
1

WUCSE-2003-53: Painting lighting and viewing
effects
Cindy Grimm

Abstract—
We present a system for painting how the appearance of an ob-

ject changes under different lighting and viewing conditions. The
user paints what the object should look like under different light-
ing conditions (dark, partially dark, fully lit, etc.) and (optionally)
different viewing angles. The system renders the object under new
lighting conditions and a new viewing angle by combining these
paintings. We also provide a technique for constructing texture
maps directly from the user’s paintings.

I. I NTRODUCTION

In traditional 2D media an artist learns how to represent 3D
forms on a 2D canvas using a combination of color, shading,
and texture. Unlike photography, artists are free to render the
world any way they like, whether it is physically “accurate” or
not. They use the real world as a guide, but are not constrained
by it.

In computer graphics, the artist controls the rendering pro-
cess by changing lights, materials, textures, and shaders. This
process lies somewhere between photography and painting; the
artist has a great deal of indirect control over the way objects
reflect light, but nodirectcontrol of the final image.

In this paper we describe a system that allows an artist to
“paint” a 3D scene and what it should look under different
lighting and viewing conditions. These paintings serve as an
alternative method for specifying textures, shaders, and mate-
rial properties. The goal is to let the artist use their traditional
2D skills in the 3D environment, an idea pioneered by 3D paint
systems [8]. The original 3D painting systems were used to
specify texture maps in an intuitive way; we extend this idea to
the specification of shaders.

The artist begins by painting what the object should look like
as if it were unlit,i.e., completely in shadow. They next paint
what the object should look like if it were fully lit. At this point,
we have enough information to render the object, blending from
the “dark” painting to the “light” painting as the shading on the
object changes.

The artist is then free to add more paintings. These paintings
may show what the object looks like when partially lit, what
it should look like when viewed from a particular angle, under
particular lighting conditions, or from far away. A whimsical
example of a rendering using three paintings is shown in Fig-
ure 1.

The system is designed to be user-intensive, under the as-
sumption that the user is a skilled artist and has a particular goal
in mind. The effects that are created using the system could be

C. Grimm is a professor at Washington University in St. Louis, USA (email:
cmg@cs.wustl.edu)

duplicated using combinations of texture maps and shaders, and
in fact, the rendering system is amenable to a hardware imple-
mentation. The advantage of this approach is, we believe, the
directness of it.

We begin by putting this approach in context with existing
work (Section II). We next discuss the system as seen from the
user’s point of view (Section III). The implementation section
is broken into two pieces; the first describes how we use the
artist’s paintings as texture maps (Section IV-A). Next, we de-
fine the rendering process (Section IV-D). We close with results
and conclusions.

II. PREVIOUS WORK

This work continues the concept of using warm and cool col-
ors [7] or painterly color models [18] to shade an object. We
combine this with 3D painting [8], [19], [1] to let the user paint
both the texture and the shade effects at the same time.

Several techniques exist for automatically shading models
using common 2D techniques such as hatching [20], [17], [10],
procedural pen-and-ink textures [21], and cartoon shading [11].
There are two primary challenges in stroke-based techniques.
The first is to maintain constant shading tones and stroke thick-
nesses as the model is viewed from different distances. This is
achieved by creating a set of “artistic mip-maps” [13]. Each
layer of the mip-map contains all the strokes of the previ-
ous mip-map. The second problem is maintaining consistent
strokes as the desired shading value changes; again, this is
achieved by adding strokes to existing strokes, creating increas-
ingly darker tones. Together, these stroke images form a 2D
“spread sheet”, where moving in one direction changes the per-
ceived intensity, and the other direction adjusts for the num-
ber of pixels the model occupies. We adopt this “spread sheet”
structure to store our paintings (see Figure 1).

