
Interactive Decal Compositing with Discrete Exponential Maps

Ryan Schmidt∗

University of Calgary
Cindy Grimm†

Washington University in St. Louis
Brian Wyvill∗

University of Calgary

Figure 1: A clay elephant statue (left) was modeled using sketch-based implicit-surface modeling software. Then, a lapped base texture and
25 feature textures were extracted from 22 images taken with a digital cameraand composited on the surface. Photography, image creation,
and texture positioning was completed in under an hour.

Abstract

A method is described for texturing surfaces usingdecals, images
placed on the surface using local parameterizations. Decal pa-
rameterizations are generated with a novelO(N logN) discrete
approximation to the exponential map which requires only a sin-
gle additional step in Dijkstra’s graph-distance algorithm. De-
cals are dynamically composited in an interface that addresses
many limitations of previous work. Tools for image process-
ing, deformation/feature-matching, and vector graphics are imple-
mented using direct surface interaction. Exponential map decals
can contain holes and can also be combined with conformal pa-
rameterization to reduce distortion. The exponential map approx-
imation can be computed on any point set, including meshes and
sampled implicit surfaces, and is relatively stable under resampling.
The decals stick to the surface as it is interactively deformed, allow-
ing the texture to be preserved even if the surface changes topology.
These properties make exponential map decals a suitable approach
for texturing animated implicit surfaces.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and tex-
ture; I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction Techniques;

Keywords: texture mapping, decals, exponential map parameteri-
zation

1 Introduction

Texture mapping [Blinn and Newell 1976] is one of the major stages
in the modeling and animation pipeline. Texture design is generally
a manual process and consumes a significant amount of the effort

∗e-mail:{rms|blob}@cpsc.ucalgary.ca
†e-mail: cmg@cs.wustl.edu

in most animation projects. Constrained parameterization [Lévy
2001] can provide some relief if suitable images are available, how-
ever constraint placement is tedious and may need to be repeated if
the surface or texture is modified. Painting tools, particularly 3D
painting systems [Hanrahan and Haeberli 1990], are the real work-
horses of interactive texture design. Unfortunately these tools are
relatively inflexible. Useful operations such as copy-and-paste are
unavailable and there is no provision for re-using existing textures.

A third style of texturing interface, which combines aspects of both
painting and constraint tools, is thedecalinginterface, introduced
by Pedersen [1996]. In this approach the metaphor is that of de-
cals, or “stickers”, which are 2D images affixed to the surface. De-
cals are treated as independent scene elements which are simply
constrained to lie on surfaces, but may otherwise be interactively
manipulated. Because a simple mapping exists between the image
and the surface, 2D image processing tools can be trivially imple-
mented. Decals are composited in real-time, mimicking 2D image
compositing [Porter and Duff 1984] and vector graphics interfaces.
This approach allows artists to interact with surface texture directly,
using familiar 2D methods and tools. One of the largest benefits of
decaling is that it allows for easy re-use of 2D images in texture
design. When combined with a digital camera or image database,
realistic textures can be created very quickly (Figure 1).

Pedersen’s [1996] pioneering work on decaling interfaces had many
practical limitations. A global base parameterization was required,
complicating use on implicit and point-set surfaces and prevent-
ing animation. Decals were limited to deformed rectangles by the
iterative mass-spring mesh optimization approach taken to parame-
terization. The user was required to manually define the decal cor-
ners, and it was not possible to automatically create a decal around
an arbitrary surface curve or update the decals if the underlying
surface changed. Some recent systems have taken decal-like ap-
proaches, including lapped textures [Praun et al. 2000] and texture
sprites [Lefebvre et al. 2005], however neither provides support for
interactive editing tools such as cut-and-paste.

We present a decaling interface that addresses many of the problems
encountered in Pedersen’s work [1996]. First, our approach is en-
tirely local - we do not require a base parameterization or any other
pre-processing of the surface beyond initial sampling. Our decals
are based on a local exponential map parameterization (Section 4)
which is generated from a single point and geodesic radius, simpli-
fying the user interface and supporting automatic creation of decals.
To efficiently generate these parameterizations we introduce a novel
discrete approximation to the exponential map which requires only

a simple addition to Dijkstra’s algorithm (Section 4.2). The approx-
imation is computed on a point set, implying that any surface which
can be sampled - triangle mesh, point set, or implicit surface - can
be textured with exponential map decals.

Our decals compare favorably to decals created using local con-
formal parameterization, in particular we find that exponential map
decals often preserve an intuitive sense of “squareness” that is lost
with parameterizations based on global optimization. We introduce
techniques for interacting with decals, including a deformation tool
and surface vector graphics (Section 6). Distortion is reduced by
allowing decals to have holes (Section 5.2). We also address tex-
turing animated implicit surfaces (Section 7), a problem which has
eluded previous decaling systems. We show that our approach can
preserve texturing even in the presence of topological changes.

2 Related Work

Interactive painting tools [Hanrahan and Haeberli 1990] have dom-
inated texture design interfaces. The recent development of Octree
textures [Benson and Davis 2002; DeBry et al. 2002] supports 3D
painting on un-parameterized surfaces. One drawback of painting
interfaces is that creating realistic textures requires manual dexter-
ity and artistic skills which most people lack.

Another type of texture mapping interface is constrained parame-
terization [Ĺevy 2001; Kraevoy et al. 2003]. Here a set of con-
straints are manually specified between the desired texture image
and the surface. Global optimization algorithms are then applied
to map the image onto the surface such that the constraints are sat-
isfied and some distortion metric is minimized. Recent advances
support point sets [Zwicker et al. 2002], and atlas generation from
multiple images [Zhou et al. 2005]. These systems do not address
the general problem of texture design, the desired 2D image(s) are
assumed to already exist. Constrained parameterization can also be
used to apply decals, however the fluid interface of [Pedersen 1996]
is difficult to implement because of the problem of simultaneously
moving all of the constraints across the surface.

