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Abstract— Studies showed that the static nature of the tradi-
tional spectrum allocation methods, currently being used to share
the radio spectrum, resulted in a plenty of unused spectrum
opportunities that wireless devices can still potentiallyexploit. For-
tunately, recent technological advances enabled software-defined
radios (SDRs) that can switch from one spectrum band (SB)
to another at minimum cost, thereby promoting dynamic and
adaptive spectrum access and sharing. In this paper, we derive
and study an adaptive spectrum assessment approach that allows
devices to decidehow to seek spectrum opportunities effectively.
In the event when a decision is made in favor of discovering new
opportunities, the proposed approach allows devices to determine
the optimal number of SBs to be explored so that the device bene-
fits from such an opportunistic spectrum access. This approach is
optimal in that it strikes a balance between two conflicting needs:
keeping spectrum assessment overhead low while increasingthe
likelihood of discovering spectrum opportunities. We study the
effect of several network parameters, such as the primary traffic
load, the secondary traffic load, and the collaboration level of the
sensing method, on the optimal number of SBs that devices need
to explore.

Index Terms— Adaptive spectrum assessment, opportunistic
spectrum access, software-defined radios, cognitive radionetworks

I. I NTRODUCTION

The recently-witnessed success of wireless-based services
and networks has resulted in an explosive demand for the
electromagnetic radio spectrum. The spectrum supply, on the
other hand, hasn’t kept up with this fast demand. As a re-
sult, there is an expected shortage of spectrum supply, which
prompted regulatory bodies, such as FCC (Federal Communi-
cations Commission), to think of new ways that will make use
of the available spectrum more effectively.

In an effort to assess the current state of spectrum use,
FCC has recently conducted a measurement-based study [1]
of spectrum utilization in several major US cities. This study
revealed that many portions of the spectrum are not in use fora
significant period of time, thus implying the existence of plenty
of spectrumopportunitiesthat can still be exploited. As a result
of this FCC’s study as well as other similar studies [2], agencies
at both levels, governmental and industrial, have concluded that
in order to improve spectrum utilization, the available spectrum
ought to be accessed and sharedadaptivelyanddynamically.

As of today, the available radio spectrum is divided by FCC
into spectrum bands (SBs), and statically assigned to users
according to one of two models [3]:licensedor unlicensed.
In the licensed model, SBs are licensed to users, referred toas
Primary Users (PUs), who have exclusive use rights to their
assigned SB. PUs are also protected against signal interference

when using their assigned SB. The second model, on the other
hand, consists of allowing other users, referred to asSecondary
Users (SUs), to share the remaining spectrum (the unlicensed
spectrum) in a non-exclusive manner. Unlike PUs, SUs have
neither rights to, nor guarantees of, interference protection. It
is important to mention that according to these FCC’s current
spectrum allotment models, no users except PUs (i.e., licensees)
are allowed to access the licensed SBs even if these PUs are
not using their SBs.

To resolve the spectrum shortage problem, FCC proposed
to reform its current allotment policies to promote dynamic
and adaptive spectrum access. Specifically, FCC promotes what
is calledopportunisticspectrum access; i.e., SUs are allowed
to seek and use any licensed SB so long as they do not
cause interference to PUs. Therefore, SUs who want to exploit
spectrum opportunities should be capable ofdetecting and
locating these opportunities without harming PUs in order
to comply to FCC’s interference-free, opportunistic spectrum
access policy. For example, this detection function should
enable SUs to immediately vacate the SB upon detection of
PUs’ presence in, or return to, their assigned SB. Spectrum
detection mechanisms have been intensively studied in the
literature [4–16], and can be classified into two categories:
non-cooperative [4–8, 13, 15, 16] and cooperative [9–12, 14].
In the non-cooperative approach, SUs purely rely on primary
transmitters’ signals to determine whether a particular SBis
currently being occupied by any PUs. The effectiveness of
this approach in terms of SUs’ ability to detect the presence
of PUs depends on (1) the strength of PUs’ signals and (2)
the prior information that SUs have regarding PUs’ signals.
When PUs’ signals are strong enough, SUs can measure the
energy level of the received signal to decide whether a PU is
present in the licensed SB [4, 5, 15]. For example, the two
methods, called forward consecutive mean excision (FCME)
and cell averaging (CA), proposed in [15] for detecting signals
in environments where noise power is known, are based on
energy level. Hence, these approaches are referred to asenergy-
based signal detection. Energy-based detection approaches are,
however, susceptible to noise, and cannot discriminate among
different types of signals. On the other hand, if SUs have
prior knowledge regarding PUs’ signal characteristics, such as
type of modulation and hoping sequences, thenfeature-based
signal detectionapproaches [6–8] can be used to detect the
presence of PUs. Unlike the energy-based detection, the feature-
based detection can distinguish different types of signals. Most
of the proposed approaches were evaluated through analytical
and simulation tools, and not until recently has it been some
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experimental work on spectrum sensing detection [13]. In [13],
the authors experimentally identified physical difficulties in
determining the detection threshold and the in-band jamming
between SUs. More recently, a sensing-period adaptation mech-
anism has been proposed [16]. The basic idea in [16], referred
to as MAC-layer sensing, is to use MAC-layer-measurable
metrics to adaptively estimate spectrum-usage patterns, and
apply them to adjust sensing period in a way to minimize the
scanning/discorvey delay.

