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ABSTRACT

Orthopedists invest significant amounts of effort and time try-
ing to understand the biomechanics of arthrodial (gliding) joints.
While new image acquisition and processing methods currently
generate richer-than-ever geometry and kinematic datasets that
are individual-specific, the computational and visualization tools
needed to enable the comparative analysis and exploration of these
datasets lag behind.

In this paper, we present a framework that enables the cross-
dataset visual exploration and analysis of arthrodial joint biome-
chanics. Central to our approach is a computer-vision inspired
markerless method for establishing pairwise correspondences be-
tween individual-specific geometry. Manifold models are subse-
quently defined and deformed from one individual-specific geom-
etry to another such that the markerless correspondences are pre-
served while minimizing model distortion. The resulted mutually-
consistent parameterization and visualization allow the users to ex-
plore the similarities and differences between two datasets, and to
define meaningful quantitative measures.

We present two applications of this framework to human wrist
data: articular cartilage transfer from cadaver data to in vivo data,
and cross-dataset kinematics analysis. The method allows our users
to combine complementary geometry acquired through different
modalities, and thus overcome current imaging limitations. Results
demonstrate the technique useful in the study of normal and injured
anatomy and kinematics of arthrodial joints.

In principle, the pairwise cross-parameterization method applies
to all spherical topology data from the same class, and should be
particularly beneficial in instances where identifying salient object
features is a nontrivial task.
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1 INTRODUCTION

Arthrodial or gliding joints are the structures that allow us to move;
they are formed when two bones come together and move against
each other without getting damaged. There are many different types
of joints in the human body, and some of them are remarkably com-
plex; for example, the human wrist involves contact among fifteen
different bones. Furthermore, the relationships among joint-bones
change with motion, age or disease. As new image acquisition
and processing methods generate richer-than-ever arthrodial joint
datasets, the inherent complexity of these data motivates a variety

∗e-mail:gem@cs.brown.edu
†e-mail:cmg@cse.wustl.edu
‡e-mail:dhl@cs.brown.edu

Figure 1: 2D slice through a µCT-volume image of bone and articular
cartilage. The imaged cartilage (bone tissue shown in white, cartilage
in soft grey surrounding the bone outline) can be represented as
a height-field on the supporting bony surface. The height-field is
defined as a collection of base points on the bone surface, the bone
surface normal at that point, and the height along the normal at
which the normal intersects the cartilage external envelope.

of modeling and visualization techniques designed to assist ortho-
pedics researchers in their analysis.

In the context of arthrodial joint data, particular emphasis falls
on the comparative analysis and exploration of individual-specific
datasets. For example, orthopedic surgeons often compare the in-
jured joint of an individual with the matching uninjured joint of
the same individual. In a different application, our collaborators in
the Bioengineering Department are studying the effect of in vivo
motion on articular cartilage in the human wrist.In vivo motion
can only be measured in live human subjects. On the other hand,
highly-detailed, unloaded wrist-cartilage geometry can currently
only be measuredin vitro, by extracting the bones and cartilage
from the joint, immersing them in contrast dye for 24 hours, then
µCT-imaging them. The imaged cartilage can be represented as a
height-field on the supporting bony surfaces (Fig. 1). Our collab-
orators would like to be able to transfer this height field, without
folding or tearing it, on the correspondingin vivo bony surfaces;
then apply to the resulted geometry thein vivo-measured kinemat-
ics in order to estimate how cartilage deforms with motion.

Unfortunately, arthrodial bones like the ones in the wrist or ankle
are difficult to set in correspondence, due to their round and smooth
everywhere (potato-like) shape, with rare clear salient features to
aid the matching process. In general, we note that while a number
of techniques are available for modeling, visualizing, and animat-
ing articular-joint data acquired from a given human individual, the
computational and visualization tools needed to comparatively an-
alyze or combine these datasets are limited.

