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Abstract— We develop objective functions for large-scale
distributed dynamic spectrum access (DSA) networks that,
by means of any learning algorithm, enable DSA users to
locate and exploit spectrum opportunities effectively, thereby
increasing their achieved throughput (or “rewards” to be more
general). We show that the proposed functions are: (i) optimal
by enabling users to achieve high rewards, (ii) scalable by
performing well in systems with a small as well as a large
number of users, (iii) learnable by allowing users to reach
up high rewards very quickly, and (iv) distributed by being
implementable in a decentralized manner.

I. INTRODUCTION

Federal Communications Commission (FCC)’s foresee-

able approach for solving the spectrum shortage prob-

lem [1] is to promote dynamic spectrum access (DSA). The

basic idea behind DSA is allow spectrum users (SUs) to

seek and exploit the available spectrum bands (or channels)

dynamically, thereby improving spectrum efficiency.

Due to its potentials, DSA has attracted the focus of

many researchers during these past years, resulting in

numerous works ranging from spectrum sensing tech-

niques [2, 3] to protocol design and management strate-

gies [4–7]. There have also been some research ef-

forts on developing adaptive techniques that also promote

DSA [8–10]. These mainly consist of first constructing

channel/spectrum availability prediction models, and then,

using these models to find the best spectrum opportunities.

The challenge, however, is that DSA gives rise to unique

characteristics, making it too difficult to construct mod-

els that can predict its environment’s dynamics without

making assumptions about the environment itself. These

assumptions are often unrealistic, leading to an inaccurate

prediction of spectrum availability.

As a result, learning-based techniques which do not

require prediction models, yet can still perform well by

learning directly from interactions with the environment,

are of a particular interest to DSA, and consequently, they

have recently been the focus of many researchers [11–13].

Instead of using models, these techniques rely on learning

algorithms (e.g., reinforcement learners [14] and evolving

neuro-controllers [15]) to learn from past and present inter-

action experience to decide what to do best in the future. In

essence, learning algorithms allow SUs to use their knowl-

edge acquired from interaction with the environment to take

the proper actions that maximize their own (often selfish)

objective functions, thereby “hopefully” maximizing their

long-term cumulative received rewards. However, when

SUs’ objective functions are not carefully coordinated,

learning algorithms can lead to poor performance in terms

of the SUs’ long-term received rewards. In other words,

when SUs aim to maximize poorly designed objective

functions, their collective behavior often leads to worsening

each other’s long-term cumulative rewards. Therefore, it is

imperative that objective functions be designed carefully

so that when SUs maximize them, their collective behavior

does not result in worsening each other’s performance.

In this work, we derive efficient objective functions

that SUs can aim to maximize, and that by doing so,

their collective behaviors also lead to good overall system

performance, resulting in maximizing each SU’s long-term

cumulative received rewards. We show that our derived

objective functions are: (i) near-optimal, in that they enable

SUs to achieve high rewards; (ii) very scalable, in that

they perform well in systems with a small as well as a

large number of SUs; (iii) highly learnable, in that they

allow SUs to reach up high rewards very quickly; and

(iv) distributive, in that they can be implemented in a

decentralized manner by relying on local information only.

The rest of the paper is organized as follows. In Sec-

tion II, we present the model, describe the motivation,

and state the objective of this work. In Section III, we

present our proposed objective functions. We evaluate the

performances of the proposed functions in Section IV, and

finally conclude the paper in Section V.

II. PROBLEM STATEMENT

We consider a DSA network with m non-overlapping

spectrum bands. We also consider a time-slotted system,

where SUs are assumed to arrive and leave at the beginning

and at the end of time slots. We assume that each SU imple-

ments and uses a reinforcement learning algorithm [14] to

allow it to locate and select the best available band. When

a group of two or more SUs want to communicate with

each other, all members of the group must first select and

switch to the same spectrum band to be able to carry out

a communication among them. Throughout, these groups

will also be referred to as DSA agents or simply agents.



At each time step, each agent using a band receives a

service that is passed to it from that band. The service that

the band offers can be measured in terms of, for example,

amount of throughput, reliability of the communication, the

signal to noise ratio, the packet success rates, etc. Let Sj

represent the total amount of service that spectrum band

j offers. We assume that once the agent switches to a

particular band, it can immediately quantify and measure

the service level that it receives from using such a band.

The methods that agents use to quantify and measure the

service received as a result of using any particular band are

beyond the scope of this work.