One major assumption needs be made in order for the non-
cooperative approaches to work is that the decision regarding
the availability of a given SB is entirely based on whether a
primary transmitter’s signal is detectable by SUs or not. That
is, based on this approach, SUs can use any SB as long as
no primary signals are detected on that SB. There is a subtle
issue with this assumption. Recall that it is possible for primary
transmitters to be located far enough from an SU (hence, they
are undetectable by SUs), but their intended primary receivers
are within a close proximity to SUs. In this scenario, the
absence of PUs’ signals false triggers SUs to use the SB, and as
a result, primary receivers will be harmed by SUs’ signals. This
scenario, a typical hidden-terminal problem, must be prevented.
In order to increase the certainty of detecting primary signals,
cooperative signal detection approaches, where SUs collaborate
with each others for better signal detection, can then be used.
These approaches can be implemented in a centralized way [9],
where all SUs report to a central unit whose task is to locate
spectrum opportunities and disseminate them to SUs, or in
a decentralized way [11], where SUs distributively determine
spectrum availability by exchanging information among them-
selves. In [14], distribution detection theory has been used to
allow cooperative spectrum sensing in peer-to-peer cognitive
networks. The authors in [17] propose an adaptive approach
for spectrum sensing that adapts its parameters according to the
characteristics of the occupancy of the spectrum being scanned.
This study shows an efficiency improvements over the non-
adaptive approach, presented in [18].

In this paper, we analytically derive an adaptive approach
that allows SUs to decidehow to seek spectrum opportunities.
Our approach relies on the spectrum detection technique that
SUs implement; hence, we assume that SUs use one of the
previously-developed spectrum detection techniques to detect
and locate spectrum availabilities. The proposed approachal-
lows SUs to decide whether to switch to new SBs to discover
spectrum opportunities, and if a decision is made in favor of
discovering, it also determines the optimal number of SBs that
ought to be sensed. This approach is optimal in that it strikes a
balance between the need to keep sensing overhead minimal
and the desire for increasing the likelihood of discovering
spectrum opportunities. Recall that the greater the numberof
SBs to be sensed, the higher the probability of finding idle
SBs, but also the more overhead is incurred. We study the
effect of the collaboration level of the sensing approach onthe
performance and optimality of the proposed adaptive approach.

The rest of the paper is organized as follows. In Section II, we
present the spectrum allocation and sensing overhead models,
and state our objective. In Section III, we derive the probability
of finding spectrum opportunities in the context of spectrum-

agility. We then propose and study the adaptive spectrum as-
sessment approach in Section IV. Section V presents numerical
evaluation and analysis of the proposed approach. Finally,we
conclude the paper in Section VI.

II. SPECTRUMAGILITY

We assume that each PU is assigned a licensed SB, referred
to as its home SB (HSB), to which it has exclusive access
rights. We also assume that each SU is associated with one
SB, also referred to as its HSB, that it can use, leave, or return
to at any time, and without prior notification. Unlike PUs, SUs
are not required to prevent, nor be protected against, possible
interference1 when using their HSBs. While using their HSBs,
both PUs and SUs may choose to seek and use other spectrum
opportunities in other SBs. For example, the 2.4 GHz frequency
band can be viewed as the HSB of an IEEE 802.11 [19] wireless
LAN user, whereas a TV band can be viewed as a licensed
band that the IEEE 802.11 wireless LAN user can only access
opportunistically. It is important to mention that PUs do not
have to seek spectrum opportunities in other SBs, nor do they
have to be equipped with cognitive radios in order for our ap-
proach to work; our proposed approach works independently of
whether PUs are equipped with cognitive radios, and is intended
to be used by SUs to access the spectrum opportunistically. We,
however, envision that spectrum-agility will be adopted byPUs
as well, where although they have their own assigned HSB, PUs
may still want to seek spectrum opportunities in other bands
(e.g., unlicensed SBs). It is also worth mentioning that while the
HSB associated with a PU typically lies in the licensed band,
the HSB associated with a SU does not necessarily belong to
the licensed band; in fact, such a HSB is expected to be in the
unlicensed band.

A. Spectrum Allocation Model

We assume that the available radio spectrum is divided into
m non-overlapping SBs, and that each SB is associated with
PUs who have exclusive and flexible use rights to it. PUs are
also protected against interference when using their assigned
SB. Let p denote the probability that a SB is being used by
PUs at any time; i.e., the traffic load on the SB due to primary
traffic. We termp primary traffic loadon SBs.