In this paper, we present a framework that enables the cross-
dataset visual exploration and analysis of arthrodial joint biome-
chanics. Our key contribution is a markerless method for establish-



ing pairwise correspondence between individual-specific arthrodial
joint datasets. The method is markerless in the sense that it cir-
cumvents the need to identify corresponding salient geometry fea-
tures (markers). Based on the markerless dataset correspondence,
we then propose modeling and visualization techniques for explor-
ing and analyzing cross-dataset variation. We demonstrate our
framework on human wrist data, with two applications: transfer of
surface-detail (such as soft-tissue insertion sites and cartilage loca-
tion) from cadaver data to in vivo data; and cross-dataset kinematics
analysis.

2 RELATED WORK

A key step in either the comparative analysis or the merging of ge-
ometric datasets is establishing pairwise correspondence between
shape boundaries or surfaces. In standard biomechanics practice,
two similar surfaces are often brought in correspondence by first
aligning them through a method like the Iterative Closest Point
(ICP) transform [1], and then projecting the source surface on
the target surface. Because this approach does not explicitly use
shape information, the source surface may either fold or tear dur-
ing the projection phase. Alternatively, the problem of pairwise
correspondence can be posed as that of establishing a common pa-
rameterization between the two surfaces. The advantage of cross-
parameterization over ICP followed by projection is that: a) it can
be constrained to avoid surface folding and tearing; and b) it pro-
vides a convenient common frame of reference when quantitatively
analyzing the differences between two datasets.

Pairwise correspondence for cross-parameterization. While
several cross-parameterization techniques exist, they require in gen-
eral the existence of an initial pairwise correspondence among sev-
eral points on the shapes. If the shapes have clear salient features
(e.g., extreme curvature points, or characteristic medial axis), the
pairwise correspondence process can be automated [2, 3, 4]. In the
absence of salient features, pairwise correspondence is often estab-
lished using user-defined landmarks [5, 6]; however, the landmark-
ing operation is time-consuming, error-prone and subjective even
in 2D. In 3D, manual landmarking can become impractical.

Golland et al. [7] avoid 3D manual landmarking by aligning
shapes so that the object volume and the center of gravity of a dis-
tance transform is the same for all example shapes. This approach
does not guarantee anatomical feature correspondence, although the
resulting alignment is sufficient for shape classification purposes.

Brechbuhler et al [8] automate the pairwise correspondence pro-
cess by assigning a correspondence of each individual shape to
the sphere (SPHARM). The correspondence of SPHARM is deter-
mined by aligning the parameterization so that the ridges of the first
order ellipsoid coincide; inherently, the correspondence of objects
with rotational symmetry in the first order ellipsoid is ambiguously
defined. The method is thus not applicable to potato-like shapes
with symmetry about a main axis like the arthrodial shapes dis-
cussed in this paper. In fact, a comparative study [9] on femoral
data found that, in case of rotational symmetry in the first order
ellipsoid, independent of the higher order terms, the SPHARM cor-
respondence is inappropriate; the correspondence could not be sig-
nificantly improved using statistical methods like the minimum de-
scription length [10] or DetCov [11].

In contrast, the markerless pairwise correspondence method pro-
posed in this paper is automated, works on objects of spherical
topology which lack salient features, and is not susceptible to object
rotational symmetry in the first order ellipsoid.

Our correspondence approach is inspired by work in com-
puter vision [12, 13], where 2D representations have been used in
the context of same-object recognition and object-pose recovery.
Global-shape 2D histograms appear often in computer vision liter-
ature, but in general they are targeted at same-object recognition.

While in computer vision applications the focus is on selecting just
a few strong correspondences that are also geometrically consis-
tent with a rigid-body transform, we introduce new match-selection
criteria that allow for non-rigid shape variation. We have briefly
described these match-selection criteria before in [14].

Cross-parameterization. A number of statistical methods pro-
duce cross-parameterizations across training sets of shapes [5, 7,
10, 11]. In these approaches, a statistical model of shape variation
is learned from a training database. The focus of the present paper
is, however, thepairwisecross-parameterization of shapes, when a
training database may not be available.

Previous approaches [15, 16, 17] to consistent pairwise parame-
terization of meshes use mesh simplification to create a base mesh,
align the base mesh with each data set, then re-mesh to establish
correspondences. The correspondence depends heavily on the as-
signment of the base mesh triangles to patches on the surfaces. In
our shape-correspondence approach we avoid both the patch cre-
ation and re-meshing steps by only pinning a subset of points and
using an analytical domain.