A. Inelastic Traffic Model

In this work, we consider studying the inelastic traffic

model. In this model, an agent receives a constant reward

if it switches to a band that offers a quality-of-service (QoS)

level equal to or greater than a certain required threshold

Q, and receives a zero (or close to zero) reward when the

offered QoS level is below the threshold. This model suits

well inelastic applications, such as multimedia applications,

in which receiving a QoS level less than what is required

(i.e., Q) is not acceptable, thus yielding a zero (or almost

zero) reward. But also, receiving a QoS level higher than

what is required is not beneficial either, which explains why

the reward is kept constant. Formally, the inelastic reward,

rj(nj(t)) or simply rj(t), the spectrum band j contributes

to any agent using it at time step t can be written as:

rj(t) =

{

Q if nj(t) ≤ Sj/Q

Qe
−β

nj(t)Q−Sj
Sj otherwise

(1)

where nj(t) is the number of agents using band j at episode

(time step) t, and β is a decaying factor. Note that when the

number of agents using band j is greater than cj ≡ Sj/Q,

the reward decreases exponentially. This means that none

of the agents will be satisfied with the amount of service

they receive from band j if the band has more agents than

cj (cj here represents the maximum number of agents band

j can support while satisfying agents’ required QoS levels).

For illustration purposes, we show in Fig. 1 the reward

rj(t) contributed by band j as a function of the number of

agents nj(t) using band j for β = 20 and Sj/Q = 4.
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Fig. 1. Reward function: β = 20 and Sj/Q = 4 for all j = 1, 2, . . . ,m.

From the system’s perspective, the system or global

reward can be regarded as the sum of all agents’ received

rewards. Formally, the global reward G(t) at time step t
can be expressed as

G(t) =

m
∑

j=1

nj(t)rj(t) (2)

where again m is the number of spectrum bands. The per-

agent average received reward r̄(t) at time step t can then

be written as

r̄(t) =
G(t)

∑m

j=1
nj(t)

(3)

B. Learning Algorithm

Our objective in this work is to derive distributive

and scalable objective functions for SUs that are aligned

with global system objective, so that when SUs (i.e.,

agents) aim to maximize them, they indeed lead to the

maximization of the agents’ long-term cumulative received

rewards. Basically, by means of any learning algorithm,

these objective functions will enable SUs to efficiently find

and locate spectrum opportunities, thus increasing the long-

term achievable rewards that each SU can receive from

accessing the DSA network.

We want to emphasize that the focus of this paper

is not on learning, but rather on the design of efficient

coordination techniques that can be used by any learning

algorithms. However, for the purpose of evaluating our

proposed techniques, we choose to use throughout this work

the ǫ-greedy Q-learner [14] with a discount rate of 0 and

an ǫ value of 0.05. Each agent is then assumed to use

the Q-learner to implement and maximize the proposed

objective function. At the end of every episode, each agent

selects and takes the action with the highest entry value

with probability 1 − ǫ, and selects and takes a random

action among all possible actions with probability ǫ. After

taking an action, the agent then computes the reward that

it receives as a result of taking such an action (i.e., as a

result of using the selected band), and uses it to update its

Q-table. A table entry Q(a) corresponding to action a is

updated via Q(a) ← (1 − α)Q(a) + αu, where α (here,

the value of α is set to 0.5) is the learning rate, and u
is the received reward from taking action a. All the results

presented in this paper are based on this Q-learner. Readers

are referred to [14] for more details on the Q-learner.

C. Motivation and Objective

The key question that arises naturally is which objective

function gi should each DSA agent i aim to maximize

so that its received reward is maximized? There are two

intuitive choices that one can think of. One possible ob-

jective function choice is for each agent i using band j to

selfishly go after the intrinsic reward rj contributed by the

band j as defined in Eq. (1); i.e., gi = rj for each agent

i using band j. A second also intuitive choice is for each
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Fig. 2. Per-agent average achieved reward r̄(t) as a function of episode
t under the two private objective functions: intrinsic choice (gi = rj ) and
global choice (gi = G) for Q = 2, β = 2, Sj = 20 for j = 1, 2, . . . , 10.

agent to maximize the global (i.e., total) rewards received

by all agents; i.e., gi = G for each agent i as defined

in Eq. (2), hoping that maximizing the overall received

rewards will eventually lead to maximizing every agent’s

long-term average received rewards.

For illustration purposes, we measure and show in Fig. 2

the average reward r̄(t) (measured and calculated via

Eq. (3)) that each agent receives under each of these two

private objective function choices. In this experiment, we

consider a DSA network with 500 agents and 10 bands.