We use the notion of a secondary communication group
(SCG) to signify a set of SUs who want to communicate
with each other—a SCG may consist of two or more SUs,
and SU members may join and/or leave the group at any
time. Typically, at any time, one member in a SCG transmits
information while the other members belonging to the same
group will receive it (this is analogous to one member talking
and the others listening in a group discussion). We assume that
all members of a SCG have the same HSB, and they all must
be tuned to the same SB when being involved in an ongoing
communication. It is important to mention that the notion ofa
SCG that we use in this work (and the reason for which it is
introduced) does not prevent a SU from belonging to multiple
SCGs at the same time; it is, however, required that once a

1In order to be able to share and access unlicensed SBs, SUs usually conform
to certain policy and regulations, typically dictated via standards [1].
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SU joins a SCG and decides to communicate with its members,
naturally, it must tune to the same SB to be able to carry such
a communication. There may be multiple SCGs in the network
all of which simultaneously seek spectrum opportunities inall
SBs. We assume that all communication sessions in the network
are generated by SCGs according to a Poisson process of arrival
rateλ. The duration of each session is exponentially distributed
with parameterµ. Let η = λ

µ
denote thesecondary traffic load.

B. Discovering Spectrum Opportunities: Sensing

In order to communicate with each other, all members of
each SCG must be tuned to their HSB. While communicating
on their HSB, a SCG may decide to seek for spectrum opportu-
nities in another SB. This typically happens when, for example,
the members judge that the quality of their current SB is
no longer acceptable. This is typically done by continuously
assessing and monitoring the quality of the SB via some
channel quality metric, such as SINR and/or packet success
rate. That is, when the monitored quality metric drops belowa
threshold that can be defineda priori, the SCG is triggered to
start seeking for spectrum opportunities.

In this work, we assume that SUs are always tuned to their
HSBs. While communicating on their HSB, SUs can then
seek and exploit spectrum opportunities as they discover them.
When a new opportunity is discovered on another SB, SUs
make simultaneous use of both their HSB and the discovered
SB. As soon as PUs return to their SB, SUs must vacate the
licensed SB, and continue communicating on their HSB only.
In the event that the new discovered SB is not adjacent to the
HSB (which is not unlikely), SUs can use selective allocation-
based OFDM techniques [20, 21] to make use of disjoint SBs.

The discovery of spectrum opportunities is done through
spectrum sensing. That is, SUs should, periodically (also re-
ferred to as actively) or proactively, switch to and sense certain
SBs to find out whether any SBs are currently vacant. SUs are
allowed to use any SB only if the SB is sensed to be vacant
(not being occupied by PUs).

C. Sensing Overhead

Unfortunately, the discovery of spectrum opportunities
whether done via active or proactive spectrum sensing methods
cannot be performed without a cost; there is an incurred
overhead associated with spectrum sensing, which is often
referred to assensing overhead. Recall that prior to using
a SB, a SCG must ensure that the SB is not in use by
any PUs. Therefore, whenever a SCG decides to explore new
opportunities in the spectrum, one or more appointed members
belonging to the SCG must tune themselves to the SB to be
assessed, sense the band to see whether any PUs are using it,
and then switch back to their HSB. Upon returning to their
HSB, these appointeescollaborativelyuse a voting mechanism
to decide whether the sensed SB is vacant. While the appointed
SUs are performing the sensing task, all other members stay
tuned to their HSB. The numberδ of these appointed SUs could
be as small as one (only one member performs sensing) or as
large as the total number of all the members of the SCG (all
members perform sensing). This numberδ represents then the

degreeor level of collaboration associated with the sensing
approach. It is worth mentioning that there is always uncertainty
when determining whether a SB is available via sensing; both
false positive and false negative are possible as an outcomeof
a sensing task. However, the higher the degree of collaboration;
i.e., the more members are to perform sensing, the higher the
certainty of the outcome, but also the more sensing overhead
is to be incurred.

Hereafter, we will refer to the case where only one member
(δ = 1) is appointed to perform sensing as the non-collaborative
sensing approach, and to the case where all members (δ = k)
are appointed to perform sensing as the fully-collaborative
sensing approach. The parameterk denotes the number of
members in the SCG. Hence, in the fully-collaborative sensing
approach, all members of a given SCG switch to and sense
the SB to be assessed when spectrum opportunities are to be
discovered.

We consider four types of sensing overhead:

• Throughput Overhead (τt): Whenever a SU switches to a
SB for sensing purposes, it ceases to communicate2 during
that entire sensing period, thereby limiting its achievable
throughput. We useτt to denote this throughput overhead.
τt is a per SU, per sensed SB metric.

• Energy Overhead (τp): Sensing also requires energy; i.e.,
whenever a SU performs a sensing operation, it consumes
a certain amount of energy, which we will denote byτp.
τp is also a per SU, per sensed SB metric.