Procedural texturing [Ebert 2002] provides a semi-automated ap-
proach to texture generation in exchange for detailed artistic con-
trol. Lapped textures [Praun et al. 2000; Dischler et al. 2002] take a
decal-like approach to texture synthesis by overlapping many small
images on a mesh. Our decals can be used to apply lapped textures
to any sampled surface.

Pedersen [1996] describes an interactive texture design tool which
supports high-level operations such as copy-and-paste, where the
copy region can be interactively dragged across the surface. Any
type of surface can be used, although implicit surfaces require a
time-consuming manual segmentation [Pedersen 1995]. Decals
(called patchinosin this work) are created by manually connect-
ing four points on the surface with geodesics, limiting the copy and
paste regions to deformed rectangles. A rectangular or cylindrical
decal shape is required by the iterative mass-spring optimization
technique used to move decals. This method is noted to be unsta-
ble [Pedersen 1996], and when the mass-spring mesh collapses the
decal is lost and the user must re-start the process. One of the main
contributions of our work is to introduce a more robust method for
representing and interacting with decals.

[Lefebvre et al. 2005] describe an interactive decaling system based
on hardware-accelerated octree textures. Basic interactive position-
ing and blending composition is supported. Like 3D painting, de-
cals are applied using planar projection, which does not easily sup-
port more complex editing operations. Planar projection is in some

sense a parameterization, however cut-and-paste requires two pro-
jections, introducing significant distortion on curved surfaces. Sim-
ilarly, Autodesk ImageStudio [Autodesk 2005] supports application
of decals using planar projection, as well as conformal decals which
exhibit the same issues as described in Section 5.1.

One approach to decaling is to simply drag images around in texture
space, where a single-chart surface parameterization has already
been computed. Automatic algorithms exist for meshes [Floater
1997; Ĺevy et al. 2002; Desbrun et al. 2002; Sheffer et al. 2005; Gu
and Yau 2003] and point sets [Floater and Reimers 2001; Zwicker
et al. 2002; Alexa et al. 2003]. Any single-chart parameterization
for a complex surface necessarily introduces significant distortion,
resulting in decals that change size as they are dragged across the
surface. When applied locally in the region of a decal, the global
distortion minimizations used by these methods can result in un-
expected deformation (Section 5.1). Similar problems occur with
chart atlases [Maillot et al. 1993; Sorkine et al. 2002; Grimm 2004;
Zhang et al. 2005], undesirable deformations can also be produced
by distortion discontinuities at atlas boundaries.

Parameterizing implicit surfaces presents some additional chal-
lenges, particularly if the surface is animated. Existing approaches
are not interactive and provide either limited control over texture
application [Tigges and Wyvill 1999] or require topological knowl-
edge a priori [Grimm 2004]. Octree texturing has limited applica-
bility because there is no way to map an implicit surface back to
the “rest pose” described by [Lefebvre et al. 2005] during anima-
tion. None of these methods address the issue of animated topol-
ogy change. Our system produces consistent and predictable results
in these situations. Additional control is available to the animator
since decals can be keyframed.

3 Overview

The goal of our decaling interface is to make 3D surface texture
design as fluid and straightforward as 2D vector graphics and im-
age compositing is with software such as Adobe Illustrator. This
is accomplished by hiding all aspects of surface parameterization
in the texturing interface. Unlike [Pedersen 1996], we do not re-
quire a global base parameterization. Each decal is an independent
object in the system, with a simple layer order to determine the de-
cal compositing sequence. The artist interacts with decals, rather
than the underlying parameterizations. All decals are dynamically
composited each frame using the alpha blending and texturing map-
ping hardware found on commodity graphics hardware (Figure 2a).
Other blending modes, such as dodge and burn, can be implemented
with programmable GPUs.

Decals are dynamically generated based on a center point, orien-
tation, and radius. A decal is dragged across the surface by re-
positioning the center point with ray-surface intersections. The ori-
entation and radius are interactively controlled with simple 3D wid-
gets (Figure 2b).

Decals can also be used as canvases for 2D operations. 2D vector
graphics objects such as lines and curves can be manipulated by
moving control points on the surface (Figure 2d). Local feature-
alignment can be performed interactively by manipulating 2D im-
age deformations, again via 3D control points (Figure 2c). Curves
drawn in screen space can also be projected into decals and used
to control image processing operations such as blurring (Figure 2a)
and composited copy-and-paste (Figure 2b). Painting tools can be
implemented by using decals as local canvases for traditional 2D
or 3D painting interfaces. The advantage of the decal-as-canvas
metaphor is that decals can be (re)moved.

Figure 2: Three overlapping semitransparent decals are composited in (a, top).A selection region is used to blur the blue decal (a, bottom)
while leaving the red and green decals unchanged. In (b), the two decalsinside the selection region are baked into a new decal which has
been pasted back onto the surface several times. In (c), a lattice tool is used to deform the decal. A surface vector line with an endcap is
created between the control points in (d,top) by rendering a 2D line into an automatically-generated decal. Surface curves can be rendered
using a set of vector lines (d,bottom). The underlying decals are shownas checkerboards. In (e), the decals on two separate implicit surfaces
are automatically updated when the surfaces are blended.

Finally, decals maintain consistency as the underlying surface
changes. Difficult cases, such as topological change in implicit
surfaces (Figure 2e), are handled robustly. Decals also provide a
mechanism for texturing animated implicit surfaces. In the follow-
ing sections we will explain how our decals are created, as well as
describe the implementation and use of our decaling interface.

