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ABSTRACT

As an initial step towards solving the spectrum shortagélpro,
FCC opens up for the so-calledpportunistic spectrum access
(OSA), which allows unlicensed users to exploit unusednkeel
spectrum, but in a manner that limits interference to lieenssers.
Fortunately, technological advances enabled cognitigesa which
have recently been recognized as the key enabling techndtwg
realizing OSA. In this work, we propose a machine learniagdal
scheme that will exploit the cognitive radios’ capabilti® enable
effective OSA, thus improving the efficiency of spectruniizdition.
Our proposed learning technique does not require prior ledye
of the environment’s characteristics and dynamics, yet s@h
achieve high performances by learning from interactionhvitie
environment.

|I. INTRODUCTION

FCC's long term vision for solving the spectrum shortagebpro
lem [1, 2] is to promote the so-callepportunistic spectrum access
(OSA), which allows unlicensed users (secondary user¢SUs))
to exploit unused licensed spectrum on an instant-by+mdiasis,
but in a manner that limits interference to licensed usergiimary
users(PUs)) so as to maintain compatibility with legacy system
The apparent promise of OSA has indeed created significant
search interests, resulting in numerous research workmarigpm

S

Hamdaoui, and Mohsen Guizani

25] develop a cross-layer optimal access strategy for OSA th
integrates physical-layer's sensing with MAC-layer's siag and
access policy. They establish a separation principle, mgathat
physical-layer’s sensing and MAC-layer's access policy dre
decoupled from MAC-layer’s sensing without losing optiityalThe
developed framework assumes that spectrum occupancy cdBts
follows a discrete-time ON/OFF Markov process.

In most of these works, the models developed for derivingmogt
channel selection policies assume that PUs’ activitiekolthe
Markovian process model. Although analytically tractatarko-
vian process may not accurately model the dynamics of PUSs’
activities. In fact, the OSA environment has very uniqueraba
teristics that make it too difficult to construct models tipaedict
its dynamics, and it is therefore important to develop témpies
that can achieve approximately optimal behaviors witheqguiring
models of the environment’s dynamics. Indeed, reinforggrtearn-
ing (RL) [27] is a foundational idea built on the basis of k&ag
from interaction without requiring models of the enviromtie
dynamics, yet can still achieve approximately optimal béra.
With this in mind, we propose in this paper an RL scheme for
OSA that enables efficient spectrum utilization. Simulatiesults
show that our scheme achieves high throughput performagice b
intelligently locating and exploiting spectrum opportigé without

Fieequiring prior knowledge of the environment’s charactécs.

The paper is organized as follows. In Section Il, we state the

protocol design [3-5] to performance optimization [6, jddrom OSA problem and discuss its requirements. In Section Ill, we
market-oriented access strategies [8,9] to new manageamaht present our RL framework for efficient OSA. In Section IV, we
architecture paradigms [10-13]. More recently, some wdferte evaluate the proposed approach. Finally, we conclude tperga

has also been given to the development of adaptive, leatrdasgd
approaches [14-26]. Zhao et al. [26] develops a model fatigiiag
the dynamics of the OSA environment when periodic chann
sensing is used. A simple two-state Morkovian model is agslim
for activities of PUs on each channel. Using this model, Zhao

al. derive an optimal access policy that can be used to magimi

channel utilization while limiting interference to PUs. [20],
Unnikrishnan et al. propose a cooperative, channel sefead
access policy for OSA systems under interference consdrdimthis
work, the PUs’ activities are assumed to be stationary Masko
and the Markovian statistics are assumed to be known to &l 8U
centralized approach is considered, where all cooperatngndary
users report their observations to a decision center, whiakes
decision regarding when and which channels to sense andsaate
each time slot. In [22], the authors develop channel detig@icies

for two SUs in a two-channel OSA system. PUs’ activities ar

modeled as a discrete-time Markov chains. Liu et al. [23]saders

the case of multiple, non-cooperative SUs in OSA system evhel

Section V.

el

Il. PROBLEM STATEMENT

We assume that the spectrum is divided intonon-overlapping
bands, and that each band is associated with a set of PUs. We
denoten; the primary-user traffic load on barig. In OSA, an
agent is a group of two or more SUs who want to communicate
together. We assume that all SUs are associated whtbnaeband
to which they have usage rights at all time. In order to comnate
with each other, all SUs in the group must be tuned to the same
band, being either their home band or another unused lidense
band. While communicating on the home band, the secondsay-u
group may decide to seek for spectrum opportunities in a@moth
pand. This typically happens when, for example, any of the SU
judge that the quality of their current band is no longer ptaigle.
his can be done by continuously assessing and monitoriag th