• Dissemination Overhead (τd): Whenever the appointed
members of the SCG return to their HSB after performing
a sensing task, they need to disseminate the sensing result
among themselves as well as all the other members. There
will be an overhead associated with this dissemination,
which is incurred every time a sensing operation is per-
formed.τd is a per SU only metric.

• Switching Overhead (τs): Every time a SCG switches to
and uses a vacant SB (discovered via sensing), it incurs an
overhead, calledswitching overheadand denoted byτs. τs

is a per SU only metric.

It is worth mentioning that the sensing overhead depends
on (1) the sensing interval; i.e., the amount of time during
which appointees perform sensing, (2) the scanning period;i.e.,
how frequent the sensing operation occurs, and (3) the level
of collaboration of the sensing approach. The total overhead
C(i, k, δ) incurred as a result of havingδ appointed members,
belonging to a given SCG withk members, switch to, and
sense,i among them SBs can be expressed as

C(i, k, δ) = iτtk + iτpδ + θ(k, δ)τdk + τsk (1)

where θ(k, δ) is a per SU design factor that represents the
level of required dissemination, which, in turn, depends onthe
sensing approach.θ(k, δ) can be defined and set by the system
designer. Intuitively, this factor, which depends on the group
sizek and the degree of collaborationδ, should increase with
δ for a givenk. That is, the higher the number of members that
perform sensing, the more dissemination overhead, but alsothe

2This work assumes that each SU can either transmit or receive, but not
both, at the same time. Therefore, when a SU switches to a SB tosense it, it
must cease its communication in order to be able to do so.
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more the reward that the switching decision returns due to the
increased certainty in finding a SB (this will be discussed in
more detail in Subsection IV-B). For instance, in the case ofthe
non-collaborative sensing approach, in which only one member
performs sensing, this factorθ(k, δ) must be as low as possible
since this approach necessitates the least level of dissemination;
for example, if we assume that all members are within one-
hop of each others, then a simple broadcast by the appointed
member suffices to disseminate the sensing information. On
the other hand, as the collaboration level (i.e.,δ) increases
towards its fullest (i.e.,k), the factor should increase as well
to indicate that more dissemination is required as a result of
having more members perform sensing. In this work, we choose
to useθ(k, δ) = δ

k
, where the dissemination overhead factor

increases proportionally with the level of collaboration.It is
important to mention that our model is applicable regardless of
the choice of the dissemination factor, and so is our adaptive
spectrum assessment scheme that we develop in this paper. In
fact, depending on the sensing approach, it is not unlikely that
the dissemination overhead is not proportional toδ. In general,
provided the sensing approach, one can first deriveθ(k, δ) and
then apply Eq. (1) to compute the total sensing overhead.

Note that during the sensing operation of a SB, all the
k members of the SCG will suffer from not being able to
communicate during the entire sensing period. On the other
hand, only the appointed members consume energy during the
sensing period; i.e., there is no energy overhead associated with
sensing for non-appointed SUs.

D. Objective

The objective of this paper is to develop an adaptive method
that SCGs can use to decide on how to seek and exploit
bandwidth opportunities across the various licensed SBs. We
introduce the notion of spectrum assessment benefit via a
net profit function to represent the difference between the
reward and the cost resulting from the act of finding and
exploiting spectrum opportunities; that is, the tradeoff between
the need for increasing the chances of successful discoveryof
opportunities and the desire to reduce the sensing overhead
associated with such an operation. Based on this net profit
function, we derive an approach that allows SUs to determine
the optimal number of SBs that ought to be sensed when a
decision in favor of spectrum discovery is made. Recall thatthe
more SBs to be sensed, the higher the probability of finding idle
SBs, but also the more overhead to be incurred. This approach
is optimal in that it strikes a balance between the need to
keep sensing overhead minimal and the desire for increasing
the likelihood of discovering spectrum opportunities.

III. A P ROBABILISTIC ANALYSIS

The goal of this section is to determine the likelihood that
a given SCG finds an opportunistic SB among them available
SBs. To make the math more tractable and easy to deal with,
we break the problem into two steps. In the first step, we
determine the likelihood that a SCG finds an available SB under
the assumption that no PUs are present in the system. In the
second step, we use the theory developed in the first step to
solve the problem in the presence of PUs.

A SCG is required to sense a SB in order to be able to exploit
it, and only if the SB is sensed vacant that the SCG can then
use it for communication. In the event that all SBs are found
occupied, a SCG should continue using its home channel, HSB,
only.