4 Exponential Maps

Our goal is to map a 2D image onto a 3D surfaceS such that the
center of the image lies at some pointp on S. The exponential
map [do Carmo 1976] is one method of defining such a mapping,
essentially creating a 2D coordinate system on the surface aroundp.
The exponential mapexpp takes points onS to the tangent plane
Tp at p. This is accomplished via geodesics. For any unit vector
v ∈ Tp, there exists a geodesicgv parameterized by arc length such
thatgv(0) = p andg′v(0) = v.

Essentially,gv are the geodesics that splay out radially fromp (Fig-
ure 3). For any pointq in the neighbourhood ofp, a unique radial

Figure 3: The exponential map at a pointp takes geodesic curves
originating atp in (a) to straight vectors emanating from the origin
of the tangent planeTp in (b). Geodesic “circles”, defined as iso-
contours of the geodesic distance function, are mapped to circles
about the origin ofTp.

geodesicgv passes through it. Hence,q can be mapped toTp with
the polar coordinates(rg,θg), whererg is the geodesic distance
from p to q andθg is the polar angle ofv in Tp. These are the
geodesic polar coordinates[do Carmo 1976]. Geodesic polar coor-
dinates can alternatively be expressed asnormal coordinates(u,v)
in any orthogonal basis{e1,e2} of the tangent plane.

Normal coordinates are by definition a mapping from the plane to
the surface and hence would seem to be an ideal solution for texture
mapping. The inverse function theorem ensures that for any differ-
entiable point on a surface,expp is defined and differentiable in
some neighbourhood aroundp [do Carmo 1976]. IfS is restricted
to smooth manifolds, then the Hopf-Rinow theorem [Cheeger and
Ebin 1975] states thatexpp is guaranteed to bedefinedon the en-
tire surface. However, the map is still only diffeomorphic on a local
neighbourhood ofp, implying that foldovers in the parameteriza-
tion will occur if the neighbourhood grows too large.

An example of a sphere texture-mapped using an analytic exponen-
tial map parameterization is shown in Figure 4. In the neighbour-
hood ofp (at the center of the leftmost image), the checkerboard
exhibits low distortion. The parameterization is neither conformal
nor area-preserving, as can be observed on the back of the sphere.
However, the parameterization on the front of the sphere is very
“square” and hence is ideal for applying a decal.

4.1 Previous Approaches to Exponential Maps

Projection of the neighbour vertices of a triangle mesh vertexp onto
the tangent plane atp is a commonly-used local approximation to
expp. Welch and Witkin [1994] describe a more robust technique
for approximatingexpp on the 1-ring of a triangle mesh vertex.
This method has seen wide use as a component of global parameter-
ization algorithms [Floater 1997], however the approximation does
not extend beyond the 1-ring.

The key difficulty in computingexpp is in finding the radial geo-
desicgv that passes through a surface pointq. Dijkstra’s algo-
rithm [Dijkstra 1959] is perhaps the best-known technique for ap-
proximating geodesic distances. However the piecewise linear geo-
desics produced by Dijkstra’s algorithm always lie on graph edges

and hence provide a very poor estimation ofθg .

Figure 4: Checkerboard texture applied to sphere using analytic
parameterization (top) and discrete approximation (bottom). Front
views show very high correspondence. Overall patterns in side and
back views are similar, however the approximation exhibits errors
accumulated during propagation. Rightmost images show 2D pa-
rameter space for lower-resolution triangulated spheres.

A number of algorithms that produce more accurate geodesic dis-
tance approximations are available. See [Mitchell 2000] for a re-
cent survey. The fast-marching mesh geodesic distance method
presented by [Kimmel and Sethian 1998] runs inO(N logN) time.
[Surazhsky et al. 2005] describe an algorithm which computes ap-
proximate mesh geodesic distances in a fraction of the time taken
for the fast-marching approach. These algorithms are heavily de-
pendent on the underlying mesh structure and hence unlikely to be
adaptable to unstructured geometry such as point clouds.

Although not explicitly used for local parameterization, thegeo-
desic fanscomputed by [Zelinka and Garland 2004] are essentially
coarse approximations of radial geodesics, and hence also approxi-
mate the exponential map on meshes. Mesh vertices could be para-
meterized by projecting them onto a geodesic fan, however this is
computationally intensive and may result in local foldovers.

4.2 Discrete Exponential Map Approximation

In the discrete setting, we have a set of points on some surfaceS.
To approximate the exponential map atp, we must find the geo-
desic distance and polar angle for each other pointq on the surface.
We approach the problem by computing these values directly in the
tangent plane atp, rather than trying to find the surface geodesics.
The resulting algorithm requires only a simple vector addition of
the piecewise-linear geodesics produced by Dijkstra’s algorithm.