Exploratory Visualization of Arthrodial Joints. Cross-
individual arthrodial joint datasets that combine geometry and kine-
matic information are relatively new in orthopedics, due to the re-
cent development of technologies for tracking in vivo joint kine-
matics. Previous attempts at the visual exploration of in vivo joint
biomechanics have therefore been aimed mostly at understanding
individual-specific kinematics [18, 19], mainly by presenting to
the user animations of a specific joint. The lack of salient fea-
tures makes finding correspondences in arthrodial joint geometry
difficult. In consequence, previous kinematic analysis attempts in
general disconnect kinematic data from the geometry, and quan-
tify kinematic differences across datasets by comparing numeri-
cally joint-angle series. In contrast, our approach allows the users to
explore arthrodial joint kinematics in the context of joint geometry.

The two scalar data visualization techniques we use, color map-
ping and iso-contouring, are well known scientific visualization
techniques [20].

3 METHODS

Figure 2 summarizes our framework. We use computed-
tomography (CT) individual-specific datasets; the data is first pro-
cessed in order to extract the articulation-joint geometry and the
corresponding joint kinematics. Next, given two such datasets, we
set their geometry in correspondence using a computer-vision and
differential-geometry based approach. We further process the re-
sulting geometry and kinematics in order to explore the similarities
and differences between datasets, and to define meaningful quanti-
tative measures.

3.1 Data Acquisition and Preprocessing

Our data is generated by CT-imaging the articulation bones of a
volunteer in up to twelve different positions, followed by registra-
tion of the bones across all volume-images. Each CT volume-image
corresponds to an articulation pose, thus sampling the space of the
physiological range of motion.

Through manual segmentation, thresholding, and user inter-
action, bone surface points are extracted from an arbitrarily-
designated reference CT volume image [18]. Each bone is then
tracked accurately through the sequence of remaining CT volume
images [21]. The tracking procedure reports relative bone-motion
from one articulation pose to another. Each resulting dataset is thus
individual-specific, and consists of the arthrodial joint geometry
and its sampled kinematics.

Bones in the joint are modeled further both implicitly, asscalar
distance fields, and parametrically, asNURBS surfaces. These two
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Figure 2: Biomechanics visual analytics framework. Subject-specific
CT-datasets are first processed in order to extract the relevant joint
geometry and kinematics. Two such datasets are then set auto-
matically in correspondence. We use the correspondence to further
explore and analyze dataset differences.

types of representation have complementary strengths for differ-
ent types of calculations. NURBS surfaces provide an accurate,
smooth, and locally controllable representation of the bones. We
use the Geomagic software package [22] to generate parametric
bone models from the segmented bone surface points. Distance
fields on the other hand, have important advantages for geometric
computations such as fast distance calculation. A distance field is
a scalar field that specifies the signed distance from a point to the
bone surface. Numerical sign is used to distinguish the inside from
the outside of the bone: negative values are inside the bone, posi-
tive values are outside the bone, zero values are on the bone surface.
Distance fields surrounding each bone are computed from the para-
metric representation. These distance fields provide the support for
evaluating kinematic changes in the articulation. We use the Closest
Point Transform (CPT) level-set software package [23] to generate
the distance field representation from the surface representation. A
validation study performed on CT-imaged phantom data [24] – in
which the distance between two spheres was computed through the
CPT software – has shown average errors of under 10−3% of the
actual inter-sphere distance.

3.2 Bone Surface Correspondence

Let S and T be the source and target geometry we wish to set in
correspondence. We begin by generating a set of pin-points on S
and T; the correspondence is markerless in the sense that a pin-
point doesn’t necessarily mark a geometrically-salient feature. The
corresponding pin-points are generated using global shape informa-
tion.

Next, we fit a manifold surface to the geometry of S, then de-
form the manifold to match the geometry of T while preserving the
pin-point correspondence. Essentially, the manifold deformation
extends the pin-point correspondence to the entire surface. The
pin-point correspondence helps prevent manifold folds and self-
intersections during the matching process. The manifold corre-
spondence allows us to define consistent parameterizations between
datasets – a bijection (i.e., a one-to-one and onto mapping) between
the geometry of each surface and the abstract manifold representa-
tion.

