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ABSTRACT

As an initial step towards solving the spectrum shortage problem,
FCC opens up for the so-calledopportunistic spectrum access
(OSA), which allows unlicensed users to exploit unused licensed
spectrum, but in a manner that limits interference to licensed users.
Fortunately, technological advances enabled cognitive radios, which
have recently been recognized as the key enabling technology for
realizing OSA. In this work, we propose a machine learning-based
scheme that will exploit the cognitive radios’ capabilities to enable
effective OSA, thus improving the efficiency of spectrum utilization.
Our proposed learning technique does not require prior knowledge
of the environment’s characteristics and dynamics, yet canstill
achieve high performances by learning from interaction with the
environment.

I. I NTRODUCTION

FCC’s long term vision for solving the spectrum shortage prob-
lem [1, 2] is to promote the so-calledopportunistic spectrum access
(OSA), which allows unlicensed users (orsecondary users(SUs))
to exploit unused licensed spectrum on an instant-by-instant basis,
but in a manner that limits interference to licensed users (or primary
users(PUs)) so as to maintain compatibility with legacy systems.
The apparent promise of OSA has indeed created significant re-
search interests, resulting in numerous research work ranging from
protocol design [3–5] to performance optimization [6, 7], and from
market-oriented access strategies [8, 9] to new managementand
architecture paradigms [10–13]. More recently, some work effort
has also been given to the development of adaptive, learning-based
approaches [14–26]. Zhao et al. [26] develops a model for predicting
the dynamics of the OSA environment when periodic channel
sensing is used. A simple two-state Morkovian model is assumed
for activities of PUs on each channel. Using this model, Zhaoet
al. derive an optimal access policy that can be used to maximize
channel utilization while limiting interference to PUs. In[20],
Unnikrishnan et al. propose a cooperative, channel selection and
access policy for OSA systems under interference constraints. In this
work, the PUs’ activities are assumed to be stationary Markovian,
and the Markovian statistics are assumed to be known to all SUs. A
centralized approach is considered, where all cooperatingsecondary
users report their observations to a decision center, whichmakes
decision regarding when and which channels to sense and access at
each time slot. In [22], the authors develop channel decision policies
for two SUs in a two-channel OSA system. PUs’ activities are
modeled as a discrete-time Markov chains. Liu et al. [23] considers
the case of multiple, non-cooperative SUs in OSA system where
SUs are assumed not to exchange information among themselves.
The occupancy of primary channels is modeled as an i.i.d. Bernoulli
process, and OSA is formulated as a multi-armed bandit problem
where agents are not cooperative with each others. Chen et al. [24,
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25] develop a cross-layer optimal access strategy for OSA that
integrates physical-layer’s sensing with MAC-layer’s sensing and
access policy. They establish a separation principle, meaning that
physical-layer’s sensing and MAC-layer’s access policy can be
decoupled from MAC-layer’s sensing without losing optimality. The
developed framework assumes that spectrum occupancy of PUsalso
follows a discrete-time ON/OFF Markov process.

In most of these works, the models developed for deriving optimal
channel selection policies assume that PUs’ activities follow the
Markovian process model. Although analytically tractable, Marko-
vian process may not accurately model the dynamics of PUs’
activities. In fact, the OSA environment has very unique charac-
teristics that make it too difficult to construct models thatpredict
its dynamics, and it is therefore important to develop techniques
that can achieve approximately optimal behaviors without requiring
models of the environment’s dynamics. Indeed, reinforcement learn-
ing (RL) [27] is a foundational idea built on the basis of learning
from interaction without requiring models of the environment’s
dynamics, yet can still achieve approximately optimal behaviors.
With this in mind, we propose in this paper an RL scheme for
OSA that enables efficient spectrum utilization. Simulation results
show that our scheme achieves high throughput performance by
intelligently locating and exploiting spectrum opportunities without
requiring prior knowledge of the environment’s characteristics.