First, consider the base case, with 3 pointsp, r, andq. The geodes-
ics fromp to r andr to q are known, however the geodesic fromp to
q is not (Figure 5a). Our goal is not to find this geodesic but rather
to computeup,q = expp (q), the 2D point in normal coordinates of
Tp. Linearity allows us to rewriteup,q asup,q = v + (up,q − v),
wherev is any other 2D point. Letv = expp (r) = up,r. This is the
known geodesic fromp to r. We now have

up,q = up,r +(up,q −up,r) (1)

where(up,q − up,r) is unknown. This 2D vector corresponds to
some curve on the surface fromr to q, although it is not in general
a geodesic. We approximate this curve with the known geodesic
from r to q. In the tangent plane atr, let ur,q = expr (q). This
is the necessary vector, however it is defined in normal coordinates
of Tr with respect to some 3D basis(xr,yr,nr) and we need it in
the 3D basis(xp,yp,np) of Tp. To transform between the bases,

rotateTr around any vector perpendicular to bothnr and np by
angle acos(nr · np). This transformed plane is co-planar withTp

and has a new basis(x′r,y′r,np). Now rotate around the normal
np by angle acos(x′r · xp) to align the in-plane basis vectors. The
second rotation can be treated as a 2D rotation in the tangent plane
and applied directly tour,q (Figure 5b), so if the rotation angle is
θp,r, thenup,q can be approximated by

ûp,q = up,r +Rot2D(θp,r) ·ur,q (2)

as shown in Figure 5c (the red vector isRot2D(θp,r) ·ur,q). Note
that the in-plane basis vectorsxr andyr are completely arbitrary,
the only requirement is that they be perpendicular.

We have made two approximations. First, assuming(up,q −up,r)
is a geodesic is only correct on developable surfaces, where the
Gaussian curvatureK = 0. Second, we used a simple affine trans-
formation to map between the tangent planes atr and p. Mind-
ing’s theorem states that this map is isometric only between sur-
faces whereK is a constant [do Carmo 1976]. Otherwise, some
additional error is introduced. We have also assumed that the ex-
ponential map at anyp can be computed in a small neighbourhood
aroundp. In the discrete setting this local exponential map is ap-
proximated by transforming linear segments into the tangent plane.
This local approximation, which we will denotêexpp (q) = ûp,q ,
is described in more detail in Section 4.3.

Figure 5: The normal coordinatesup,q of the unknown radial geo-
desic fromp to q in (a) can be approximated using the known geo-
desics fromp to r and r to q. The vector tour,q (in normal co-
ordinates atr) is transferred to the tangent plane atp using a 2D
rotation with angleθp,r, producing the red vector in (b). This vec-
tor is an approximation to(up,q −up,r) and can be added toup,r

(c) to get the approximate resultûp,q .

The final algorithm for approximating the exponential map can now
be described. First, Dijkstra’s algorithm is run from pointp to gen-
erate, for each other surface pointq, a piecewise-linear curve from
p to q with vertices{pi}. These linear segments are then sequen-
tially “lifted” into Tp by evaluating

ûp,q = ûp0,p1 +
∑

i≥1

Rot2D (θp,pi
) · ûpi,pi+1 (3)

which amounts to summing the 2D vectors produced by transform-
ing each successive linear 3D segment intoTp. Note that̂upi,pi+1

is mapped directly into the tangent plane atp, rather than incre-
mentally mapping to each previous tangent plane. The conditions
described above on the tangent plane mapping hold regardless of
the distance betweenp and pi. Transforming the vector through
each previous tangent plane results in much higher total error.

Equation 3 approximates the exponential map by transforming 3D
points into the 2D tangent plane atp. The magnitude of the re-
sulting 2D vector approximates the geodesic distance with more
accuracy than the value produced by Dijkstra’s algorithm. The im-
provement comes from the use of vector addition, rather than the

scalar addition used by Dijkstra’s algorithm. This result is rem-
iniscent of the improvement in Euclidean distance approximation
observed when usingvector distance transformsinstead ofchamfer
distance transforms[Satherley and Jones 2001].

4.3 Implementation Details and Properties

The sampling rate of the underlying point set largely determines the
accuracy in the discrete exponential map. The first restriction on
sampling rate is that local geodesic neighbourhoods must be com-
putable. We use ak nearest geodesic neighbour scheme, withk =
15. If mesh connectivity is unavailable, nearest Euclidean neigh-
bours are assumed to be geodesic neighbours. This assumption
is valid only if global sampling criteria hold [Dey and Goswami
2004]. In some cases, such as subdivision and implicit surfaces,
additional samples can be generated automatically to resolve under-
sampling. Otherwise, algorithms that take a global approach to the
neighbour-finding problem are necessary [Fleishman et al. 2005].

Related to the problem of computing geodesic neighbourhoods is
that of computing the local discrete exponential map,êxpp. We as-
sume that the length|p−q| is a good estimate of geodesic distance
and determine the normal coordinates by finding the angleθq be-
tween the vector−→pq andTp, and then rotating−→pq by θq around the
axis−→pq× np. The rotation must always be in the direction of the
normal, hence ifnp ·nq < 0 the rotation angle isπ−θq .

Given adequate sampling, we have found the discrete exponential
map to be very robust in practice. In particular, there is no require-
ment that the surface sampling be regular. Our interactive system
is based on implicit surfaces visualized using marching cubes. A
quick surface sampling can be created based on the vertices out-
put by marching cubes. Since our marching cubes implementation
does not generate mesh connectivity data, Euclidean neighbours are
used to create thek-NN lists. Marching cubes is known to pro-
duce very irregular vertex distributions, resulting in a worst-case
sampling density much lower than the equivalent number of points
evenly distributed. The resulting parameterization is visually indis-
tinguishable from that computed with a more regular sample dis-
tribution, even at moderate tessellation resolutions (Figure 6). The
algorithm does assume that accurate surface normals are available.
Noisy normals introduce local distortion but the algorithm remains
stable. Noise in the point set affects geodesic distances and causes
the parameterization to quickly degenerate.

The discrete exponential map we describe is very efficient. Us-

Figure 6: The sampling rate has little effect on this decal. Fig-
ures (a)/(b) and (c)/(d) have the same number of surface point sam-
ples. ExpMap robustly handles the irregular sampling in (a) and
(c). Mesh edges are shown here to convey the sample distribution;
the parameterization is computed directly from the vertices.

ing a priority queue, the running time of Dijkstra’s algorithm is
O(N logN) in the number of surface samples. The discrete expo-
nential map can be incrementally computed in-line with the Dijkstra
propagation, hence the running time remainsO(N logN).