We describe the markerless-correspondence and manifold-
deformation steps below.

3.2.1 Pairwise Markerless Correspondence

Figure 3 summarizes the markerless corresponding procedure. We
begin by resampling the bone surfaces of S and T such that they
have approximately the same number of vertices. The resam-
pling operation is embedded in the Geomagic preprocessing soft-

Figure 4: Project and bin operation. For each point p on the mesh,
we consider the local coordinate system defined by the plane tangent
to p and the surface normal N at that point. All other vertices v in the
mesh are cylindrically-projected on this local system; we compute the
α and β cylindrical coordinates (see text for details) of each vertex.
Projected points are finally binned in a 2D histogram.

ware [22]. Corresponding bone surfaces are then normalized with
respect to scale and translated so that their centers of mass are
aligned. If the two shapes are significantly far apart, the surface-
alignment is further refined using an ICP transform [1].

The fundamental shape element we use to generate pin-point cor-
respondences is an oriented point, a 3D vertex with an associated
direction [13]. Following Johnson and Hebert, we define an ori-
ented point on the surface of an object using the surface positionp
and the surface normaln at that position. For each oriented point
in a mesh we consider the tangent plane throughp and the line par-
allel to n throughp. The tangent plane and the line define a local
coordinate system. All the verticesv in the mesh can be mapped on
this coordinate system using cylindrical coordinates as follows:

β (v) = n· (v− p) (1)

α(v) =
√

(v− p) · (v− p)−β (v)2 (2)

For each pointp on the surface of a bone instance from dataset
S, we computeα andβ coordinates for all the vertices in the mesh.
Next, we bin the vertices based on their(α ,β ) coordinates into a
2D histogram, with the bin size equal to the median edge length in
the mesh (Fig. 4). We found that 15×15 such bins cover in general
all vertices in our models. The result of this step is a collection of
2D histograms, one for each point in the bone mesh. We repeat the
procedure for the corresponding bone in dataset T.

Because each 2D histogram encodes the coordinates ofall the
points on the surface of an object with respect to the local (α ,β ) ba-
sis, it is a local description of the global shape of the object. Since
each 3D point has associated such a description, we can apply tech-
niques from 2D image matching to the problem of surface corre-
spondence.

Potential pin-point correspondences between the S and T bone
instances are established by evaluating the value of all possible
matches between points on the S model and points on the T model.
We define the value of a match between points on S and pointt
on T as a combination of the image-correlation index between the
2D histograms constructed ats and t and the Euclidean distance
between the 3D space coordinates ofs andt:

Kmatch(s, t) = Kcorrel(hist(s),hist(t))+
1

‖p(s), p(t)‖
(3)

whereKcorrel(hist(s),hist(t)) is the 2D correlation coefficient be-
tween the histogram atsand the histogram att. This value function
favors matches that have a strong image-correlation index and were
generated from points with similar space coordinates.

For each surface points, we retain the strongest matched point
t in the other instance, i.e., the pointt that generated the highest



Figure 3: Markerless correspondence pipeline. Corresponding bone instances S and T are first normalized and resampled. For each surface
point, we project the bone instance on a local 2D subspace and we generate a 2D histogram (for details on the project and bin operation, see
Fig. 4). We evaluate all possible matches between all the points on S and all the points on T, and keep only bipartite matches. Finally, we
filter out weaker matches from the neighborhood of stronger matches, generating a Poisson-disk distribution of pin-points on the surface of
each mesh.

Figure 5: Two wrist bones belonging to different human subjects
and their corresponding pin-points. Pin-points in correspondence are
shown in the same color. Right: the 2D-histograms generated by the
two pink corresponding pin-points on the left are remarkably similar,
indicating good shape correlation at these points. Our markerless
method generated this bipartite set of 25 Poisson-disk distributed
correspondences in only a few minutes.

Kmatch(s, t) score. The resulting strongest correspondences may not
be in a bipartite relationship; i.e., points1’s strongest match may be
point t1, while t1’s strongest match may not bes1, but some other
point s2. In a first filtering stage, we only keep correspondences
that define a bipartite match.