In the non-photorealistic community there is a growing body
of stroke-basedrendering systems that are examining what it
means to translate the concept of “brush stroke” to a 3D model.
Early work let the user specify the model, the strokes, and how
the strokes should be applied to the rendering [14]. Harold [3]
was a system that directly captured the user’s drawings and
placed them in a 3D world. Recent work [12] has combined
the automatic shading models with an interactive system for
specifying the sample strokes and where they should go. We
differ from this approach in that the user specifies the tone and
the texture together.

Disney’s Deep Canvas [4] was one of the first systems to con-
vert an artist’s 2D painting to 3D. Every stroke the artist made
was “attached” to a 3D element in the scene. When the cam-
era moved, the strokes were re-oriented and scaled to match the

2

Fig. 1. An example using three shading values. The three paintings for the current camera view are shown in the upper left, a bump map in the upper right.
Bottom row left: The intensity values on the object. Bottom row right: Using the three paintings to build a texture map by blending according to the intensity
values. The dark painting is assigned the value 0, the lightest painting the value 1. From left to right we set the middle painting’s value at 0.5, 0.9, and 0.95.

new viewpoint. When the viewpoint changed sufficiently, the
artist would paint the scene from this new viewpoint. We adopt
this notion of painting a series of viewpoints, but interpolate
and blend in the texture map and not the strokes themselves.

3D painting requires a texture map, and a way to “reach” ev-
ery point on the object with the paintbrush. A survey of the cur-
rent approaches and problems can be found in a technical report
by Low [15]. If a model has an existing texture map then we
can use that. Takeo [9] introduced a method for creating a tex-
ture map “on the fly” by locally flattening out the mesh into the
plane. This works well for simple non-occluding meshes, but
becomes somewhat difficult for objects with handles. Lapped
textures [16] provide a method for locally flattening out pieces
of the mesh and texture mapping the pieces. One problem with
using an existing texture map is that the user’s paintings need to
be resampled into the texture map; if the texture map resolution
varies much from the sampled image this can create artifacts.
For that reason, we introduce a texture mapping method that
uses the paintings directly and can cope with self-occlusions.

View-dependent texture maps first arose in the context of
image-based rendering [5]. In this case, photographs are
aligned with the 3D model automatically. As the camera view-
point changes, different sets of photographs are chosen and
combined. We use the weighting scheme outlined in Buehler
et. al. [2] to combine our paintings. This approach weights
the blends based on how close rays are in angular distance and
resolution (distance to the camera).

III. U SER INTERFACE

In this section we describe the system from the user’s point
of view, leaving the details of the implementation for later sec-
tions.

When developing our system we chose to have the user use
an external program, such as Paintertm, to create the images
(or, alternatively, they can scan hand-painted images in). This
has the advantage that the user can use their favorite method
for creating the 2D images, but it has the disadvantage of in-
troducing an intermediate step between painting and viewing

the results. We ameliorate this somewhat by copying data from
existing paintings to new views before the user begins painting.

The system has two windows, a 3D one and a 2D one. In
the 3D window the user can change the camera viewpoint and
lights, see the results of one painting or a group of them, or what
part of the object is currently un-painted. In the 2D window the
user can page through the existing paintings, and add new shade
values or mip-map levels.

Each painting consists of a set of images, the camera that was
used to create those image’s viewpoint, a set of shade values, a
material shinyness, and an optional bump map. Each image
in the set has a shade value and a mip-map level; the set of
images forms an array indexed by shade and mip-map level (see
Figure 1). To create a painting, the user first picks the camera
viewpoint using the 3D window. In the 2D window they then
name the painting and pick a shade value for the image. They
can then optionally add new shade values and mip-map levels
(which in turn creates more images).

We classify paintings into three classes; base-coat, view-
dependent, and light-dependent. The base-coat paintings cover
the visible part of the object and serve as the “base” texture.
The view-dependent paintings only appear for a limited range
of view angles (see Figure 3). The user has two sliders that
control the view angle ranges; the first controls the total visi-
ble angular distance, the second controls how fast the painting
fades out.