Dijkstra’s algorithm is known to be non-convergent. While we have
not found any theoretical proof, we have some evidence that the
discrete exponential map does converge. In numerical tests on a
sphere,̂up,q (Equation 2) converges quadratically to the analytic
value ofup,q as the distances betweenp,r andr,q go to zero. For
longer piecewise-linear geodesic paths the numerical convergence
is only linear, likely due to the accumulation of error at each ap-
proximation step. In general, the discrete exponential map appears
to visually converge as the sampling rate is increased.

One property of exponential map parameterization is that fully de-
velopable surfaces (surfaces with zero Gaussian curvature every-
where) are parameterized with no distortion. Our discrete approxi-
mation reproduces this property, as seen in Figure 7.

Figure 7: Parameterizations generated for developable surface
patches - (a) swiss roll, (b)/(c) cone front/back, and (d) box. Arti-
facts occur on the cone because it is not developable at the apex.

5 Decal Parameterizations

Our interactive texturing system is based on local exponential map
parameterizations which we callExpMap decals. An ExpMap de-
cal is defined by aseed pointp on the surface and a geodesic radius
r. The decal is generated by first running Dijkstra’s algorithm to
find an approximate geodesic disc with radiusr + δ. Theδ value
is necessary to ensure that the disc of radiusr is contained within
the decal, since the particular discretization may otherwise result
in clipping We use the largest neighbour distance asδ, avoiding
problems with decals that are small relative to the sampling rate.
This approximate geodesic disc is then parameterized using the al-
gorithm described in Section 4.2. Finally the parameterization is
scaled by1/

√
2r and translated by(0.5,0.5), so that the “geodesic

square” inscribed in the disc lies at[0,1]× [0,1] in parameter space.

Decals can be interactively rendered using texture-mapped trian-
gles or point splats. We store decals as local parameterizations of
portions of the marching cubes mesh, similar to [Praun et al. 2000].
Compositing is performed dynamically using alpha-blending. This
may involve storage and rendering of hundreds of decal parame-
terizations, which is acceptable for interactive editing but less so if
many decaled objects are part of a complex scene. For this case the
decals can be baked into a global parameterization or octree texture.

5.1 Comparison to Mesh Parameterization Methods

We have compared our ExpMap decals with those generated using
a variety of automatic mesh parameterization techniques. The same
decal creation procedure is used - we segment an approximate geo-
desic disc from the mesh, and then parameterize this disc.

We first compared our results with several mesh parameterization
algorithms that require a boundary. It is relatively simple to map
the approximate geodesic disc to a circular boundary. We tried
the shape-preserving weights [Floater 1997], geodesic weights [Lee
et al. 2005], and area-preserving intrinsic weights [Desbrun et al.
2002]. In all of these cases we observed significantly higher dis-
tortion, likely introduced by the boundary mapping. In addition,
the distortion is not frame-coherent, so while the user drags the
decal across the surface it randomly changes size and orientation.
Stretch-minimization [Sander et al. 2001] had less distortion but
similar problems with orientation, and was highly non-interactive.

Better results were found using free-boundary conformal
maps [Desbrun et al. 2002], with vertices near the seed point
constrained to minimize (but not completely prevent) undesired
decal rotation. We have observed that these decals are identical
to ExpMap decals only on developable surfaces. On a sphere the
“edges” of the square are similar, but the internal distortion is
different (conformal decals are less uniform). However, in many
relatively simple cases the square edges are not as well-preserved
(Figure 8). Because ExpMap decals are based on geodesics,
they distort only when the geodesics distort. Global conformal
optimization spreads out the distortion, producing decals with
edges that we feel are much less “square” than ExpMap decals.

Figure 8: Comparison between conformal (a,c) and ExpMap (b,d)
decals. In these cases the global conformal optimization results in
decals which are less “square” than the ExpMap decals. In (c), the
conformal parameterization is clipped because it extends beyond
the boundary of the decal (near the blue star).

The problem is magnified during interaction. For example, on the
cylinder in Figure 8b, the conformal decal begins to distort before
the edge of the texture crosses the edge of the cylinder. This be-
havior is very unintuitive. Another problem is that the conformal
parameterization is not necessarily contained within the geodesic
disc. This can result in the decal being clipped (Figure 8c).

Conformal decals do have some desirable properties, particularly
with respect to distortion. In areas of high distortion, the “greedy”
nature of the discrete exponential map can produce artifacts and
even local foldovers. Generally this occurs with decals that cover
undersampled regions of the surface with significantly varying cur-
vature. These artifacts can be repaired by applying conformal pa-
rameterization as a post-process. Highly-distorted regions in the
ExpMap decal are discarded and re-parameterized using natural
conformal parameterization, with the remaining ExpMap parame-
ter values used as constraints [Desbrun et al. 2002]. The result is a
combined ExpMap / Conformal decal, orHybrid decal (Figure 9).

5.2 Partial Decals

Like patchinos [Pedersen 1996], ExpMap decals become highly
distorted when passing over large protrusions on an otherwise rela-
tively flat surface (Figure 10a). Pedersen noted that this situation
could be avoided if the patchino contained a hole which passed
around the feature. His system could not support this because the

Figure 9: Comparison between ExpMap (a), Hybrid (b), and Con-
formal (c) decals. The Hybrid decal has less distortion but main-
tains a geodesic radius.

patchino optimization procedure required a complete mass-spring
mesh, however it is trivial to implement with ExpMap decals.