Next, bipartite correspondences are ordered according to their
Kmatchvalue. Beginning with the highestKmatchvalue, we filter out
weaker correspondences through a greedy programming approach,
as follows: for each bipartite correspondenceb, in the order of
Kmatch, we remove all other bipartite correspondences which are
closer tob than 10× l , wherel is the median edge length across
S and T. The result is a Poisson-disk distribution of pin-points on
the surface of each model. Note that the process through which we
generate a set of pairwise corresponding pin-points is deterministic.

Corresponding pin-points generated on two wrist bones through
this markerless method are shown in Fig. 5. The pairwise marker-
less correspondence method is implemented in less than 2,000 lines
of Matlab code.

3.2.2 Manifold Deformation

To align the surfaces we begin by fitting a default manifold surface
to the source geometry S, as described in [25, 26]. Manifolds are
smooth, locally parameterized,C2 continuous surfaces [25]. The
overlapped structure of the manifold-surface representation, which
is inspired by differential geometry, has several advantages includ-
ing flexibility in shape adjustments without costly constraints, and
smooth transitions and uniformity among patches.

The default manifold we fit to S is roughly the shape of the given
bone. Summarizing the [25] reference, the fitting process essen-
tially “shrink wraps” the default manifold around the specific data
set. Specifically, we alternate between projecting the S data set
points onto the manifold and solving a least-squares problem to ad-
just the parametric surface control points. Once the manifold sur-
face is fit to S, we project the S pin-points onto the fitted manifold.

Next, we deform the S manifold such that it fits the target ge-
ometry T. This time, we introduce additional constraints into the
least-squares problem that pull the S manifold pin-points to the 3D
pin points of T. Although we cannot formally guarantee no folding
or self-intersections during manifold fitting, the use of filtering and
of a sufficiently-close starting position as provided by the pin-point
correspondence helps us avoid folding problems in practice.

Figure 6 shows a default manifold surface fitted to S, together
with its pin-points, the original mesh T with pin-points, and the
original mesh T overimposed with the result of deforming the S
manifold to fit T while preserving the pin-point correspondence.
Note that the resulted T manifold is free of self-intersections/folds.
The manifold deformation defines a mutually consistent parameter-
ization between the S surface and the T surface.

3.3 Exploratory Visualization and Analysis

Given two datasets, the markerless correspondence method de-
scribed earlier allows us to build a mutually-consistent surface
parameterization between the dataset geometries. This mutually-
consistent parameterization enables the exploration of dataset dif-
ferences.

In order to contrast the kinematics of two datasets, we trace joint



Figure 6: Manifold deformation: default manifold surface fitted to S with pin-points (left), the original mesh T with corresponding pin-
points (middle), and the original mesh T overimposed with the result of deforming the S manifold to fit T while preserving the pin-point
correspondence (right); in the right image, the pin-points of T and the deformed manifold are overlapped. The resulted T manifold is free of
self-intersections/folds. The manifold defines a mutually-consistent parameterization between the S surface and the T surface.

kinematics on the bone surfaces, as described in [27]. Summariz-
ing this reference, for each bone and kinematic pose, we compute
at each bone vertex the distance to neighboring bones. We use the
distance field representation to find distances from every vertex in
the surface model of one bone to its neighbor.

Because joint kinematics influence how close two bones come
together, and where they articulate with each other, we can use the
inter-bone joint space as a measure of kinematics. For each bone
and space, we define the inter-bone joint space as the cortical sur-
face area on the bone that is less than a prescribed threshold distance
(typically 5mm) from the cortical surface of a neighboring bone. As
two bones move relatively one to another, tracking through time the
location and size of the inter-bone joint space provides insight into
the joint kinematics.

We also compute isocontours on the contact area, each contour
showing where the inter-bone joint space is equal to a constant dis-
tance. The area of the inter-bone joint space is the total area of
the surface triangles within the 5mm contour. We characterize the
inter-bone joint-space by its area and by the location of its centroid
on the cross-parameterized surface. These measures and the com-
mon parameterization allow our users to compare quantitatively
two datasets.

We visualize inter-bone joint-spaces using color mapping and
contouring. Color maps are generated for each bone so that distance
values of surface points are mapped to varying color saturations
(more saturated colors represent shorter distances). Distances larger
than the contact threshold value are neither colored nor contoured
and are shown as white surfaces (Fig. 7).