The paper is organized as follows. In Section II, we state the
OSA problem and discuss its requirements. In Section III, we
present our RL framework for efficient OSA. In Section IV, we
evaluate the proposed approach. Finally, we conclude the paper in
Section V.

II. PROBLEM STATEMENT

We assume that the spectrum is divided intom non-overlapping
bands, and that each band is associated with a set of PUs. We
denoteηj the primary-user traffic load on bandbj . In OSA, an
agent is a group of two or more SUs who want to communicate
together. We assume that all SUs are associated with ahomeband
to which they have usage rights at all time. In order to communicate
with each other, all SUs in the group must be tuned to the same
band, being either their home band or another unused licensed
band. While communicating on the home band, the secondary-user
group may decide to seek for spectrum opportunities in another
band. This typically happens when, for example, any of the SUs
judge that the quality of their current band is no longer acceptable.
This can be done by continuously assessing and monitoring the
quality of the band via some quality metrics, such as signal-to-
noise ratio (SNR), packet success rate, achievable data rate, etc.
That is, when the monitored quality metric drops below a threshold
that can be defineda priori, the secondary-user group is triggered
to start seeking for spectrum opportunities. When a new opportunity
is discovered on another band, the group switches to that band and
starts communicating on it. Now suppose the group is currently
using a licensed band, not the home band. Then, upon the return of
PUs to their band and/or when the quality drops below the threshold,
SUs must vacate the licensed band by either switching back to
their home band or by searching for new opportunities. Hereafter,
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we say that anexploration eventis triggered when either(i) PUs
return back to their licensed band, and/or(ii) the band’s quality is
degraded below the threshold. In the RL terminology, we therefore
consider that the agent and the environment interact at eachof a
sequence of discrete time steps, each of which takes place atthe
occurrence of an exploration event.

III. RL FOR OPPORTUNISTICSPECTRUMACCESS

A. Markov Decision Process (MDP)

We formulate OSA as a finite MDP, defined by its state setS ,
action setA, transition functionδ, and reward functionr as follows:

State set. S consists of m + 1 states,{s0, s1, . . . , sm}. The
secondary-user group is said to be in statesi when it is using band
bi at the current time step; i.e., no PUs are currently using band bi.
Note that states0 corresponds to when the group is communicating
on its home bandb0. Throughout this section, the terms agent and
secondary-user group will be used interchangeably to mean the same
thing. The same also applies to the terms state and band.

Action set. At every time step (i.e., an exploration event), while
in state si, the agent can either choose toexploit by switching
back to its home bandb0, or choose toexplore by searching for
new spectrum opportunities. If a decision is made in favor of
exploration, then the agent senses an ordered sequence of bands
{bk1

, bk2
, . . . , bkn

}, where n = 1, 2, . . . , m, on a one-by-one
basis until it finds, if any, the first available band. If thereis one
available, the agent switches to and starts using it until the the
next time step. If none are available, then the agent switches back
to b0 at the end of the search. At the next time step, the same
exploration vs. exploitation process repeats again. We will refer
to n as the exploration index as it balances between exploration
and exploitation; i.e., the larger then, the more the exploration.
Now by lettinga0 denote the action of returning to the home band
b0, and ak = {bk1

, bk2
, . . . , bkn

, b0} the action of exploring new
opportunities, the setA of all actions isA = {a0, a1, . . . , ap},
where p = m!

(m−n)!
. The index n can be viewed as a design

parameter to be seta priori.

Transition function. δ : S × A → S is the transition function,
specifying the next state the system enters provided its current
state and the action to be performed. Given any state,sj , for
action a0, the transition functionδ(sj , a0) equalss0, and for any
actionak = {bk1

, bk2
, . . . , bkn

, b0}, k = 1, 2, . . . , p, the transition
function δ(sj , ak) equals

δ(sj , ak) =































s0 w/ prob.
∏n

i=1 ηki

sk1
w/ prob. 1− ηk1

skl
w/ prob.