The light-dependent paintings are tied to the position of a
particular light in the scene instead of the camera. The user
has three sliders that control the angles over which the light-
dependent painting appears. The first two are identical to the
view-dependent sliders; the last one lets the user fade the paint-
ing out as the light moves away from the object.

A typical painting session begins with the user picking some
number of base-coat views, typically 4-6. For each base-coat
view the user specifies two shade values, one dark and one light,
which creates corresponding dark and light images. These im-
ages initially contain a grey-scale rendering of the model. The
user paints the images, then reads them back in and applies

3

Fig. 2. Splitting the object into two paintings to avoid the self-occlusions.
Left: The first layer contains the handle and the body of the vase, except for the
part under the handle. Right: the part of the vase body that was covered by the
handle. The uncovered portion of the mesh is shown in (smooth) grey.

Fig. 3. Left: The vase with just the base-coat. Middle: The angle at which the
side view-dependent painting begins to appear. Right: The side view-dependent
painting fully visible.

them to the model. The user then moves to the next painting
viewpoint and writes out images that show the uncovered por-
tion of the model as a grey scale image, and the covered portion
showing the dark (or light) previous painting.

Once the initial base-coat is created the user has several op-
tions:

• Produce mip-map levels of the current paintings and edit
them to create effects based on viewing distance and
screen size.

• Add more shade levels to control the dark-to-light transi-
tions.

• Add one or more view-dependent paintings (each of which
contains one or more shade levels).

• Add one or more light-dependent paintings.
• Adjust the shinyness parameter. This is equivalent to the

traditional shinyness parameter and controls how sharp the
highlights are.

• Add a bump map. This is also equivalent to the traditional
bump map and is used in the lighting calculation to adjust
the surface normals of the texture map.

If the object is self-occluding then the user has the option of
separating the object into pieces and painting each of the pieces
with two or more paintings (see Figure 2). This is discussed in
more detail in the texture section.

IV. I MPLEMENTATION

In this section we provide implementation details for the tex-
ture maps (Section IV-A) and the rendering (Section IV-D). The
texture map section describes how to use the painting images di-
rectly as texture maps. There are two issues here; first, how to
cope with self-occluding models, and second, how to combine
the paintings where they overlap on the object.

The rendering section defines how the paintings are shaded
and then combined into a final rendering. We use image-based
rendering techniques, based on the ones in Buehler et. al. [2], to
combine the paintings. Although we use our texture mapping
technique in this discussion, the methods themselves apply to
any texture map representation.

A. Texture maps from paintings

To create a texture map from a painting we project the ver-
tices of the faces onto the image and use the projected locations
as texture coordinates. Our algorithm addresses the two major
problems with this approach, occlusion and shared faces.

For any reasonably complicated model there will be portions
of the model that are occluded. This leads to two problems.
First, if two faces map to the same pixel then they both get col-
ored with that pixel’s color. This is desirable for two neighbor-
ing faces but not so for two overlapping faces. Second, it may
be difficult to find a view where the occluded faces are visible.

We approach the problem of occlusion by breaking the
model’s mesh into layers (see Figure 2). As a layer of the mesh
is painted (with one or more paintings) we “peel off” that layer
to expose the next set of faces to be painted. We also ensure that
the occluded faces (even partially occluded ones) are not used
in a painting. To make painting simpler, and to avoid texture
blending artifacts, we enforce a pixel wide halo around faces
that occlude other ones.

B. Data structures

For each painting we store the layer, the list of faces associ-
ated with that painting, texture map coordinates for the vertices,
the camera, and an alpha mask. The user provides the layer
number, and the remaining data is calculated automatically.

C. Algorithms

1) Faces for a painting: We start with the set of faces not
assigned to a higher level. We run a modified two-pass scan-
line algorithm to determine which faces are visible, which are
occluded, and to calculate the point and normal for each pixel.
In the first pass we perform the standard scan-line algorithm,
keeping track of the points and normals, and which face they
came from. Any face which falls across the edge of the image
or is back-facing is eliminated at this stage.