4 RESULTS

4.1 Validation

Pairwise markerless correspondence. We applied our markerless
correspondence technique to wrist bone instances collected from
11 individuals (9 hamate bones, and 4 lunate bones). For each pair
of bones from the same class, 13 to 22 sets of pairwise pin-points
were automatically generated through our method. Because in med-
ical imaging the correspondence ground truth is only known for
synthetic and phantom data, the correctness of each pin-point pair
was visually examined by an expert user. 99.7% of the more than
700 pin-point correspondences generated were judged to be cor-
rect (within human expert accuracy). The bottom orange pin-points

scaphoid

lunate

(a) (b)

Figure 7: A normal scapholunate joint. Bones are color mapped and
contoured. The saturation of red (darker region in black and white)
on bone surfaces represents the distance to the nearest point on the
opposite bone. Redder regions are closer. The maximum distance
visualized is 5 mm. Contour lines are drawn at 0.5 mm intervals.
(a) Bones in their correct anatomical context. (b) Bones rotated to
show articulated surfaces more clearly.

shown in Fig. 6 are an example of inaccurate correspondence.
For each pair of bone instances (approx. 250 vertices each), sets

of pairwise pin-points were generated in under two minutes, a ten-
fold speedup compared to the human expert performance. We note
however that the focus of our work is reduction of user interaction,
and not minimizing running time.

Manifold deformation. Two separate pairs of bone instances
(one hamate pair collected from two different individuals, and one
lunate pair collected from the same individual, left and right arm)
were cross-parameterized using the markerless correspondence fol-
lowed by manifold surface deformation. The resulted parameteriza-
tions were successfully verified for no self-intersections and folds.

For the two surface pairs described above we also compared
the curvature of the resulted dense surface correspondence. The
similarity-based shape comparison uses the correspondence be-
tween the objects being compared, and computes the similarity be-
tween corresponding points. The correspondence can be computed
from pairs of pin points on the objects. The similarity is measured
as the difference between a shape representation called the Curva-
ture Map [28]. The curvature map is based on the surface curvature
over a region around a point, and is represented as a 1-D function
of the distance to the point. The radius of the region around the
point determines the maximum distance over which the curvature



map can be compared, however, more localized comparisons can
be generated by taking the difference over a subset of this maxi-
mum distance.

The similarity values are associated with a color map in order to
plot similarity on the surface of the object (Fig 8). By controlling
the range of values associated with the color map, different ranges
of values can be emphasized to indicate regions of similarity or
the most significant differences between corresponding locations
on the shapes. Because the two datasets featured in this experiment
were collected from the same volunteer (left and right arm), we
expect curvature dissimilarities due to anatomical shape variation
to be minimal. Figure 8 shows that the manifold surface maps
regions on S to regions on T of similar curvature, a good indication
that our method attains anatomical feature correspondence. The
small areas of dissimilar curvature appear to correlate with actual
anatomical shape variation between the S and T datasets. Manifold
models were created and deformed in under 30 minutes per dataset.

Exploratory visualization and analysis. Our visualization and
analysis technique was recently applied in a clinical study to 18
forearm datasets [29], normal and matching injured forearm data
collected from 9 individuals. In this study, note that the common
frame of reference was defined manually. The approach provided
unexpected insight into the biomechanics of the forearm: although
an earlier numerical joint-angle study had concluded kinematics
were not altered significantly by injury, visual exploration of the
very first individual highlighted focal changes in the articulation at
the distal radioulnar joint and potential soft-tissue constraints. Fur-
ther numerical analysis of the location and size of inter-bone joint
spaces across the 9 individuals showed the focal changes were sta-
tistically significant.

In this study, distance fields and inter-bone joint-spaces were pre-
computed in under 1 minute per bone. Joint visualizations are dis-
played on the fly.

4.2 Applications

We demonstrate our framework on two applications: bone surface-
detail transfer, and cross-dataset kinematic analysis.

Surface detail transfer. In the first application, our goal is to
combine information collected from different individuals. Limita-
tions in current imaging technology enable collection of wrist soft-
tissue data only for cadavers. On the other hand, wrist motion is
measured in live human subjects. Combining the two types of in-
formation – soft tissue and motion – is important when studying
wrist biomechanics.