∏l−1
i=1 ηki

(1− ηkl
)

for l = 2, 3, . . . , n

For example, whenn = 2, and the secondary user is in statesj . If
actionak = {b2, b3, b0} is taken, then the user ends up in states2

(i.e., bandb2) with probability 1 − η2 (i.e., b2 is available), ends
up in states3 (i.e., bandb3) with probability η2(1− η3) (i.e., b2 is
occupied andb3 is not), or ends up in states0 (i.e., bandb0) with
probability η2η3 (i.e., both bands are not available).

It is important to reiterate that this function is only provided to
generate samples of the OSA environment so as to evaluate ourRL
algorithm. That is, although in practice our RL technique will not

need models to perform, we use models here to generate samples
of the environment’s behavior to mimic an OSA environment. For
example, in the evaluation section, it is assumed that the primary
user traffic follows a Poisson distribution, and hence, an ON/OFF
renewal process model is used to mimic such an environment.

Reward function. r : S × A → R defines the reward function
r(si, ak), specifying the reward the agent earns when taking action
ak ∈ A while in statesi ∈ S . The rewardr(si, ak) also depends
on the next statesj = δ(si, ak) the agent enters as a result of
taking ak while in statesi. More specifically, the reward perceived
by the agent when entering statesj is a function of the quality
level the secondary-user group receives when using the bandit ends
up selecting. We therefore assume that each bandbj is associated
with a quality levelqj , which can be determined via metrics like
SNR, packet success rate, data rates, etc, and letφ(qj) denote the
reward (without including the cost of exploration yet) resulting from
receivingqj .

It is important to note that exploration also comes with a price.
Recall that secondary users are allowed to use any licensed band
only if the band is vacant (no primary users are using it), andthat
discovery of opportunities is done through spectrum sensing. That
is, secondary users periodically (or proactively) switch to and sense
certain bands to find out whether any of them is vacant or not.
Unfortunately, during the sensing process, the system incurs some
”sensing overhead”, which can be of multiple types: energy con-
sumed to perform sensing, delays resulting from switching across
bands, throughput reduced as a result of ceasing communication,
etc. By lettingcij denote the cost incurred as a result of exploring
bandbj while in bandbi, and sj denote the next state,δ(si, ak),
the reward functionr(si, ak) can now be written as

r(si, ak) =















































φ(qk1
)− cik1

w/ prob. 1− ηk1

φ(qkl
)− cik1

−
∑l−1

t=1 cktkt+1
, l = 2, 3, . . . , n

w/ prob.
∏l−1

t=1 ηkt
(1− ηkl

)

−cik1
−

∑n−1
t=1 cktkt+1

− ckn0

w/ prob.
∏n

t=1 ηkt

whereak = {bk1
, bk2

, . . . , bkn
, b0}, k = 1, 2, . . . , p.

Consider a special scenario where the primary-user traffic load is
the same and equal toη for all bandsbj . Suppose thatφ(qj) = q
for all bandsbj , and that the costcij incurred when switching from
bandbi to bandbj is equal toc for all i, j. Let Ē denote the expected
value of the reward functionr(si, ak) normalized with respect toc
(i.e., Ē = E[r(si, ak)]/c). One can now express̄E as

Ē = (
q

c
− 1)(1− η) +

q

c
(η − ηn) +

ηn+1 − 2η + η2

1− η
(1)

Using Eq. (1), one can easily see that the reward that the agent
receives increases monotonically with the exploration index n when
q

c
> η

1−η
(or equivalentlyη < q

q+c
), decreases monotonically with

the indexn when q

c
< η

1−η
(or equivalentlyη > q

q+c
), and is

independent of the indexn when q

c
= η

1−η
(or equivalentlyη =

q

q+c
). Therefore, for a given primary-user traffic load, the optimal

exploration indexn that the agent should use so as to maximize its
reward depends on the ratioq/c (or equivalently q

q+c
).