To create partial decals, the unwanted points are removed from
the Dijkstra computation and left unparameterized. In our sys-
tem we simply halt the Dijkstra propagation at points whose ab-
solute Gaussian curvature is larger than a user-defined threshold
(Figure 10b). Other alternatives could include halting at creases, or
based on boundaries painted by a user.

Partial decals illustrate an interesting property of our discrete
exponential map. Surface geodesics (such as those described
by [Surazhsky et al. 2005]) would pass around the “hole” and col-
lide behind it, creating a texture discontinuity. Because we perform
the incremental vector addition in the 2D tangent space, the “geo-
desic curves” on the surface actually passthroughthe feature - as if
it were replaced by a smooth surface. Note, however, that because
the path taken from the seed point to the points behind the hole is
less direct, the approximation error is larger.

Figure 10: In the case of a relatively smooth surface with a high-
frequency feature, the decal is significantly distorted (a). By halting
the vector propagation based on curvature magnitude, a hole is
created as the decal passes around the feature (b). The distortion
behind the feature is also avoided (insets).

6 Interactive Techniques

The user manipulates decals in our interface with a simple 3D con-
trol (Figure 2b,top). The decal is moved by dragging the center
point across the surface, rotated with the circle, and scaled with the
outer point. The parameterization is automatically recomputed as
needed. To fit a decal around a set of points{pi} projected onto
the surface from a screen-space curve, we project the center of the
2D bounding box to find a seed point, and then run the ExpMap
propagation until allpi have been reached.

To implement user-interface tools, it is useful to be able to map
between the 3D surface and 2D parameter space for points not in
the initial point set. A 2D parameteru can be mapped to 3Dq
using barycentric interpolation in the 2D triangle containingu (a

Delauney triangulation must first be computed for point sets). Map-
ping from 3Dq to 2D u would ideally be done by addingq to the
point set and recomputing the parameterization, however this can
be expensive. A quick approximation is to propagate the parame-
terization from the nearest neighbour toq using Equation 2.

Our decaling interface is highly interactive. Decal update times
scale roughly linearly with the number of point samples, and are
independent of other decals. On a 1.6 Ghz laptop, the ExpMap
parameterizations in Figures 6a and 6c are computed at 121 and
362 fps (6c has 4.4 times as many points). User interface overhead
reduces visual update times to 78 and 31 fps, respectively.

6.1 Decal Deformation

It is often useful to be able to deform a decal, either to match image
features to surface features, or to correct for some unwanted dis-
tortion. Image deformations can be applied to the texture, however
this approach is non-interactive for high-resolution images and lim-
its texture re-use. Instead, we deform the decal parameterization.
If the image deformationω is desired, then the inverse deformation
ω−1 must be applied to the parameterization. Since deformations
based on the point samples may exhibit frame-incoherence, a func-
tional space deformation is used. To avoid introducing foldovers,
we construct a deformation with infinite support.

Our deformation tool is based onC2 variational scattered-data in-
terpolation, also known asthin-plate splinesor radial basis func-
tions. A set of point constraints between sources(u,v) and des-
tinations(u′,v′) is created by projecting the 3D handles into 2D.
Two standard 2D thin-plate splines are fitted [Turk and O’Brien
1999],wu which maps(u′,v′) to the correspondingu values, and
wv which maps to thev values. The warp functionw = (wu,wv)
is then evaluated for each point in the parameterization. Since the
variational solution is based on point constraints, both lattice defor-
mation (Figure 2) and feature alignment (Figure 11) is possible.

Figure 11: Decal deformation. In (a), the decal image is too small
to cover the eyeball. Using the lattice deformation shown in Fig-
ure 2 results in a stretched pupil (b). Placing extra constraint points
around the pupil (c) produces the desired result (d).

6.2 Surface Vector Graphics

Decals can be used as canvases for 2D vector graphics. A geodesic
line element can be created between two points by generating a
decal originating at one point with a radius equal to the geodesic
distance to the second point. If the decal is relatively un-distorted,
uniform line width can be maintained by scaling linearly based on
the decal radius. Lines across regions of widely varying curvature
can be subdivided into multiple decals to reduce distortion.

Geodesic line elements can be used as a building block for other
surface vector elements. We create surface curves by projecting the

vertices of screen-space curves onto the surface and then connect-
ing them with line elements (Figure 12). One advantage of this ap-
proach is that portions of the surface which are occluded can still be
painted, unlike the projective texturing found in 3D painting tools.

Figure 12: In (a), a vertebra model is extracted from a volume
dataset and annotated. Though the surface is quite rough, there is
little distortion in the text. In (b), the vertices of a screen-space
stroke (top) are projected onto the surface and connected with vec-
tor lines. The stroke is continuous across occluded areas (bottom).

7 Surface Deformation and Animation

Most texture-mapping schemes assume that the underlying surface
is static. Significant surface deformation or topology change re-
quires re-parameterization. In general, it is very difficult to transfer
texture between parameterizations in a coherent manner. Even sim-
ple remeshing can be problematic. Decals are stable under remesh-
ing (Figure 6) and easily handle deformation and topology change.
The seed points are simply moved to the new surface, and the decal
parameterizations regenerated. ExpMap decals will flow onto the
new surface in a consistent and predictable manner (Figure 13b).

Because decals preserve texture across remeshing and surface de-
formation, they are an alternative for texturing animated implicit
surfaces. Our modeling system is based on hierarchical implicit
surfaces [Wyvill et al. 1999], where the surface is a composition of
simpler shapes. After texturing is complete, each decal is associ-
ated with the nearest shape and stored at local coordinates in the
shape’s reference frame. The decal position for any frame can be
found by performing a gradient walk from these local coordinates
to the surface.