We use our framework to transfer soft-tissue detail like ligament
insertion sites and articular cartilage from one individual to another.
In Fig. 9, the blue areas represent synthetically-defined ligament
insertion sites. The insertion site originally defined on the pink ha-
mate bone instance is automatically transferred to the white hamate
bone instance. In Fig. 10, the cartilage originally defined on the
left-side bone instance is automatically transferred to the right-side
bone instance (lunate bones shown in pink, cartilage in tan). In
both examples, the mutually-consistent parameterization between
the two bone instances results in no folds or tears during transfer.

Our Bioengineering Department collaborators are quite inter-
ested in using this technique to combineµCT-imaging cadaver soft-
tissue data with in vivo bone surfaces and kinematic data.

Exploratory kinematic analysis. In our second application we
explore the differences between normal and injured (scaphoid non-
union) kinematics in the wrists of a human subject. Our data was
collected from the injured and uninjured wrists of the same individ-
ual. Figure 11 shows a subset of three wrist bones in their correct
anatomical context; note the fractured bone in the right image. In
such cases, hand surgeons usually reconstruct the fractured bone
by inserting a screw through the two fragments. Alternatively, they

Figure 9: Surface detail transfer (ligament insertion site) between the
two hamate bone instances shown in Fig. 5. The mutually-consistent
parameterization between the two bone instances results in no folds
or tears during transfer.

Figure 10: Cartilage transfer between two lunate bones (bones shown
in pink, cartilage in tan). The consistent parameterization between
the two lunates results in no folds and no tears in the cartilage map
during transfer.

may not intervene at all, or they may remove completely the bot-
tom fragment from the joint [30]. For a given individual, we wish
to understand which approach is the most appropriate.

We trace the inter-bone joint-spacing area with motion (10 kine-
matic poses) and compare location and size using the mutually-
consistent parameterization (Fig. 12). Visual analysis of the lunate
bone with respect to the scapho-lunate articulation shows no signif-
icant differences between the uninjured and injured joint (Fig. 13
first two columns). This suggests that, for this individual, despite
injury, the injured scaphoid and lunate bones continue articulat-
ing correctly. Under these circumstances, reconstruction of the
scaphoid bone may appear unnecessary.

However, further analysis of the lunate bone with respect to the
radio-lunate articulation highlights differences between the unin-
jured and injured joint (Fig. 13 last two columns). The lunate-
radius distance appears to increase in the injured wrist: note that
the innermost iso-contour in the top images disappears in the bot-
tom images. Also note the distal (upwards) shift of concentric iso-
contours in the injured wrist compared to the uninjured wrist. Nu-
merical analysis using the common cross-parameterization on the
location of the centroid of concentric iso-contours indicates a dis-
tal shift of more than 2 mm. These surprising differences indicate
that scaphoid injuries may not impact the articulation nearest to the
scaphoid (scapho-lunate), but the next articulation (radio-lunate).

Of course, one can not draw sweeping conclusions from the ex-
ploratory analysis of a single individual. Our orthopedist collab-
orators are interested in running this type of analysis on several
individuals with the same type of injury and collecting statistical
evidence. For the time being, they are interested in the exploratory
analysis of all the wrist bones of this injured individual.



Figure 8: Curvature comparison of source and target manifold surfaces: deforming the manifold surface from Lunate 1 (L1) to Lunate 2 (L2)
maps regions on L1 to similar curvature regions on L2. The small areas of dissimilar curvature appear to correlate with actual anatomical shape
variation between the L1 and L2 datasets.

Figure 13: Kinematic analysis of the radio-scapho-lunate joint shown in Fig. 11 (top row: lunate bone in the uninjured joint, bottom: lunate
bone in the injured joint). The first two columns show the lunate facet articulating with the scaphoid bone; tracing the inter-bone joint-spacing
area on the lunate shows similar kinematics between the injured and uninjured scapho-lunate. The last two columns show the lunate facet
articulating with the radius bone. This time, note that the innermost contour in the top images disappears in the bottom images; the centroid
of the concentric iso-contours also shifts upwards in the bottom images. This indicates that scaphoid injuries may not impact the articulation
nearest to the scaphoid, but the next articulation.