SUs are assumed not to exchange information among therasei#@lity of the band via some quality metrics, such as sigmal-

The occupancy of primary channels is modeled as an i.i.chd@&ai
process, and OSA is formulated as a multi-armed bandit enabl
where agents are not cooperative with each others. Chen [@4al
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noise ratio (SNR), packet success rate, achievable data etd.
That is, when the monitored quality metric drops below aghoid

that can be defined priori, the secondary-user group is triggered
to start seeking for spectrum opportunities. When a new xppity

is discovered on another band, the group switches to that bad
starts communicating on it. Now suppose the group is cugrent
using a licensed band, not the home band. Then, upon the retur
BlUs to their band and/or when the quality drops below thestiolel,

SUs must vacate the licensed band by either switching back to
their home band or by searching for new opportunities. Herea



we say that arexploration events triggered when eithefi) PUs need models to perform, we use models here to generate szample
return back to their licensed band, and(é#) the band’s quality is of the environment's behavior to mimic an OSA environmertr F
degraded below the threshold. In the RL terminology, weetftee example, in the evaluation section, it is assumed that threapy
consider that the agent and the environment interact at eheh user traffic follows a Poisson distribution, and hence, an' @
sequence of discrete time steps, each of which takes plattee at renewal process model is used to mimic such an environment.
occurrence of an exploration event.

Reward function. r : S x A — R defines the reward function
r(ss:, ax), specifying the reward the agent earns when taking action
ar € A while in states; € S. The rewardr(s;, ax) also depends

on the next states; = d(s;,ax) the agent enters as a result of
taking ay, while in states;. More specifically, the reward perceived
by the agent when entering state is a function of the quality
level the secondary-user group receives when using the ibands

up selecting. We therefore assume that each liand associated
with a quality levelg;, which can be determined via metrics like
SNR, packet success rate, data rates, etc, angd(tg) denote the
reward (without including the cost of exploration yet) ritisig from
receivingg;.

I1l. RL FOROPPORTUNISTICSPECTRUMACCESS
A. Markov Decision Process (MDP)

We formulate OSA as a finite MDP, defined by its state Set
action set4, transition functiony, and reward functiom as follows:

State set. S consists ofm + 1 states,{so, s1,...,8m}. The
secondary-user group is said to be in statevhen it is using band
b; at the current time step; i.e., no PUs are currently usingl ban
Note that states, corresponds to when the group is communicating It is important to note that exploration also comes with aeori
on its home band,. Throughout this section, the terms agent anRecall that secondary users are allowed to use any licersed b
secondary-user group will be used interchangeably to nieasame only if the band is vacant (no primary users are using it), tred
thing. The same also applies to the terms state and band. discovery of opportunities is done through spectrum sensiiat

is, secondary users periodically (or proactively) switctabhd sense
Action set. At every time step (i.e., an exploration event), whilecertain bands to find out whether any of them is vacant or not.
in states;, the agent can either choose ¢aploit by switching Unfortunately, during the sensing process, the systenrsnsome
back to its home bandly, or choose toexplore by searching for “sensing overhead”, which can be of multiple types: energy-c
new spectrum opportunities. If a decision is made in favor gumed to perform sensing, delays resulting from switchiogpss
exploration, then the agent senses an ordered sequencendé b&ands, throughput reduced as a result of ceasing commiemicat
{bky,bks,--.,br, }, Wheren = 1,2,...,m, on a one-by-one etc. By lettingc;; denote the cost incurred as a result of exploring
basis until it finds, if any, the first available band. If théseone bandb; while in bandb;, ands; denote the next staté(s;, ax),
available, the agent switches to and starts using it unél tthe the reward functiorr(s;, ax) can now be written as
next time step. If none are available, then the agent swsttiaek b(qr,) — Cin,

to by at the end of the search. At the next time step, the same w/ prob. 1 — nx
. . . . : 1
exploration vs. exploitation process repeats again. Weé naefer
to n as the exploration index as it balances between exploration o(an) — cin, — 2171 ok =23 n
1 1Rl t=1 tRe410 T Sy Iy ey

and exploitation; i.e., the larger the, the more the exploration. r(si, ar) =

w/ prob. [T:=) me, (1 —
Now by lettingao denote the action of returning to the home band prob- TT.— e (1 = i)

bo, andar = {bk,,bk,,-..,bk,,bo} the action of exploring new ey ="l e
opportunities, the se# of all actions isA = {ao,a1,...,ap}, 1 i:;v/ k’flggll—[n Fn0
where p = (m%'n), The indexn can be viewed as a design PrOB- Ll ke
parameter to be set priori. wherear = {bk,, bk, - - -, bk, b0}, b =1,2,....p.