In the second pass we increase the size of the polygon by half
a pixel in all directions and keep track of all of the faces that
map into each pixel, sorted by depth. For each pixel covered
by more than two faces we look for possible occlusions. A face
f is occluded if there is a faceg that is closer andg is not a
neighbor off in the mesh.

To determine iff andg are neighbors we look for a path of
adjacent faces{fa} that connectf to g such that every face in

4

{fa} maps to the current pixel. Usuallyf andg will either be
adjacent or widely separated, but it is possible for several small
faces to map to a single pixel.

If the mesh has intersecting polygons then the above algo-
rithm will end up throwing both polygons out. As an alterna-
tive, we can sort the faces by their depth order (essentially the
Painter’s [6] algorithm) and perform occlusion testing on this
ordered list. In this case,any face that overlaps and is not a
neighbor is thrown out.

2) Assigning faces to layers:We need to assign each face
to a primary texture; this is used at rendering time to ensure
that there are no opacity gaps. We also use this algorithm to
determine which layer a face should belong to. We begin with
the set of faces that map to any layer zero painting. We assign
the face to the painting where the face is most forward-facing.
We then repeat with the set of faces covered by the second layer,
but not the first. We continue until all of the faces are covered.

The above algorithms are interleaved with the user’s creation
of paintings. Usually the user will paint several views that cover
the object, assign them to a single layer, then “strip off” those
faces to begin painting the next layer. For example, layer zero
for the vase was made first with six paintings that covered the
top, bottom, and four sides. The scan-line algorithm left gaps in
the areas behind the handles and around the lid. After painting
these six views, the user ran the face assignment algorithm by
clicking a button. They were then able to see just the faces left.
They picked six more views, angled through the handle on each
side and top and bottom, to fill in the back side of the handles,
the vase body, and the remaining top and bottom of the lid.

3) Combining paintings: Faces will usually be covered by
one or more paintings and we want to blend smoothly from
one painting to the next. This is essentially an image-based
rendering problem; we want to take the paintings that best cover
a face and combine them based on the camera angle relative
to that face. At this stage we currently blend only on camera
angle, and not on resolution, because the paintings are usually
at similar resolutions.

For each pixel in each face in each painting we store the per-
centage of that painting to use in the alpha mask. We then
use OpenGL’s blend routines to combine the results. To cal-
culate the percentages we first find the angles,αi, between the
face normal at that pixel and the ray from camerai through
that pixel. (We linearly interpolate the vertex normals across
the face.) Letαm be the maximum angle we wish to allow
(slightly less than90deg). We use a maximum angle rather than
the largest angle because we may only have two paintings. The
un-normalized weights are then:

wi =
1
αi

(1− αi

αm
)

We only use cameras whereαi < αm. To normalize, we divide
by the sum of all the weights. Ifαi = 0 for some camera, then
we only use that camera.

D. Rendering

In the rendering step we create a “shaded” texture map for
each painting and combine the results together. We calculate

the shaded texture map by finding the intensity value at each
pixel and interpolating between the images that bracket that in-
tensity value. All of the paintings are calculated in this manner;
for the light-dependent paintings that depend on specularity we
only use the specular component of the lighting calculation to
determine the intensity.

The view-dependent and light-dependent paintings over-ride
the base-coat paintings. We first calculate the percentage of
each additional painting we wish to include; these numbers
are derived from the user-specified maximum angle and fall-
off. We then normalize the additional contributions, using the
base-coat if the sum of the contributions is less than one.

1) Shading the texture maps:We calculate how much light
the object should reflect, then use that number to linearly
blend between the two bracketing shade values, creating a new
“shaded” texture map. This calculation is performed on a per-
pixel basis.