In practice, frame-coherence is largely determined by the amount
of distortion in the decal. With high distortion the parameterization
is likely to “pop” from frame to frame in the distorted regions. The
popping occurs because the sampling rate is too low in the distorted
regions, so denser and more regular sampling can help to some ex-
tent. Another option is to compute a mesh and use a more robust
but slower geodesic computation [Surazhsky et al. 2005].

8 Results

Combined with a digital camera, our decaling system provides a
quick and easy-to-use interface for texturing 3D models. Using
an existing model and a few snapshots, the dog in Figure 13 was
composited in a few minutes. The base fur texture was generated

by uniformly distributing fur decals across the surface, essentially
creating a lapped texture [Praun et al. 2000].

An example of modeling a real-world object is shown in Figure 1. A
rough 3D model was generated using sketch-based modeling soft-
ware, and then 22 snapshots of the clay statue were taken. A base
texture was generated using the lapping technique, and then rele-
vant features were cut out of each image and attached to the model.
The entire process, from clay statue to textured 3D model, took
several hours, with the most time-consuming step being the manual
color-balancing necessary to compensate for the poor color repro-
duction of the digital camera.

The textures for the implicit gremlin model (Figure 14) were taken
from a variety of sources, including photographs of a frog, a paint-
ing, and the author. The images were segmented and re-colored
using image-processing software, and then pasted onto the suface.
Many of the textures are re-used multiple times. For example, each
finger and toe uses the same set of decals, although they are de-
formed to better fit the particular geometry.

Figure 13: In (a), an irregular piece of fur texture is automatically
lapped to create a base fur texture on a model of a dogs head. The
eyes, a nose, and a few additional pieces of fur were cut from other
photographs. Placing them on the surface takes only a few minutes.
In (b), the existing texture is automatically preserved when the ears
are modified and horns added. No manual adjustments of the decals
were performed.

9 Conclusions and Future Work

We have described an interactive texture mapping interface based
on decals generated using a new discrete exponential map approx-
imation. A key benefit is that sampled surfaces can be textured
without a global base parameterization. Surfaces created in our im-
plicit modeling system can be immediately textured. Furthermore,
if the designer finds that the surface must be modified, extensive
changes can be made without losing the textures applied so far.

ExpMap decals enable new texturing tools, such as surface vector-
graphics, selection of curved regions, and decals with holes, which
were not possible using existing methods [Pedersen 1996]. In our
experience, ExpMap decals generally provide predictable and con-
sistent results, and address difficult problems such as animating im-
plicit surfaces and topology change.

Our interface gives designers high-level tools to composite and ma-
nipulate decals, hiding all aspects of the underlying parameteriza-
tion. This is a fluid and efficient way to texture surfaces, particularly
for those who are not skilled at texture painting. Even for texture

painters, the ability to easily mix-and-match from existing images
makes decaling a useful addition to the texture design toolbox.

We anticipate a wide range of applications for ExpMap decal pa-
rameterizations in interactive tools. Decaling interfaces for bump
and displacement mapping are obvious extensions. Decals can also
be used for interactive surface re-sampling and repair. Decals may
be useful in discrete geometry modeling contexts for implement-
ing tools such as surface deformation and geometry cut-and-paste.
We are also exploring application of decal parameterization to high-
quality tessellation of implicit surfaces.

Figure 14: The decal texture for this implicit gremlin model was
created using 19 different images cut out of various photographs
and then manipulated using 2D image editing software. The texture
consists of 392 decals, although only 78 were placed manually. The
6 images used to texture the hand are shown.

10 Acknowledgements

The authors wish to thank the anonymous reviewers, Alla Shef-
fer, Michael Garland, Brendan Lane, Tim Gatzke, Dan Julius,
Ailidh Carpendale, and Shadow the dog. This work was funded
by NSERC and iCore.

References

ALEXA , M., KLUG, T., AND STOLL , C. 2003. Direction fields
over point-sampled geometry. InProceedings of WSCG 03.

AUTODESK, 2005. Imagestudio. www.autodesk.com/imagestudio.

BENSON, D., AND DAVIS , J. 2002. Octree textures.ACM Trans.
Graph. 21, 3, 785–790.

BLINN , J., AND NEWELL, M. 1976. Texture and reflection in
computer generated images.Communications of the ACM 19,
10, 542–547.

CHEEGER, J., AND EBIN , D. G. 1975.Comparison Theorems in
Riemannian Geometry. North-Holland Mathematical Library.

DEBRY, D., GIBBS, J., PETTY, D. D., AND ROBINS, N. 2002.
Painting and rendering textures on unparameterized models.
ACM Trans. Graph. 21, 3, 763–768.

DESBRUN, M., MEYER, M., AND ALLIEZ , P. 2002. Intrinsic
parameterizations of surface meshes.Comp. Graph. Forum 21,
3, 383–392.

DEY, T. K., AND GOSWAMI, S. 2004. Provable surface recon-
struction from noisy samples. InProceedings of the 20th annual
symposium on Computational geometry, 330–339.

DIJKSTRA, E. 1959. A note on two problems in connexion with
graphs.Numerische Mathematik 1, 269–271.

DISCHLER, J.-M., MITAUD , K., LÉVY, B., AND GHAZANFAR-
POUR, D. 2002. Texture particles.Comp.Graph.Forum21, 3.

DO CARMO, M. P. 1976. Differential Geometry of Curves and
Surfaces. Prentice Hall.

EBERT, D. S., Ed. 2002.Texturing and Modeling: A Procedural
Approach. Morgan Kaufmann. ISBN 1558608486.

FLEISHMAN , S., COHEN-OR, D., AND SILVA , C. T. 2005. Robust
moving least-squares fitting with sharp features.ACM Trans.
Graph. 24, 3, 544–552.