o _ _ . ) Consider a special scenario where the primary-user traféid Is
Transgtion function. § : S x A — S is the transition function, ihe same and equal tp for all bandsb;. Suppose thab(g;) = ¢
specifying the next state the system enters provided itseBUr for 4| bandsh;, and that the cost;; incurred when switching from
state and the action to be performed. Given any stafe.for  pandp, to bandb; is equal tac for all 7, j. Let £ denote the expected
actionao, the transition functiori(s;, ao) equalsso, and for any yajye of the reward function(s;, ax ) normalized with respect to

actionag = {bx,,bkz, -+ iy bo}, k= 1,2,...,p, the transition .6 & = Elr(s;, az)]/c). One can now expresE as
function 6(s;, ax) equals +1_ o 2
= (4 q ny o M 204
so w/ prob. [0, E=C-D0=m+ =0+ 1—n @)

Using Eg. (1), one can easily see that the reward that thetagen
receives increases monotonically with the exploratioreind when
-1 1 > 1 (or equivalentlyn < —L-), decreases monotonically with
sk, Wi prob. [Ty mw, (1 =) the indéxn when ¢ < 1 (qc;rrcequivalentlyn > -4, and is
fori=2,3,...,n . c. > 1-m g+c

independent of the index when £ = ﬁ (or equivalentlyn =

For example, whem = 2, and the secondary user is in state If ﬁ). Therefore, for a given primary-user traffic load, the ot

actionay, = {b2, bs, bo} is taken, then the user ends up in state exploration index: that the agent should use so as to maximize its

(i.e., bandb,) with probability 1 — n2 (i.e., b2 is available), ends reward depends on the ratig'c (or equivalently_L-).

up in statess (i.e., bandbs) with probability n2 (1 — n3) (i.e., b2 is

occupied ands is not), or ends up in stat® (i.e., bandby) with th Intt:qltlvely, th?_nthe net\_llvot:r Ilj Ilghtly lo?didn('i’j shmal_l), it
probability n.ns (i.e., both bands are not available). € chances of Tinding available bands are hign, and henas, |

rewarding to explore for more bands. This explains why foam
It is important to reiterate that this function is only prded to 7 values (i.e.n < #), the higher the exploration index, the higher
generate samples of the OSA environment so as to evaluatelourthe reward. Now when the network is heavily loadedig large),

algorithm. That is, although in practice our RL techniqudl wdt the chances of finding empty bands are low, and hence, it is not

S(sran) =4 w/ prob. 1 — ny,




rewarding to explore for more bands. This explains why fahhi 1 -
values ofy (i.e.,n > -L), the lower the exploration index, the £ELE
higher the reward. That is, the expected reward is not wdréh t 508 N
exploration cost for high values of. Note that as the cost goes é‘,, S

to zero, - goes to 1. Therefore, when the cost is negligible, g“ £.

n < ﬁ holds for all  since ﬁ ~ 1, and thus, the reward EM —
increases monotonically with the exploration indexegardless of B ~=-Random Access
the primary-user load. zamf

B. Learning_Based OSA SCheme o ! 1 TimePzeriod(5%)'(-:’00secosdsea-:h?l5 ¢ x1:5.5

The goal of the agent is to learn a policy, : S — A,
for choosing the next actiom; based on its current state; Fig. 1. 7Throughput behavior under two different primangusaffic loads,
that produces the greatest possible expected cumulativarde PP&'=7=0.5and0.8, form =7andCoV' =0.5
A cumulative rewardR is typically defined through a discount
factor v, 0 < v < 1, as > ;2 ¥'r(siye, aise). Because it is
naturally desirable to receive rewards sooner than ldterréward
is expressed in a way that future rewards are discountedresttect
to immediate rewards.