Suppose we haveN texture mapsti at shade values0 ≤ di ≤
1, with di < di+1. For each pixel in the texture map we have
stored a pointp and a normaln. The color of the pixel in the
shaded texture map is found by first calculating the shade value
s at the pixel using the standard lighting calculation [6] (l is the
look vector,Ia, Id, Is the ambient, diffuse, and specular light
values,d the distance to the light source,l the vector to the
light source):

s = Ia +
1

c0 + c1d + c2d2

∑
(Idn · l + Is(r · l)e)

Next, we use that shade value to determine the two bracketing
texture maps and how much of each to take:

i s.t. di ≤ s ≤ di+1 (1)

ts(x, y) =
di+1 − s

di+1 − di
ti +

s− di

di+1 − di
ti+1 (2)

We can either blend each of the color channels independently,
or average theRGB values ins and use the same blend value
for all channels.

We can easily incorporate bump mapping [6] and material
shininess into this calculation. Since we are storing the per-
pixel normals already, we can simply perturb these normals us-
ing the bump map and store the results. Material shininess is
captured by the parametere in the lighting equation.

To create the point and normal information we use the stan-
dard scan-line [6] algorithm and store the results in two images.
The maximum amount of data storage needed for the base coat
(including the bump map and “scratch” texture space for the
blended texture) is(N + 4)(WH), whereW,H are the width
and height of the texture map for the entire object.

2) View-dependent maps:View-dependent (VD) maps fade
in and out based on the current viewing direction. Like the base
coat, each VD map has one or more paintings at different shade
values and point and normal information for those paintings.
The final, shaded VD texture map is calculated by blending be-
tween the paintings on a per-pixel basis. Unlike the base coat,
each VD map typically covers only a subset of the model (since
there is no point in painting parts of the model that will not be

5

seen). To control the fade we weight the texture map’s contribu-
tion by a valuewv that depends on the current viewing direction
(see Eq 3).

Each VD map has an associated viewing direction, repre-
sented by aneye point pe and anat point pa. Theat point
lies along the look vector and in a plane containing the model.
Given a neweye pointp′

e we can calculatewv as follows:

d =
pe − pa

||pe − pa||
· p′

e − pa

||p′
e − pa||

(3)

wv =
{

0 d ≤ dm

((d− dm)/(1− dm))f d > 0 (4)

where0 < dm < 1 is the cut-off angle specified by the user
and 1 < f < ∞ is the speed of the fall-off, also specified
by the user. This is essentially a camera angle penalty [2]. This
equation ignores the viewing distance (the appropriate mip-map
level will be selected by OpenGL) and does not take into ac-
count where the object is in the field of view.

3) Light-dependent maps:Light-dependent (LD) maps are
nearly identical to VD maps, except for the calculation ofwv.
Instead of storing aneye point and anat point we store
the sourceps and directionvd of the associated light source.
dm andf control the rate of angular fall-off, as in the view-
dependent maps.mo controls the distance at which the LD map
falls off:

dv = vd · v′
d (5)

dd = ||ps − p′
s||/(mo) (6)

αv =

 0 dv ≤ dm

0 dd ≤ mo

(1− dd)((d− dm)/(1− dm))f otherwise
(7)

4) Image-space size:We use OpenGL’s mip-mapping rou-
tines to account for changes in resolution. The user may over-
ride the default mip-maps, if desired (see Figure 1).

To reduce the computation time of the filtered images we can
save and propagate down the shade values that were calculated
at the top level.

5) Blending additional paintings: After calculating the
weights for additional paintings, we sum the weights. If the
sum is less than one then we make up the difference using the
base-coat. If the sum of the weights is greater than one, then
we normalize and do not use the base coat. The calculations are
performed on a face-by-face basis.

V. RESULTS

In Figure 4 we see the same scene with different portions
painted by two different artists. Most of the objects have be-
tween 6 and 8 paintings. The vase and the table both required
slightly more paintings because of occlusion effects. The vase
also has view-dependent effects, as can be seen in the accom-
panying video. The orange and table both have bump maps.