A. Markovian Analysis Without PUs

In this section, we use Markovian analysis to compute the
probability that a SB is available provided that none of the SBs
are being used by PUs; only SUs compete for SBs. We model
the spectrum condition as a Markovian chain with2m states.
Each stateQ, denoted by(i1, i2, . . . , im) ∈ {0, 1}m, is anm-
uplet of binaries where an elementij ∈ Q, j ∈ {1, 2, . . . , m},
represents the condition of SBj. That is,

SB j is

{

available, if ij = 0;
occupied, if ij = 1;

Let Qi denote the set of all the(m
i ) = m!

i!(m−i)! states that
have exactlyi occupied SBs. Now by considering the new
Markovian chain whose states are the setsQi, 0 ≤ i ≤ m,
the stationary distributionπ′

i, 0 ≤ i ≤ m, of being in stateQi

can be expressed as

π′
i(m) = ηi 1 − η

1 − ηm+1

Given that all states within the same setQi each exists with
an equal chance, the probability thati particular SBs (and only
those SBs) amongm SBs are each occupied by a SCG is given
by

πi(m) =
ηi

(m
i )

1 − η

1 − ηm+1

Hence, the probability that a particular SBi0 (and only SBi0)
is occupied provided that exactly anyi − 1 other SBs are also
occupied is

π̄i(m) = (m−1
i−1 )πi(m) =

ηi(1 − η)i

m(1 − ηm+1)

Using the above stationary distribution, the probability that
a particular SBi0 (and only SBi0) amongm SBs is vacant
provided that no PUs are present in the system can be expressed
as

p0(m) = 1 −
m

∑

i=1

π̄i(m) =
ηm+1 − (m + 1)η + m

m(1 − η)(1 − ηm+1)
(2)

B. Markovian Analysis With PUs

Recall that the goal is to determine the likelihood that a given
SCG finds an opportunistic SB among them available SBs. The
approach we propose that a given SCG adopts is as follows.
The SCG starts sensing SBs one by one, and stops when it
succeeds in finding an idle one. If we assume that the SCG is
limited to sensingi SBs only among all them available SBs,
then the question that naturally arises is: what are the chances
that the SCG finds one available SB among thosei SBs. We
will answer this question in this section; i.e., we will derive
the probabilityqi(m) that a SCG finds one available SB when
sensingi SBs,1 ≤ i ≤ m, among them SBs available in the
system.
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We first start with the case ofi = 1, that is, we first derive

the probability that a given SB is available for a SCG in the
presence of PUs.

We introduce the following events:
Ai ≡ event that SBi is occupied by a PU.
Bi ≡ event that SBi is occupied by a SU.
Ci ≡ event that SBi is occupied by either a PU or a SU.

Note that Pr{Ai} = p and Pr{Bi|Ā1, Ā2, . . . , Ām} = 1 −
p0(m) for all i ∈ {1, 2, . . . , m}, whereĀi denotes the comple-
ment ofAi andp0(m) is given by Eq. (2) above (Pr stands for
probability). By recursively using the law of total probability,
the probabilityq1(m) that a particular SBi0 (and only SBi0) is
vacant (not being used by any PU, nor any SU) can be written
as

q1(m) = 1 − p −

m
∑

j=1

(j−1
m−1)p

m−j(1 − p)j(1 − p0(j)) (3)

wherep0(j) is given by Eq. (2) for allj = 1, 2, . . . , m.
Remark 1:The derivation of Eq. (3) is given in Ap-

pendix VI-A.
We now derive the probabilityqi(m) when i ≥ 2 as

a function of q1(j) for j = 1, 2, . . . , m. Without loss of
generality, let1, 2, . . . , i be the sensing order. By observing
thatqi(m) is the probability that SB1 is available, SB1 is not
available and SB2 is available, or SBs1, 2, . . . , i − 1 are not
available and SBi is available, one can write

qi(m) = q1(m− i+1)+

i−2
∑

s=0

q1(m − s)

i−1
∏

j=s+1

(1 − q1(m − j))

(4)
for i ∈ {2, 3, . . . , m}, whereq1(j) is given by Eq. (3) for all
j = 1, 2, . . . , m.

Remark 2:The derivation of Eq. (4) is given in Ap-
pendix VI-B.

IV. OPTIMAL SPECTRUMDISCOVERY

In this section, we aim to derive an adaptive approach that
SUs can use to decide whether and how to seek spectrum
opportunities. The basic idea is as follows. While using their
HSB, SCGs may want to seek spectrum opportunities in other
spectrum bands. To do so, at any time, a SCG tunes to a
particular SB to assess its availability, and if the SB is found
idle, the SCG can then use it along with its HSB. There are
two questions that naturally arise: (1) when should a SCG seek
for new spectrum opportunities? and (2) how many SBs among
the m SBs should a SCG scan for discovering opportunities?
Recall that the more and/or the more often SBs are scanned,
the higher the chances of finding opportunities are, but alsothe
more sensing overhead is incurred.

The objective of this section is then to derive an optimal
approach that permits SUs decide when to switch to new SBs
to discover spectrum opportunities, and if a decision is made in
favor of discovering, it also determines the optimal numberof
SBs that ought to be sensed. This approach balances between
the need to keep sensing overhead low and the desire to increase
the likelihood of discovering spectrum opportunities. Thestudy
accounts for the collaboration level of the sensing approach via
the parameterδ.