There are two important observations that we want to make

regarding the performance behaviors of these two objective

functions, and that constitute the main motivation of this

work. First, note that when agents aim to maximize their

own intrinsic rewards (i.e., gi = rj for each agent i using

band j), the per-agent average received reward presents an

oscillating behavior: it ramps up quickly at first but then

drops down rapidly too, and then starts to ramp up quickly

and drop down rapidly again, and so on, which can be

explained as follows. With the intrinsic objective function,

an agent’s reward, by design, is sensitive to its own actions,

which enables it to quickly determine the proper actions to

select by limiting the impact of other agents’ actions, thus

learning about good spectrum opportunities fast enough.

However, agents’ intrinsic objectives are likely not to be

aligned with one another, which explains the sudden drop

in their received reward right after learning about good

opportunities; i.e., right after their reward becomes high.

The second observation is regarding the second objec-

tive function choice, G. Observe that, unlike the intrinsic

function, when each agent i sets its objective function

gi to the global reward function G, this results in a

steadier performance behavior where the per-agent average

received reward increases continuously, but slowly. With

this function choice, agents’ rewards are aligned with one

another by accounting for each other’s actions, and thus

are less (or not likely to be) sensitive to the actions of any

particular agents. The alignedness feature of this function

is the reason behind the observed monotonic increase in

the average received reward. However, the increase in the

received reward is relatively slow due to the function’s

insensitivity to one’s actions, leading to slow learning rates.

Therefore, objective functions must be designed with

two requirements in mind: (i) alignedness; when agents

maximize their own private objectives, their collective

behaviors should indeed result in increasing each agent’s

long-term received rewards, and not in worsening each

other’s received rewards, and (ii) sensitivity; objective

functions should be sensitive to agents’ own actions so that

proper action selections allow agents to learn about good

opportunities fast enough.

With this in mind, the objective of this work is to

derive private objective functions for supporting inelastic

traffic in large-scale, distributed DSA networks that meet

the following design requirements. First, they should be

optimal in that they should enable agents to achieve high

rewards. Second, they should be scalable in that they should

perform well in DSA networks with a small as well as a

large number of agents. Third, they should be learnable in

that they should enable agents to find and locate spectrum

opportunities quickly. Fourth, they should be distributive

in that they should be implementable in a decentralized

manner. The objective functions that we derive in this work

meet all of these design requirements.

III. OBJECTIVE FUNCTION DESIGN

In this section, we first begin by presenting the factored-

ness and learnability concepts, both essential for capturing

as well as ensuring the two required design properties:

alignedness and sensitivity. Then, we propose efficient ob-

jective functions that meet the above design requirements.

A. Properties of Objective Functions

Again, let gi be the function that DSA agent i aims to

maximize, and that we want to derive. Let z characterize the

joint move of all DSA agents in the system. Here, the global

(total) reward, G, is a function of z, which specifies the

full system state (G can then precisely be written as G(z)).
Hereafter, we use the notation −i to specify all agents other

than agent i, and zi and z−i to specify the parts of the

system state controlled respectively by agent i and agents

−i. The system state z can then be written as z = zi+z−i.

For the joint actions of multiple DSA agents to lead

to good overall average reward, two (often conflicting)

requirements must be met. First, we must ensure that a

DSA agent aiming to maximize its own private objec-

tive function also leads to maximizing the global (total

achievable) rewards, so that its long-term average received

rewards are indeed maximized. This means that the agents’

private objective functions (gi(z) for agent i) need to be

“aligned" or “factored" with the global reward function

(G(z)) for a given system state z. Formally, for systems

with discrete states, the degree of factoredness of a given

private objective function gi is defined as [16]:

Fgi =

∑

z

∑

z′ h[(gi(z)− gi(z
′)) (G(z)−G(z′))]

∑

z

∑

z′ 1
(4)



for all z′ such that z−i = z′−i, where h[x] is the unit

step function, equal to 1 if x > 0, and zero otherwise.

Intuitively, the higher the degree of factoredness of an

agent’s private objective function gi, the more likely it is

that a change of state will have the same impact on both

the agent’s (i.e., local) and the total (i.e., global) received

rewards. A system is fully factored when Fgi = 1.

Second, we must ensure that each DSA agent can discern

the impact of its own actions on its private objective func-

tion, so that a proper action selection allows it to quickly

learn about good spectrum opportunities. This means that

the agent’s objective function should be more sensitive to its

own actions than the actions of other agents. Formally, the

level of sensitivity or learnability of an objective function

gi, for agent i at z, can be quantified as [16]:

Li,gi(z) =
Ez′

i
[|gi(z)− gi(z−i + z′i)|]

Ez′

−i
[|gi(z)− gi(z′−i + zi)|]

(5)

where E[·] is the expectation operator, z′i’s are parts of the

system states, controlled only by agent i, that are resulting

from agent i’s alternative actions at z, and z′−i’s are parts of

the system states, controlled by agent −i, that are resulting

from agent −i’s alternative joint actions. So, at a given state

z, the higher the learnability, the more gi(z) depends on

the move of agent i. Intuitively, higher learnability means

that it is easier for an agent to achieve higher rewards.