In Figure 5 we see two different plants, each with approxi-
mately 20,000 faces. The table, pot, and plant each have 6-8

paintings. For the plant we did not do any occlusion culling; all
of the faces map to one of the paintings.

Rendering time for the scenes was between 1 and 5 seconds
on a 2GHz Pentium processor.

VI. CONCLUSIONS

We have presented a system for painting lighting and view-
ing effects that is a simple extension to existing texturing and
lighting techniques. The approach is suitable for hardware ac-
celeration. We also provide a method for building texture maps
directly from user’s paintings.

The system is currently being used by an artist with no com-
puter science background. The artist is learning to use 3DS
Max in addition to using in-house software. Unfortunately the
artist has no experience with traditional 3D painting systems,
so he cannot make any comparisons in that area. He does have
this to say about the painting system versus the materials and
shading system of 3DS Max:

I am designing both the dark and light textures and
the computer is putting them together for me. In 3DS
Max I don’t have that same direct control - I may
be able to import a texture, but often end up spend-
ing hours tweaking lighting and material properties to
find the dark and light images I’m looking for. This
is a much simpler system to learn for someone com-
ing from traditional media - 3DS Max is very power-
ful, and offers so many tools, but it doesn’t let tradi-
tionally trained people take advantage of their learned
skills.

We believe that “painting” provides a viable alternative to
specifying lighting and viewing effects using traditional mate-
rials and shaders, especially for artists who are transitioning
from traditional media to 3D computer graphics.

REFERENCES

[1] Agrawala Maneesh and. 3d painting on scanned surfaces. InSymposium
on Interactive 3D graphics, 1995.

[2] Chris Buehler, Michael Bosse, Leonard McMillan, Steven J. Gortler, and
Michael F. Cohen. Unstructured lumigraph rendering. InProceedings of
ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Con-
ference Series, pages 425–432. ACM Press / ACM SIGGRAPH, August
2001. ISBN 1-58113-292-1.

[3] J. Cohen, J. Hughes, and R. Zeleznik. Harold: A world made of drawings,
2000.

[4] Eric Daniels. Deep canvas in disney’s tarzan. InACM SIGGRAPH 99
Conference abstracts and applications, page 200. ACM Press, 1999.

[5] Paul E. Debevec, Yizhou Yu, and George D. Borshukov. Efficient view-
dependent image-based rendering with projective texture-mapping. In
Eurographics Rendering Workshop 1998, pages 105–116, Vienna, Aus-
tria, June 1998. Springer Wein / Eurographics. ISBN 3-211-83213-0.

[6] James Foley, Andries van Dam, Steve Feiner, and John Hughes.Com-
puter Graphics: Principles and Practice. Addison and Wesley, 1997.

[7] Bruce Gooch, Peter-Pike J. Sloan, Amy Gooch, Peter S. Shirley, and Rich
Riesenfeld. Interactive technical illustration.1999 ACM Symposium on
Interactive 3D Graphics, pages 31–38, April 1999. ISBN 1-58113-082-1.

[8] Pat Hanrahan and Paul Haeberli. Direct wysiwyg paiting and texturing
on 3d shapes. InSiggraph ’90, volume 24, pages 215—223, aug 1990.

[9] Takeo Igarashi and Dennis Cosgrove. Adaptive unwrapping for interac-
tive texture painting. In2001 ACM Symposium on Interactive 3D Graph-
ics, pages 209–216, March 2001. ISBN 1-58113-292-1.

[10] Pierre-Marc Jodoin, Emric Epstein, Martin Granger-Piché, and Victor Os-
tromoukhov. Hatching by example: a statistical approach. InNPAR 2002:
Second International Symposium on Non Photorealistic Rendering, pages
29–36. ACM SIGGRAPH / Eurographics, June 2002. ISBN 1-58113-
494-0.