Intuitively, when the network is lightly loaded (η is small),
the chances of finding available bands are high, and hence, itis
rewarding to explore for more bands. This explains why for small
η values (i.e.,η < q

q+c
), the higher the exploration index, the higher

the reward. Now when the network is heavily loaded (η is large),
the chances of finding empty bands are low, and hence, it is not
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rewarding to explore for more bands. This explains why for high
values ofη (i.e., η > q

q+c
), the lower the exploration index, the

higher the reward. That is, the expected reward is not worth the
exploration cost for high values ofη. Note that as the costc goes
to zero, q

q+c
goes to 1. Therefore, when the cost is negligible,

η < q

q+c
holds for all η since q

q+c
≈ 1, and thus, the reward

increases monotonically with the exploration indexn regardless of
the primary-user loadη.

B. Learning-Based OSA Scheme

The goal of the agent is to learn a policy,π : S → A,
for choosing the next actionai based on its current statesi

that produces the greatest possible expected cumulative reward.
A cumulative rewardR is typically defined through a discount
factor γ, 0 ≤ γ < 1, as

∑

∞

t=0 γtr(si+t, ai+t). Because it is
naturally desirable to receive rewards sooner than later, the reward
is expressed in a way that future rewards are discounted withrespect
to immediate rewards.

A function, Q : S × A → R, is defined for each state-action
(si, ak) pair as the maximum discounted cumulative reward that
can be achieved when starting from statesi and taking actionak

according to the optimal policy. Hence, given theQ-function, it
is possible to act optimally by selecting actions that maximize
Q(si, ak) at each state.Q can be constructed recursively as follows.
The Q-learning algorithm learns an estimatêQ of the optimal
Q-function by selecting actions and observing their effects. In
particular, each step in the environment involves taking anactionak

in statesi and then observing the following state and the resulting
reward. Given this information,Q is updated via the following
equation:

Q̂(si, ak)← (1− αl)Q̂(si, ak) + αl{E[r(si, ak)]

+γ maxk′ Q̂(δ(si, sk), ak′)}

where αl = 1/(1 + visitsl(si, ak)) and visitsl(si, ak) is the
total number of times this state-action pair has been visited up
to and including thelth iteration. This approximation algorithm is
guaranteed to converge to the optimalQ-function in any MDP given
the appropriate exploration during learning [27].

IV. EVALUATION OF THE PROPOSEDAPPROACH

In this section, we study the proposed Q-learning scheme by
evaluating and comparing its performance to a random access
scheme. The random scheme will be used here as a baseline for
comparison, and is defined as follows. Whenever an exploration
event is triggered, the secondary-user group, using the random
access approach, selects a spectrum band among all bands randomly.
If the selected band is idle, then the group uses it until the return
of a primary user. Otherwise, i.e., if the selected band happens to
be busy, then the group goes back to its home band. This process
repeats until an idle band is found.

A. Simulation Settings

We consider that the spectrum is divided intom non-overlapping
bands, and that each band is associated with a set of primary users.
We model primary users’ activities on each band as a renewal
process alternating between ON and OFF periods, which represent
the time during which primary users are respectively present (ON)
and absent (OFF). For each spectrum bandbj , we assume that ON
and OFF periods are exponentially distributed with ratesλj andµj ,
respectively. Note that the primary traffic loadηj on bandbj can

Fig. 1. Throughput behavior under two different primary-user traffic loads,
pbar≡ η̄ = 0.5 and0.8, for m = 7 andCoV = 0.5

be expressed asµj/(µj + λj). Recall that the power of RL lies
in its capability to converge to approximately an optimal behavior
without needing prior knowledge of primary users’ traffic behavior.
The exponential distributions will, however, be used to generate
samples so as to be able to evaluate our learning techniques using
simulated interaction. Throughout this section, we characterize the
primary-user traffic system load bȳη = 1

m

∑m

i=1 ηi (denoted as
pbar in figures) andCoV = σ/η̄, which respectively denote the
average and the coefficient of variation of primary-user traffic loads
across all bands, whereσ denotes the standard deviation of traffic
loads.