A. Switching Model and Decision

Although while using their HSBs, SCGs may decide to seek
and use new spectrum opportunities at any time, in practice,
such a decision may be based on a particular quality of service
(QoS) metric that characterizes HSB, such as SINR, or packet
success rate, that SCGs can monitor in real-time. Letγ(i)
denote the QoS level associated with SBi. It is whenγ(i) drops
below a priori defined threshold̄γ(i) that a SCG, currently
using HSBi, can seek new opportunities by switching to, and
sensing, other SBs.

B. Optimal Number of SBs

We now want to answer the following question. When
a SCG decides to explore new spectrum opportunities (for
example, whenγ(i) drops belowγ̄(i)), what will the optimal
number of SBs that the SCG should scan be?

Let’s assume that a SCG gets a rewardℜ if it successfully
finds an opportunistic SB. If no SB is found, then the reward is
0. Recall that there will always be a cost (overhead) associated
with each attempt of discovering new spectrum opportunities,
and this is regardless of whether the SCG gets a reward. This
cost is explained and determined in Section II-C. There are two
design options of the rewardℜ that one can use, each of which
is applicable to a different class of applications. Option1—A
binary rewardℜ: In this option, a SCG is assumed to either
receive a full rewardℜ when switching to a SB, or to not
receive a reward at all (ℜ = 0). In this design option,ℜ is kept
the same across all SBs. The idea here is that a SCG would
not want to switch to a new SB unless this new SB guarantees
a minimum level of QoS; e.g., minimum bandwidth. In other
words, a SCG decides to switch to a new SB only when the
SB’s offered QoS is above a certain threshold (it then gets a
full rewardℜ), and it decides not to switch to the new SB when
the SB’s offered QoS is below the threshold (it then gets a0
reward). A SB is then considered ”vacant” only when its QoS
level is above a certain level. This model fits well with inelastic
applications, such as voice and video applications. Now the
question that arises naturally is: how can the SCG assess a
SB’s QoS level via a detection method? Fortunately, there are
several methods recently proposed that measure QoS metrics,
such as packet success rate, SINR, and channel holding time
(e.g., [16]). Option2—A SB-dependent rewardℜ: Another
option is to expressℜ as a function of the SB’s QoS metrics.
In this case,ℜ will not be kept constant across all SBs as it
will depend on the SB’s characteristics and conditions. Unlike
the 0 − 1 design model adopted in the first option, this model
is more suitable for elastic applications, where, naturally, the
reward for switching to a SB is proportional to the QoS level
attainable through the SB. In this paper, we adopt the first
design option. The second option is left for future work as
described in Section VI.

We now introduce a net profit functionφ(i, δ, k, m) to
represent the tradeoff between the need for increasing the
chances of finding vacant SBs (by increasing the numberi of
scanned SBs) and the desire to reduce the sensing overhead
(by limiting the numberi of scanned SBs). The profit function
φ(i, δ, k, m) can be expressed as

φ(i, δ, k, m) = σ(δ)qi(m)ℜ − C(i, k, δ) (5)
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whereσ(δ) = σ(1)δ

σ(1)δ−σ(1)+1 , σ(1) ≤ σ(δ) < 1, is a certainty
factor that depends on how collaborative the sensing approach
is. Although the trend ofσ(δ) as a function ofδ depends on the
sensing approach, in general, the larger theδ (i.e., the higher
the level of collaboration), the more certain the vacancy ofthe
SB; i.e.,σ(δ) grows withδ. σ(1), 0 < σ(1) < 1, corresponds to
the certainty factor of the non-collaborative approach (δ = 1),
and is a design parameter to be fixeda priori. (The termsqi(m)
andC(i, k, δ) are given in Eqs. (4) and (1), respectively.)

The optimal numberi∗ of SBs to be sensed upon a request
for discovering new spectrum opportunities is the one that
maximizes the net profit function; i.e.,

i∗ = arg max
i∈{1,2,...,m}

φ(i, δ, k, m) (6)

Note that this optimal number of SBs depends on several
parameters, such as the size of the SCG, sensing overheads, and
the certainty factor, that can easily be monitored and/or acquired
at run time. In this work, we rely on numerical methods to solve
Eq. (6) to find the optimal number of SBs that maximizes the
net profit function. Finding closed-form or other-form solutions
to Eq. (6) is not within the scope of this work.

C. Adaptive Assessment Approach

Any SCG can adaptively use the strategy described in
Section IV-A to decide when to explore new spectrum oppor-
tunities, and when it decides to do so, it can use the approach
described in Section IV-B to determine the optimal number of
SBs that it must scan so that its overall net profit is maximized.
That is, if at any time the quality of a SCG’s HSB drops
below a priori defined threshold (i.e.,γ(SCG) < γ̄(SCG)),
the SCG first computes the optimal numberi∗ of SBs to be
explored (using Eq. (6)) and then senses exactlyi∗ SBs among
the m SBs.