FLOATER, M., AND REIMERS, M. 2001. Meshless parameteriza-
tion and surface reconstruction.Comp. Aided Geom. Design 18,
77–92.

FLOATER, M. 1997. Parametrization and smooth approximation of
surface triangulations.Comp. Aided Geom Design 14, 231–250.

GRIMM , C. 2004. Parameterization using manifolds.International
Journal of Shape Modeling 10, 1, 51–80.

GU, X., AND YAU , S.-T. 2003. Global conformal surface parame-
terization. InProceedings of the Eurographics/ACM SIGGRAPH
symposium on Geometry processing, 127–137.

HANRAHAN , P., AND HAEBERLI, P. E. 1990. Direct wysiwyg
painting and texturing on 3d shapes. InProceedings of SIG-
GRAPH 90, vol. 24, 215–223.

K IMMEL , R., AND SETHIAN , J. 1998. Computing geodesic paths
on manifolds.Proc. of National Academy of Sci. 95, 15 (July),
8431–8435.

KRAEVOY, V., SHEFFER, A., AND GOTSMAN, C. 2003. Match-
maker: Constructing constrained texture maps.ACM Trans.
Graph. 22, 3, 326–333.

LEE, H., TONG, Y., AND DESBRUN, M. 2005. Geodesics-based
one-to-one parameterization of 3d triangle meshes.IEEE Multi-
Media 12, 1, 27–33.

LEFEBVRE, S., HORNUS, S., AND NEYRET, F. 2005. Tex-
ture sprites: Texture elements splatted on surfaces. InACM-
SIGGRAPH Symposium on Interactive 3D Graphics (I3D).

L ÉVY, B., PETITJEAN, S., RAY, N., AND MAILLOT , J. 2002.
Least squares conformal maps for automatic texture atlas gener-
ation. InProceedings of ACM SIGGRAPH 2002, 362–371.

L ÉVY, B. 2001. Constrained texture mapping for polygonal
meshes. InProceedings of ACM SIGGRAPH 2001, 417–424.

MAILLOT , J., YAHIA , H., AND VERROUST, A. 1993. Interactive
texture mapping. InProceedings of SIGGRAPH 93, 27–34.

M ITCHELL , J. 2000. Geometric Shortest paths and network op-
timization. Elsevier Science, ch. Handbook of Computational
Geometry, 633–702.

PEDERSEN, H. K. 1995. Decorating implicit surfaces. InProceed-
ings of SIGGRAPH 95, 291–300.

PEDERSEN, H. K. 1996. A framework for interactive texturing
operations on curved surfaces. InProceedings of SIGGRAPH
96, 295–302.

PORTER, T., AND DUFF, T. 1984. Compositing digital images. In
Proceedings of SIGGRAPH 84, vol. 18, 253–259.

PRAUN, E., FINKELSTEIN, A., AND HOPPE, H. 2000. Lapped
textures. InProceedings of ACM SIGGRAPH 2000, 465–470.

SANDER, P., SNYDER, J., GORTLER, S., AND HOPPE, H. 2001.
Texture mapping progressive meshes. InProceedings of ACM
SIGGRAPH 2001, 409–416.

SATHERLEY, R., AND JONES, M. 2001. Vector-city vector dis-
tance transform.Computer Vision and Image Understanding 82,
3, 238–254.

SHEFFER, A., LÉVY, B., MOGILNITSKY, M., AND BO-
GOMYAKOV, A. 2005. Abf++: fast and robust angle based
flattening.ACM Trans. Graph. 24, 2, 311–330.

SORKINE, O., COHEN-OR, D., GOLDENTHAL , R., AND
L ISCHINSKI, D. 2002. Bounded-distortion piecewise mesh pa-
rameterization. InProceedings of IEEE Visualization, 355–362.

SURAZHSKY, V., SURAZHSKY, T., KIRSANOV, D., GORTLER,
S. J.,AND HOPPE, H. 2005. Fast exact and approximate geo-
desics on meshes.ACM Trans. Graph. 24, 3, 553–560.

TIGGES, M., AND WYVILL , B. 1999. A field interpolated texture
mapping algorithm for skeletal implicit surfaces. InComputer
Graphics International, 25–32.

TURK, G., AND O’BRIEN, J. F. 1999. Shape transformation us-
ing variational implicit functions. InProceedings of ACM SIG-
GRAPH 99, 335–342.

WELCH, W., AND WITKIN , A. 1994. Free-form shape design
using triangulated surfaces. InProceedings of SIGGRAPH 94,
247–256.

WYVILL , B., GUY, A., AND GALIN , E. 1999. Extending the
csg tree. warping, blending and boolean operations in an implicit
surface modeling system.Comp. Graph. Forum 18, 2, 149–158.

ZELINKA , S.,AND GARLAND , M. 2004. Similarity-based surface
modelling using geodesic fans. InProceedings of the Eurograph-
ics Symposium on Geometry Processing, 209–218.

ZHANG, E., MISCHAIKOW, K., AND TURK, G. 2005. Feature-
based surface parameterization and texture mapping.ACM
Trans. Graph. 24, 1, 1–27.

ZHOU, K., WANG, X., TONG, Y., DESBRUN, M., GUO, B., AND
SHUM , H.-Y. 2005. Texturemontage: Seamless texturing of
arbitrary surfaces from multiple images.ACM Trans. Graph. 24,
3, 1148–1155.

ZWICKER, M., PAULY, M., KNOLL , O., AND GROSS, M. 2002.
Pointshop 3d: An interactive system for point-based surface edit-
ing. ACM Trans. Graph. 21, 3, 322–329.