B. Effect of Primary-User Traffic Load

We begin by studying the effect of primary-user traffic loadη̄
on the achievable throughput. Fig. 1 plots the total throughput,
normalized w.r.t. the maximal achievable throughput1, that the
secondary-user group achieves as a result of using our Q-learning
and the random access schemes for two different primary-user traffic
loads: η̄ = 0.5 and η̄ = 0.8. The measured throughput is based on
what the secondary-user group receives from them licensed bands
only; i.e., not accounting for the home band. In this simulation
scenario,CoV is set to0.5, exploration indexn is set to3, and
the total number of bandsm is set to7. First, as expected, note
that the higher thēη, the lesser the achievable throughput under
both schemes. However, regardless of the primary-user load, the Q-
learning scheme always outperforms the random scheme. Also, note
that the more loaded the system is, the higher the differencebetween
the throughput achievable under Q-learning and that achievable
under random access (e.g., the throughput gain is higher when
η̄ = 0.8).

To further illustrate the effect of̄η on the performance of the
proposed Q-learning scheme, we plot in Fig. 2 the throughput
gain as a function of̄η. Note that the throughput gain increases
as the primary-user traffic load increases. In other words, the Q-
learning scheme performs even better under heavily loaded systems.
This can be explained as follows. When̄η is high; i.e., when
spectrum opportunities are scarce, the learning capability of the Q-
learning scheme allows the OSA agent to efficiently locate where the
opportunities are, whereas random access leads to less throughput
since it is accessing bands randomly. Whenη̄ is small, on the other
hand, the random access scheme is able to achieve high throughput
since spectrum opportunities are too many to miss even when bands
are selected unintelligently.

1The maximal/ideal achievable throughput corresponds to when the agent
knows exactly where spectrum opportunities are; i.e., the agent always knows
which bands are available, and thus, it exploits them without any cost.
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Fig. 2. Throughput gain as a function of the primary-user average loads,
η̄, for m = 7 andCoV = 0.5

Fig. 3. Achievable throughput under Q-learning and random access
schemes:̄η = 0.8, m = 7, n = 3.

To summarize, these obtained results show that the proposedQ-
learning scheme is capable of achieving between80% to 95% of
the maximal achievable throughput by learning from experience,
and without prior knowledge of the environment. The resultsalso
show that the scheme achieves high throughput performance even
under heavy traffic loads.

C. Effect of Primary-User Load Variability

Fig. 3 plots the total throughput that the secondary-user group
achieves under our proposed Q-learning and the random access
schemes for two different primary-user load variations:CoV = 0
and CoV = 0.6. (Recall thatCoV reflects the variation of loads
across different bands; i.e., the higher theCoV , the higher the
variation.) Note that when theCoV = 0.6, the Q-learning scheme
achieves about90% of the maximal/ideal throughput by simply
locating and exploiting unused opportunities through learning from
experience, whereas the random access scheme achieves onlyabout
60%. WhenCoV = 0 (i.e., all bands experience identical loads), the
Q-learning and the random access achieve approximately about 64%
and 55%, respectively. As expected, the throughput gain increases
with the coefficient of variation. That is, and as shown in Fig. 3,
the gain is higher whenCoV = 0.6 than whenCoV = 0. More
insights on this are provided in the next paragraph.

To further illustrate the effect of primary-user load variability
on the achievable throughput, we show in Fig. 4 the throughput
gain for different values ofCoV s. TheCoV is varied from0 to
0.6. The average primary-user traffic load,η̄, is set to0.8 (which
implies that only20% of the spectrum is available for the secondary-
user group). The total number of bands is set tom = 7 and
the exploration index is taken to ben = 3. Observe that the
higher the variation of primary-user loads across different bands,
the higher the throughput gain; i.e., the higher the throughput the
agent/group can achieve when compared with that achievableunder
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Fig. 4. Throughput gain as a function of primary-user load variability:
η̄ = 0.8, CoV = 0.2, m = 7, n = 3.
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Fig. 5. Throughput gain as a function of ON/OFF period lengths: η̄ = 0.8,
CoV = 0.5, m = 7, n = 3.