B. Objective Functions

The key challenge when designing objective functions is

to find the best tradeoff/balance between the two properties:

factoredness and learnability (discussed in Section III-A).

Doing so ensures that agents can learn to maximize their

own objectives while doing so also leads to good over-

all system performance, resulting then in increasing each

agent’s long-term received rewards. In general, a highly

factored objective function has low learnability, and a

highly learnable function has low factoredness [16].

To provide some intuition on how we designed our

objective functions, we will visit the behaviors of the global

reward function, illustrated earlier in Section II-C. Recall

that when agents set the global reward G as their objectives

(i.e., gi = G for each agent i), their collective behaviors

did indeed result in increasing the total system achievable

rewards (i.e., did result in a fully factored system), as

agents’ private objectives are aligned with system objective.

The issue, however, is that because G depends on all the

components of the system (i.e., all agents), it is too difficult

for agents (using G as their objective functions) to discern

the effects of their own actions on their objectives, resulting

then in low learnability rates.

Note that by removing the effects of all agents other than

agent i from G, the resulting agent i’s private objective

function will have a much higher learnability level than G
does, yet without compromising its degree of factoredness

at all; i.e., while still being fully factored. Formally, these

private objective functions can be written

Di(z) ≡ G(z)−G(z−i) (6)

where z−i again represents the parts of the state on which

agent i has no effect. These difference functions have been

successfully applied to other domains (e.g., multi-robot

control [17] and air traffic flow regulation [18]). First,

note that these proposed functions (Di for agent i) are

fully factored, because the second term of Eq. (6) does

not depend on agent i’s actions. On the other hand, they

also have higher learnability than G, because subtracting

this second term from G removes most of other agents’

effects from agent i’s objective function. Intuitively, since

the second term evaluates the value of the system without

agent i, subtracting it from G provides an objective function

(i.e., Di) that essentially measures agent i’s contribution to

the total system received rewards, making it more learnable

without compromising its factoredness quality.

By substituting Eq. (2) into Eq. (6), explicitly noting the

time dependence t, and for clarity, removing the implicit

dependence on the state z, the objective function Di for

agent i selecting band j at time t can then be written as:

Di(t)=

m
∑

k=1

nk(t)rk(nk(t))

−





m
∑

k=1,k 6=j

nk(t)rk(nk(t))+(nj(t)−1)rj(nj(t)−1)





= nj(t)rj(nj(t))− (nj(t)− 1)rj(nj(t)− 1) (7)

It is important to note that, by taking away agent i from

the second term of the function Di, the terms corresponding

to all spectrum bands k, except the band j that agent i
is using, cancel out. This explains why Di, as shown in

Eq. (7), depends on band j only. Therefore, the proposed

function Di is simpler to compute than the global function

G. More specifically and importantly, it is fully decen-

tralized as agents implementing/using it as their objectives

need to gather and share information only with the agents

that belong to the same band. This constitutes one important

property among few others (to be described later) that this

proposed function has.

C. Optimal User Distribution

In order to help us understand and explain the intuition

behind the achievable performance of our proposed func-

tions (to be presented later in Section IV), we will derive in

this section the optimal/ideal behaviors of the DSA agents.

Specifically, we will derive the optimal distribution of

agents across the m available spectrum bands that leads

to the optimal/maximum overall achievable rewards.

Without loss of generality and for simplicity, let us

assume that Sj = S for j = 1, 2, · · · ,m. Let n denote

the total number of agents in the system at any time. First,



note that when n ≤ m S
Q

, the optimal agent distribution

is trivial, which basically corresponds to having each band

contain no more than S
Q

agents, leading to the maximum

possible overall achievable rewards (which equals mS
when n = m S

Q
). Therefore, in this work, we assume that

n > m S
Q

, and let c = S
Q

, which denotes the capacity (i.e.,

maximum number of agents) of each spectrum band. We

now present our result on the optimal agent distribution

(the proof can be seen in [19]).

Proposition 3.1: The optimal agent distribution corre-

sponds to when m − 1 bands each has exactly c agents

and the m-th band has the remaining n− c(m− 1) agents.

This optimal distribution leads to the maximum/optimal

per-agent average achievable rewards, and will help us, as

will be shown in the next section, understand and evaluate

the performance of our proposed objective functions.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the effectiveness of the

proposed objective functions by measuring their achievable

rewards, and comparing them with those achievable under

each of the two intuitive functions rj and G.