V. EVALUATION

We now evaluate and study the effect of several network pa-
rameters on the optimal number of SBs that a given SCG needs
to scan so that its spectrum discovery profit is maximized. We
study the effect of the primary traffic load (p), the secondary
traffic load (η), the collaboration level of the sensing approach
(δ), and the size of the SCG (k). For each case/scenario, the
equations given in Subsection IV-B are solved via Matlab to
determine the optimal number of SBs. We set the total number
m of SBs to10. The rewardℜ for successfully finding a vacant
SB is set to200. The certainty factorσ(1) is set to0.8 in
this study. Recall that this factor reflects the certainty ofthe
sensing method in telling whether the SB is vacant or not,
and depends on the collaborative effort and level put by the
members of the SCG in order to discover new opportunities. A
value ofσ(1) equaling0.8 means that when only one member
of the SCG performs the sensing task, the certainty that what
the member reports regarding the vacancy of the channel is true
is 80%. This level of certainty increases with the collaboration
level. The sensing overhead parameters used in this section
are summarized in Table I. Recall that these sensing overhead
parameters are mostly system design parameters, and hence,
can easily be determined once the system is known.

symbol description value

σ(1) certainty factor 0.8
ℜ reward 200
τt throughput overhead 1
τp power overhead 1
τd dissemination overhead 1
τs switching overhead 1
m total number of SBs 10

TABLE I

SUMMARY OF PARAMETERS
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Fig. 1. Effect of primary traffic loadp: η = 0.6, k = 10, δ = 5.

A. Effect of traffic loads: primary and secondary

In Fig. 1, we show the net profit that a particular SCG re-
ceives when performing a spectrum assessment and discovery
act as a function of the number of sensed SBs for different
scenarios of primary traffic loads. In this study, the numberof
members constituting the SCG is set tok = 10, the level of
collaboration of the sensing method is set toδ = 5, and the
secondary traffic load is set toη = 60%. First, note that for
each scenario, there exists an optimal number of SBs that a
given SCG must scan and sense to find spectrum opportunities.
While a small number of SBs incurs little sensing overhead, it
also limits the chances for SCGs to discover vacant SBs. On
the other hand, augmenting the number of SBs to be sensed
increases the chances of finding spectrum opportunities, but not
without incurring extra sensing overhead. Hence, the optimal
number strikes a balance between the need for increasing the
likelihood of finding a vacant SB and the desire for keeping the
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Fig. 2. Optimal number of SBs as a function of primary traffic loadp: η = 0.6,
k = 10, δ = 5.
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Fig. 3. Effect of secondary traffic loadη: p = 0.5, k = 10, δ = 5.
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Fig. 4. Optimal number of SBs as a function of secondary traffic load η:
p = 0.5, k = 10, δ = 5.

sensing overhead minimum. Also observe that, as expected, the
lower the primary traffic load, the the higher the net profit. In
Fig. 2, we plot the optimal number of SBs for different values
of primary traffic loads. Note that the higher the primary traffic
load, the greater the number of SBs that a SCG ought to sense
so that its profit is maximized.

In Fig. 3, we show the net profit that a particular SCG re-
ceives when trying to discover a spectrum opportunity as a
function of the number of sensed SBs for different scenarios
of secondary traffic loads. In this study, the numberk of
SCG members is set to10, the level of collaboration is set to
δ = 5, and the primary traffic load is set top = 50%. Similarly,
the lower the secondary traffic load, the higher the net profit.
Also, we observe the same optimality behavior under the effect
of secondary loads; i.e., regardless of the secondary load,there
is always an optimal number of SBs that a SCG shall scan so as
to maximize its profit during the spectrum discovery process.
The effect of the secondary traffic load on the optimal number
of SBs is depicted in Fig. 4. Like the case of the primary load
traffic, this optimal number increases as the secondary load
increases.

B. Effect of SCG: collaboration and size

Fig. 5 illustrates how the optimal number of sensed SBs by
the SCG varies under the effect of the level of collaborationof
the sensing approach. In this study, we vary the collaborative
level from 20% to 100% (full-collaborative approach). Note
that the optimal number of sensed SBs is less sensitive to the
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Fig. 5. Effect of the level of collaborationδ: η = 0.5, p = 0.5, k = 10.
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Fig. 6. Optimal number of SBs as a function of the level of collaborationδ:
η = 0.5, p = 0.5, k = 10.

level of collaboration of the sensing approach than to either
the secondary or the primary traffic loads. This is illustrated
in Fig. 6, which plots these optimal numbers for different
scenarios of collaborations. It is also worth observing that the
lower the level of collaboration, the greater the optimal number
of sensed SBs that maximizes the net profit. This behavior is
also observed when the size of SCG is varied, as depicted in
Fig. 7, in that the optimal number of sensed SBs decreases as
the sizek of SCGs increases. Fig. 8 shows how these optimal
numbers vary when the size of SCGs change. For example, the
figure shows that the optimal number of sensed SBs is4 when
the size of SCGs is10, whereas, it is6 when the size is2.

