “good”, or “very good”. Over 2,000 photographs

framing has to be to be considered good enough. Empiricalfyere évaluated, with the results shown in table 1. Roughly
we have found that this removes the seeking problems arolfif third of the photographs were evaluated as being “good

the perfect framing, without significant loss of quality in th@" “very good”. While this does not sound like a very large
resulting pictures. number, we believe it is very encouraging, especially given

the simplicity of our algorithms. We are aiming at an “am-
ateur snapshot” level of photography, and even professional
photographers discard a large number of the photographs that

We have deployed the robot photographer at several retliey take. A selection of the rated pictures, taken from each
world events, including a major computer graphics conferenoéthe five categories, is shown in figure 7.
and a wedding reception. In this section, we describe the
results of some of these deployments, and attempt to measure V!l C ONCLUSIONS ANDFUTURE WORK
the success of the photography system. We have demonstrated a baseline system that is capable of

The most significant deployment to date was at the Sl@avigating through crowds taking “snapshot” quality pictures.
GRAPH 2003, as part of the Emerging Technologies exhibliising a number of straightforward algorithms, combined with
The robot ran for 40 hours, over a period of five days, and idata from more than one sensor, and a knowledge of the task
teracted with over 5,000 people. Other significant deploymera#ed environment, we have achieved a surprising performance
are described in the paper by Byatal [1]. level.

There are no hard success metrics for this application.We believe that there are many avenues for continued
One possible way to evaluate performance is to see hogsearch within this application. Our future research will use
many of the photographs that were taken are (subjectivethe framework of the robot photographer to investigate more
considered to be “good”. At SIGGRAPH, the robot took 3,008eneral problems in mobile robotics, including the following.
photographs. Of these, 1,053 (35%) were either printed out,avigation and localization: Can we use information about
emailed to someone. This means that slightly over one-thinhere people are to build more robust behaviors, especially in
of the photographs that the robot took could be consideretbwded environments?
good enough for someone to want to keep them. We belie&dvanced subject-finding: Can we incorporate more ad-
that this compares favorably to average human performanceanced face-finding routines or stereo vision to derive better

VIl. RESULTS
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Fig. 7. Example photographs.
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information about where people are? Can we use this infd#]
mation to build maps of likely photograph positions, and then

use these to inform the navigation routines?
Human-robot interaction: What is the best model for robot-

(18]

. L : ) 19
human interaction in this environment? Do we need to knoRN]

more about human state (such as, are they waving to get the

robot’s attention) and if so, how do we capture it? How caR?!
we most easily externalize the robot’s state (or what we want

people to believe the robot’s state to be) to human observelz?
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