A. Optimality

We first consider the same experiment that we conducted

in Section II-C, where again the total number of agents is

set to 500 and the number of bands is set to 10. Fig. 3

shows the per-agent average achievable reward under each

of the three functions: intrinsic (gi = rj ), global (gi = G),

and proposed (gi = Di). Our results show that the proposed

1 100 200 300 400 500 600 700 800
0

0.03

0.06

0.09

0.12

0.15

Episode

P
e

r−
A

g
e

n
t 

A
vg

. 
R

e
w

a
rd

 

 

g
i
(t)=D

i
(t)

g
i
(t)=G(t)

g
i
(t)=r

j
(t)

Fig. 3. Per-agent average achieved reward under intrinsic (gi = rj),
global (gi = G), and proposed (gi = Di) functions: Q = 2, β = 2,
Sj = 20 for all j.

function Di outperforms substantially the other two func-

tions. Observe that Di achieves a per-agent average reward

of about 0.12, whereas, each of the other two functions

achieves a reward of no more than approximately 0.02.

That is, Di achieves almost 6 times as much as each of the

other two functions does. Another property that Di has, and

that requires attention is learnability. Observe how quickly

the rewards achievable under Di reach up their high value.

To recap, these obtained results show that the proposed

function outperforms the other two functions in terms of

both optimality and learnability.

B. Scalability

We now study the proposed function with regard to

scalability. For this, we plot in Fig. 4 the per-agent average

achievable reward under each of the three studied objective

functions when varying the number of agents, n, from 100
to 800 while keeping the number of bands m equal to 10.

Observe that unlike the functions rj and G, the proposed
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Fig. 4. Per-agent average achieved reward under intrinsic (gi = rj),
global (gi = G), and proposed (gi = Di) functions for various numbers
of agents: Q = 2, β = 2, Sj = 20 for all j.

function Di is highly scalable. Note that as the number

of agents increases, Di maintains high achievable rewards,

whereas the achievable reward under either of the other two

functions drops dramatically with the number of agents.

C. Agent Distribution

In this section, we want to further investigate the be-

haviors of agents in terms of their distribution/repartition

across the m available spectrum bands. More specifically,

we compare the actual/measured distribution of agents as

a result of using the proposed objective functions with

that ideal/theoretical distribution derived in Section IV-C.

Recall that the ideal/theoretical agent distribution, as stated

in Proposition 3.1, corresponds to the repartition that leads

to the maximum achievable rewards.

To illustrate, we plot in Fig. 5 the actual, measured

distribution of the n = 500 agents across the m = 10
bands at different times (i.e., every 250 episodes) under the

three studied objective functions. Note that in the case of

rj (Fig. 5(a)) and G (Fig. 5(b)), agents are (approximately)

equally distributed among the 10 bands (≈ 50 agents/band),

and at all times. But when using Di (Fig. 5(c)), 9 bands

out of 10 each contains about 10 agents, which represent

the capacity c = S
Q

, and the rest (≈ 410 agents) are in

the 10th band. It is important to note that this corresponds

to (or very close to) the optimal agent distribution that we

derived in Proposition 3.1. Thus, the proposed objective

function, Di, when used as an objective function, leads

then to a distribution of agents across the available bands

that is very close to the optimal agent distribution stated

through Proposition 3.1, yielding then near-optimal achiev-

able rewards (as observed in Section IV-A).
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(a) Intrinsic objective: gi = rj
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(b) Global objective: gi = G
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(c) Proposed objective: gi = Di

Fig. 5. Distribution of the 500 agents across the m = 10 different bands:
Q = 2, β = 2, Sj = 20 for all j. Each bar corresponds to one band.

It is important to mention that, during this study, we

observed that the most crowded band (led to under Di) does

not always contain the same set of agents. That is, agents

belonging to this crowded band (which of course offers the

least per-agent reward) change over time, since agents move

across bands at different time steps. The fact that agents do

not get stuck in the crowded band is an important property

of Di, as it ensures fairness among agents by allowing

different agents to receive approximately equal amounts of

rewards.

V. CONCLUSION

In this paper, we propose scalable and distributive ob-

jective functions that DSA users can use to locate and

exploit the best spectrum opportunities. We show that these

proposed functions (i) achieve near-optimal rewards as they

enable DSA users to receive high rewards, (ii) are highly

scalable as they perform well for small- as well as large-

scale DSA networks, (iii) are highly learnable as rewards

reach up near-optimal values very quickly, and (iv) are

distributive as they require information sharing only among

users belonging to the same spectrum band.
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