be expressed ag;/(i; + A;). Recall that the power of RL lies
in its capability to converge to approximately an optimah&éor
without needing prior knowledge of primary users’ traffichbeior.
The exponential distributions will, however, be used to egate
A function, Q : S x A — R, is defined for each state-actionsamples so as to be able to evaluate our learning technicieg u
(si,ax) pair as the maximum discounted cumulative reward thatmulated interaction. Throughout this section, we cherie the
can be achieved when starting from stateand taking actioru, ~ primary-user traffic system load by = = 3™ 7, (denoted as
according to the optimal policy. Hence, given thefunction, it pbar in figures) andCoV = o /7, which respectively denote the
is possible to act optimally by selecting actions that maxém average and the coefficient of variation of primary-useifiréoads
Q(s;, a) at each statey) can be constructed recursively as followsacross all bands, where denotes the standard deviation of traffic
The Q-learning algorithm learns an estimaf@ of the optimal loads.
Q-function by selecting actions and observing their effedis
particular, each step in the environment involves taking@ionay,
in states; and then observing the following state and the resulting. Effect of Primary-User Traffic Load
reward. Given this information@ is updated via the following
equation: We begin by studying the effect of primary-user traffic load
A A on the achievable throughput. Fig. 1 plots the total through
Qsisar) = (1= 0)Qsi, ar) + auf Blr(si, ax)] normalized w.rt. the maximal achievable throughpuhat the
+ymaxy Q(8(si, sx), ar)} secondary-user group achieves as a result of using our riiea
where oy = 1/(1 + wvisits;(ss,ax)) and visits;(s;, ax) is the and the random access schemes for two different primanytuséc
total number of times this state-action pair has been wsiip loads:7 = 0.5 and7 = 0.8. The measured throughput is based on
to and including thdth iteration. This approximation algorithm is what the secondary-user group receives fromsthécensed bands
guaranteed to converge to the optimiafunction in any MDP given only; i.e., not accounting for the home band. In this simafat
the appropriate exploration during learning [27]. scenario,CoV is set t00.5, exploration indexn is set to3, and
the total number of bands: is set to7. First, as expected, note
that the higher thej, the lesser the achievable throughput under
both schemes. However, regardless of the primary-user tbad)-
In this section, we study the proposed Q-learning scheme h?arning scheme always outperforms the random scheme, Ads®

. T at the more loaded the system is, the higher the differbatigeen
evaluating and comparing its performance to a random acc%?s

- . e throughput achievable under Q-learning and that aahiev
scheme. The random scheme will be used here as a baseline fo R
i . . -under random access (e.g., the throughput gain is highen whe
comparison, and is defined as follows. Whenever an exptorati 0.8)
event is triggered, the secondary-user group, using thdoran e
access approach, selects a spectrum band among all baddswgn  To further illustrate the effect ofj on the performance of the
If the selected band is idle, then the group uses it until 8tarn  proposed Q-learning scheme, we plot in Fig. 2 the throughput
of a primary user. Otherwise, i.e., if the selected band apo gain as a function ofj. Note that the throughput gain increases
be busy, then the group goes back to its home band. This @roces the primary-user traffic load increases. In other worlds, @-
repeats until an idle band is found. learning scheme performs even better under heavily loagdras.
This can be explained as follows. Whenis high; i.e., when
spectrum opportunities are scarce, the learning capabiflithe Q-
A. Simulation Settings learning scheme allows the OSA agent to efficiently locaterelthe
We consider that the spectrum is divided imtonon-overlapping :ﬁ]?gtil:?slt:s c:;;n\ghtf atr?gz rr:r?ggr?:ly?ﬁ/(\:/gmIse;isl'l,tgr:iisegmr

bands, and th_at each ban(’j IS a_ls_s_ouated with a set of prinsary.u he?nd, the random access scheme is able to achieve high tipaiug
We model primary users’ activities on each band as a renew.

. . . sihce spectrum opportunities are too many to miss even waedsh
process alternating between ON and OFF periods, which septe P oppo y
- . . . - are selected unintelligently.
the time during which primary users are respectively pre§@iN)
and absent (OFF). For each spectrum bajdwve assume that ON 1The maximal/ideal achievable throughput corresponds tervthe agent

and OFF periods are exponentially distributed with ratesind;,  knows exactly where spectrum opportunities are; i.e., fembalways knows
respectively. Note that the primary traffic loag on bandb; can which bands are available, and thus, it exploits them witteoy cost.