Figure 11: Right-wrist and left-wrist radio-scapho-lunate joints from
the same individual. Following injury, the left-wrist scaphoid bone
has been fractured in two. Bones are color-mapped and contoured.
The color saturation on bone surfaces indicates the distance to the
nearest point on the opposite bone or bone-fragment; darker regions
are closer.

Figure 12: Pin-point and manifold deformation between the left and
right lunate bones in Fig. 11. Left-wrist lunate (injured joint) with
pin-points (left), right-wrist lunate with corresponding pin-points
(middle), and the original right-wrist lunate overimposed with the
result of deforming a manifold from the left-wrist lunate to the right-
wrist lunate(right); in the right image, the pin-points on the two
surfaces are overlapped. The manifold defines a mutually-consistent
parameterization between the S surface and the T surface.

5 DISCUSSION

Our dataset-correspondence method has certain limitations. First,
the geometry of the datasets needs to be fairly similar. Second, we
need to be able to resample the geometries into similar distributions
of points. These requirements are satisfied in the case of arthrodial-
joint bones.

When establishing pairwise pin-point correspondences, we use
a correlation coefficient measure. The correlation coefficient is a
standard, robust image similarity measure. Although more sophis-
ticated measures have been proposed for special cases where imag-
ing scale, rotation, and perspective distortions are present, it is not
clear that the use of such alternative measures would be beneficial
in our case.

When further filtering pin-point correspondences, we use a
greedy programming approach. Such an approach is not guaranteed
to generate an globally optimal set of pin-points, in terms of corre-
lation across the set. The selected set of correspondences could be
improved by using a global optimization approach instead of greedy
programming. We note that summing theKmatch values of all the
surviving pin-point corresponding for a given S-T pair yields an im-
plicit shape-similarity score between S and T. In our experiments,
the higher this score, the more visually similar the shapes of S and
T appear to be.

When fitting manifold surfaces we rely on projection to deter-
mine the correspondence between the data points and the domain.
Problems with folding can arise if projection gives the incorrect
correspondence, for example, if the initial surface is poorly aligned
with the data. We greatly reduce these problems by using an initial
surface which is roughly the right shape and slightly bigger than the
data set, and by employing an extra set of smoothing constraints to
the control shape when fitting. These smoothing constraints are
gradually relaxed as the fit is finalized. The addition of pin points
also greatly reduces the chance of folding because the pins pull the
surface to the correct area without relying on projection.

6 CONCLUSION

We presented in this paper a framework for the cross-dataset visual
exploration and analysis of arthrodial joint biomechanics. Central
to our approach is a markerless method for establishing pairwise
correspondences between individual-specific datasets. The resulted
correspondence allows the users to combine complementary ge-
ometry acquired through different modalities, and thus overcome
current imaging limitations. The pairwise correspondence also en-
ables the analysis of kinematic similarities and differences between
datasets.

The approach presented is fully automated and works on objects
of spherical topology which lack salient features. Unlike previous
approaches to pairwise correspondence, the method is not suscep-
tible to object rotational symmetry in the first order ellipsoid. In
consequence, our method is applicable to arthrodial joints like the
human wrist or the ankle. Results demonstrate the technique use-
ful in the study of normal and injured anatomy and kinematics of
arthrodial joints.

In principle, the method applies to all spherical topology data
from the same class, and should be particularly beneficial in in-
stances where identifying salient object features is a nontrivial task.

Understanding and quantifying differences across groups of hu-
man subjects is important in the study of injury mechanisms and
prevention, as well as for the design of orthopedic implants. Al-
though many statistical methods for analyzing 3D shape variation
exist, they generally require good pairwise correspondence between
the different input shape samples. In the case of arthrodial-joint
data, the challenge resides in establishing correspondence between
inter-individual bone instances where corresponding features are



difficult to identify without a high level of expertise, due to the
smooth, bean-like nature of the arthrodial geometry. Our marker-
less geometry correspondence method addresses successfully this
challenge. The method should be useful as a preprocessing step in
the statistical shape analysis of wrist and ankle data.
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