the random access scheme. This can be explained as follows. When
the average of primary-user traffic loads is kept the same, a high
variation in the loads across different bands increases thelikelihood
of finding highly available spectrum bands. This, on the other hand,
also increases the likelihood of finding spectrum bands withless
opportunities. With experience, the Q-learning scheme learns about,
and starts exploiting, these more available bands, yielding then more
throughput. When the load variation is low, on the other hand, the
learning algorithm achieves less throughput because all bands are
equally-loaded, and hence, there is no special (i.e., more available)
bands that the algorithm can learn about. This explains why both
the Q-learning and the random access achieve similar performances
when all bands have identical loads. The gain can, however, reach
up to 50% when bands have different loads (e.g.,CoV = 0.6), as
shown in Fig. 4.

D. Effect of Primary-User Load ON/OFF Period

In this section, we study the effect of ON/OFF period lengthson
the performance of the Q-learning scheme. We vary the lengths of
ON and OFF periods while keeping the primary-user traffic loads,
ηi, the same for alli. Since the primary-user load is kept the same,
an increase in OFF periods leads to an increase in ON periods as
well, and vice versa. The normalized throughput that the Q-learning
scheme achieves is shown in Fig. 5 for different values of ON period
lengths. Here,CoV is set to0.2, η̄ is set to0.5, n is set to3, and
m is set to7.

Note that the higher the length of ON/OFF periods, the higher
the throughput gain. Note also that having short ON/OFF periods
forces the agent to make frequent transitions so as to find available
spectrum bands. Whereas, when ON/OFF periods are long, the
transitions are not that often, thus leading to less switching overhead,
which yields more achievable throughput. Put differently,when the
length of ON/OFF periods increases, the secondary-user group can
possess available spectrum bands for longer periods of time. When
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Fig. 6. Effect of indexn on throughput:̄η = 0.8, m = 7.

the lengths of ON/OFF periods are low, the secondary-user group
has the spectrum band available to it only for a short period of time,
leading to frequent transitions across different bands.

E. Q-learning Optimality: Exploration Indexn

In this section, we study the effect of the exploration indexn on
the behavior of the Q-learning scheme. Recall that the indexn is
a design parameter to be chosen and seta priori, which can take
on any number less than or equal to the number of available bands
m. This parameter balances between two conflicting objectives: the
desire of increasing the chances of finding available bands (i.e., by
increasingn), and the desire to reduce the incurred overhead/cost
due to scanning (i.e., by decreasingn).

Fig. 6 plots the normalized throughput as a function ofn for
different values ofCoV . Note that as the indexn increases, the
achievable throughput first increases withn, then flattens out. This
means that increasing the number of scanned/searched bandsbeyond
a certain threshold does not necessarily yield more achievable
throughput.

To further study this behavior, for each indexn scenario, we
measured the average number of bands that are actually scanned
before finding one available band. We refer to this number as
average index used. Fig. 7 shows the average index used for finding
available bands as a function of the exploration indexn for different
values ofCoV . Note that asn increases, the average index used to
find an available band first increases then flattens out. This means
that even when the secondary-user group is allowed to scan all
bands, it ends up visiting only a few before finding an available
one as a result of using its learning capabilities. The figurealso
shows that the higher theCoV , the smaller the actual index used
to find an available band. Therefore, the learning capabilities allow
to find spectrum opportunities quickly, thus limiting the incurred
exploration overhead.

V. CONCLUSION

Technological advances enabled cognitive radios, which have
recently been recognized as the key technology for realizing OSA.
Cognitive radios are viewed as intelligent systems that canself-
learn from their surrounding environments, and auto-adapttheir
operating parameters in real-time to improve spectrum efficiency. In
this paper, we developed a reinforcement learning-based framework
that exploits the cognitive radios’ capabilities to enableeffective
OSA, thus improving the efficiency of spectrum utilization.The
proposed learning technique does not require prior knowledge of
the environment’s characteristics and dynamics, yet can still achieve
high performance by learning from interaction with the environment.
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