IV. EVALUATION OF THE PROPOSEDAPPROACH
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Fig. 5. Throughput gain as a function of ON/OFF period leagth= 0.8,
Fig. 3.  Achievable throughput under Q-learning and randatness CoV =0.5, m =7, n = 3.
schemes?7 = 0.8, m =7, n = 3.

the random access scheme. This can be explained as follolen W

To summarize, these obtained results show that the prog@sedthe average of primary-user traffic loads is kept the samegla h
learning scheme is capable of achieving betw8e¥ to 95% of variation in the loads across different bands increasetikighood
the maximal achievable throughput by learning from expeee of finding highly available spectrum bands. This, on the otfend,
and without prior knowledge of the environment. The resals also increases the likelihood of finding spectrum bands \éfs
show that the scheme achieves high throughput performarere eopportunities. With experience, the Q-learning schemmgeabout,
under heavy traffic loads. and starts exploiting, these more available bands, yiglttien more
throughput. When the load variation is low, on the other hahd
learning algorithm achieves less throughput because alidare
equally-loaded, and hence, there is no special (i.e., maiahle)

. bands that the algorithm can learn about. This explains wdth b
Fig. 3 plots the total throughput that the secondary-useumr . . T
. . the Q-learning and the random access achieve similar peafoces
achieves under our proposed Q-learning and the random 9cce% X ; .

. X - when all bands have identical loads. The gain can, howegachr
schemes for two different primary-user load variatio6&V = 0 up t0 50% when bands have different loads (e oV = 0.6), as
and CoV = 0.6. (Recall thatCoV reflects the variation of loads sEown inOFi 4 oy =10)
across different bands; i.e., the higher @@V, the higher the 9- %
variation.) Note that when th€oV = 0.6, the Q-learning scheme
aChieVes ab0u90% Of the maXimaI/ideal throughput by Slmp|y D. Effect of Primary_USer Load ON/OFF Period
locating and exploiting unused opportunities throughreay from
experience, whereas the random access scheme achievesbonty  In this section, we study the effect of ON/OFF period lengths
60%. WhenCoV = 0 (i.e., all bands experience identical loads), théhe performance of the Q-learning scheme. We vary the lengfth
Q-learning and the random access achieve approximateiyt 6% ON and OFF periods while keeping the primary-user traffid$oa
and 55%, respectively. As expected, the throughput gain increasgs the same for alf. Since the primary-user load is kept the same,
with the coefficient of variation. That is, and as shown in.Rg an increase in OFF periods leads to an increase in ON periods a
the gain is higher whei@oV = 0.6 than whenCoV = 0. More well, and vice versa. The normalized throughput that the&Hing
insights on this are provided in the next paragraph. scheme achieves is shown in Fig. 5 for different values of @hbg

. . .. lengths. Here(C'oV is set t00.2, 77 is set t00.5, n is set to3, and
To further illustrate the effect of primary-user load vailay m .i set to7 Co " "

on the achievable throughput, we show in Fig. 4 the throughpu
gain for different values ofCoV's. TheCoV is varied from0 to Note that the higher the length of ON/OFF periods, the higher
0.6. The average primary-user traffic loagl, is set t00.8 (which the throughput gain. Note also that having short ON/OFFopisri
implies that only20% of the spectrum is available for the secondaryforces the agent to make frequent transitions so as to finthbla

user group). The total number of bands is setnto= 7 and spectrum bands. Whereas, when ON/OFF periods are long, the
the exploration index is taken to be = 3. Observe that the transitions are not that often, thus leading to less switgbiverhead,
higher the variation of primary-user loads across diffedeands, which yields more achievable throughput. Put differentiaen the

the higher the throughput gain; i.e., the higher the thrpugtihe length of ON/OFF periods increases, the secondary-usempgran
agent/group can achieve when compared with that achieveddler possess available spectrum bands for longer periods of Wiviien

C. Effect of Primary-User Load Variability
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the lengths of ON/OFF periods are low, the secondary-usaupgr
has the spectrum band available to it only for a short perfdare,
leading to frequent transitions across different bands.

E. Q-learning Optimality: Exploration Index

In this section, we study the effect of the exploration inadegn
the behavior of the Q-learning scheme. Recall that the indéx
a design parameter to be chosen andasetiori, which can take
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Fig. 7. Index used as a function of index 7 = 0.8, m = 7.

(1]
(2]

(3]

(4]

on any number less than or equal to the number of availabldsban

m. This parameter balances between two conflicting objextithe
desire of increasing the chances of finding available bainels By

due to scanning (i.e., by decreasiny

Fig. 6 plots the normalized throughput as a functionnofor
different values ofC'oV. Note that as the index increases, the
achievable throughput first increases withthen flattens out. This
means that increasing the number of scanned/searched tbeyaisd
a certain threshold does not necessarily yield more adbieva
throughput.

To further study this behavior, for each index scenario, we
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