6

Fig. 4. The entire still life. Each object was painted individually with between 8 and 12 paintings. Top row: Intensity values. Bottom row: Rendered images.

Fig. 5. Painting plants. Shown are example “dark” and “light” paintings for the table, pot, and plant. The images on the far left are the alpha masks for those
paintings. On the right is two frames from an animation.

[11] Scott F. Johnston. Lumo: Illumination for cel animation. InNPAR 2002:
Second International Symposium on Non Photorealistic Rendering, pages
45–52. ACM SIGGRAPH / Eurographics, June 2002. ISBN 1-58113-
494-0.

[12] Robert D. Kalnins, Lee Markosian, Barbara J. Meier, Michael A. Kowal-
ski, Joseph C. Lee, Philip L. Davidson, Matthew Webb, John F. Hughes,
and Adam Finkelstein. Wysiwyg npr: Drawing strokes directly on 3d
models. ACM Transactions on Graphics, 21(3):755–762, July 2002.
ISSN 0730-0301 (Proceedings of ACM SIGGRAPH 2002).

[13] Allison W. Klein, Wilmot W. Li, Michael M. Kazhdan, Wagner T. Cor-
rea, Adam Finkelstein, and Thomas A. Funkhouser. Non-photorealistic
virtual environments. InProceedings of ACM SIGGRAPH 2000, Com-
puter Graphics Proceedings, Annual Conference Series, pages 527–534.
ACM Press / ACM SIGGRAPH / Addison Wesley Longman, July 2000.
ISBN 1-58113-208-5.

[14] Michael A. Kowalski, Lee Markosian, J. D. Northrup, Lubomir Bourdev,
Ronen Barzel, Loring S. Holden, and John F. Hughes. Art-based render-
ing of fur, grass, and trees. InProceedings of SIGGRAPH 99, Computer
Graphics Proceedings, Annual Conference Series, pages 433–438, Los
Angeles, California, August 1999. ACM SIGGRAPH / Addison Wesley

Longman. ISBN 0-20148-560-5.
[15] Kok-Lim Low. Simulated 3D painting. Technical Report TR01-022, 8

2001.
[16] Emil Praun, Adam Finkelstein, and Hugues Hoppe. Lapped textures.

In Proceedings of ACM SIGGRAPH 2000, Computer Graphics Proceed-
ings, Annual Conference Series, pages 465–470. ACM Press / ACM SIG-
GRAPH / Addison Wesley Longman, July 2000. ISBN 1-58113-208-5.

[17] Emil Praun, Hugues Hoppe, Matthew Webb, and Adam Finkelstein. Real-
time hatching. InProceedings of ACM SIGGRAPH 2001, Computer
Graphics Proceedings, Annual Conference Series, pages 579–584. ACM
Press / ACM SIGGRAPH, August 2001. ISBN 1-58113-292-1.

[18] Peter-Pike Sloan, William Martin, Amy Gooch, and Bruce Gooch. The lit
sphere: A model for capturing NPR shading from art. In B. Watson and
J. W. Buchanan, editors,Proceedings of Graphics Interface 2001, pages
143–150, 2001.

[19] Daniel Teece. 3d painting for non-photorealistic rendering. InACM SIG-
GRAPH 98 Conference abstracts and applications, page 248. ACM Press,
1998.

[20] Matthew Webb, Emil Praun, Adam Finkelstein, and Hugues Hoppe. Fine
tone control in hardware hatching. InNPAR 2002: Second International

7

Symposium on Non Photorealistic Rendering, pages 53–58. ACM SIG-
GRAPH / Eurographics, June 2002. ISBN 1-58113-494-0.

[21] Georges Winkenbach and David H. Salesin. Computer-generated pen-
and-ink illustration. InProceedings of SIGGRAPH 94, Computer Graph-
ics Proceedings, Annual Conference Series, pages 91–100, Orlando,
Florida, July 1994. ACM SIGGRAPH / ACM Press. ISBN 0-89791-667-
0.