In summary, this study provides a analytical method that
allows each SCG, seeking opportunistic spectrum access, to
determine the optimal number of SBs that it may want to
scan in order to maximize its chance of finding opportunities
while keeping the sensing cost minimum. It also shows how
the optimal number varies under the effect of certain system
parameters.

VI. CONCLUSION AND FUTURE WORK

In this paper, we analytically derive an adaptive approach that
allows SCGs to decidewhetherandhow to seek opportunities
in licensed spectra. The approach provides SCGs with the
capability of (1) deciding whether to switch to new SBs
to discover spectrum opportunities, and (2) determining the
optimal number of SBs to be sensed if a decision is made
in favor of discovering. This approach is optimal in that it
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Fig. 7. Effect of SCG’s sizesk: η = 0.6, p = 0.5, δ = 2.
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Fig. 8. Optimal number of SBs as a function of the group sizek: η = 0.6,
p = 0.5, δ = 2.

strikes a balance between two conflicting needs: the need to
keep sensing overhead low and that for increasing the likelihood
of discovering spectrum opportunities. We study the effectof
the primary traffic load, the secondary traffic load, the level of
collaboration of the sensing approach, and the size of SCGs.

Recall that, in this work, we considered and studied the
binary design option of the rewardℜ, in which a SCG is
assumed to either receive a full rewardℜ when switching to a
SB, or does not receive a reward at all (i.e.,ℜ = 0), and hence,
ℜ is the same across all SBs regardless of their conditions.
This 0 − 1 model fits well in scenarios where switching to
new SB does not benefit the SCG unless it provides a certain
level of QoS (e.g., bandwidth). This corresponds to the case
where the applications running on the SCG are not elastic, such
as voice and video applications. As mentioned in Section IV-
B, another design option is consider a rewardℜ model in
whichℜ depends on the SB’s characteristics and quality. Unlike
the studied model, this model fits well with SCGs running
elastic applications, where the reward for switching to a SBis
proportional to the level of QoS perceived by the SB. The study
of this reward model is also of great interest as, in practice,
different SBs are likely to experience different conditions and/or
support different data rates. We plan to study this design option
in the future. Similarly and for the same reasons, the throughput
overheadτt model can also be chosen so that to reflect channel
characteristics, such as bandwidth, modulation, channel quality,
etc. As a future work, we also plan to consider and study
other throughput overhead models. Another point that one can

study in the future is the case when different SBs have or may
have different primary traffic characteristics and loads; i.e., p
is not constant across all SBs. This work considers that all SBs
have the same primary traffic loadp. Finally, the study of the
sensitivity of the proposed approach to design parameters,such
as the rewardℜ, the factorσ(1), the total number of SBsm,
and sensing overheads, is also of a great importance, and hence,
will be investigated in the future.
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APPENDIX

A. Derivation of Eq. (3)

Without loss of generality, let SBi0 be SB1. Also, let I

be a subset in{1, 2, . . . , m} and J = {1, 2, . . . , m} − I. By
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applying the law of total probability, Pr{C1} can be expressed
as Pr{C1|A1}p + Pr{C1|Ā1}(1 − p). Since Pr{C1|A1} = 1,
then Pr{C1} = p + Pr{C1|Ā1}(1 − p). By applying the
law of total probability again, we can write Pr{C1|Ā1} as
Pr{C1|Ā1A2}p + Pr{C1|Ā1Ā2}(1− p), and hence, Pr{C1} as
p + Pr{C1|Ā1A2}p(1 − p) + Pr{C1|Ā1Ā2}(1 − p)2. Now by
using the law of total probability recursively, one can thenwrite

Pr{C1} = p +
m

∑

j=1

(j−1
m−j)p

m−j(1 − p)jpc(j)

where pc(j) = Pr{C1| ∩t∈I Āt,∩s∈JAs, I ∋ 1, |I| = j}.
Observe thatpc(j) represents the probability that SB1 (and
only SB 1) among a total number ofj SBs is occupied given
that no PUs are present. Hence,pc(j) = 1−p0(j), wherep0(j)
is given by Eq. (2) for allj = 1, 2, . . . , m. Eq. (3) can now be
derived by simply noting thatq1(m) equals1 − Pr{C1}.

B. Derivation of Eq. (4)

We use induction to prove the result given in Eq. (4).
BASIS: i = 2. Note thatq2(m) can be written asq1(m)+(1−
q1(m))q1(m − 1) which also equalsq1(m − 1) + q1(m)(1 −
q1(m − 1)).
INDUCTIVE STEP: Now by writingqi(m) asqi−1(m)+ (1−
qi−1(m))q1(m − 1) and replacingqi−1(m) by q1(m − i +
2) +

∑i−3
s=0 q1(m − s)

∏i−2
j=s+1 (1 − q1(m − j)), we obtain the

desired result.


