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Abstract— In this paper, we present and evaluate learn-
ing schemes that allow multiple secondary users to locate
and use spectrum opportunities effectively, thus improving
efficiency of dynamic spectrum access (DSA) systems. Using
simulations, we show that the proposed schemes achieve good
performances in terms of throughput and fairness, and does
so by interacting with and learning from the environment
only, without requiring prediction models of the environment’s
dynamics and behaviors.
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I. INTRODUCTION

FCC has been observing a huge demand for radio

spectrum due to the rapid growth in wireless technology.

Unfortunately, the spectrum supply has not catered to this

growing demand. The shortage in spectrum supply has

primarily been due to the inefficient, inflexible, static nature

of the existing spectrum allocation methods, and not due

to the scarcity of available spectrum [1]. This fact is well

supported by measurement-based studies [2, 3], which show

that the average occupancy of spectrum over all frequencies

is a paltry 5.2% and that the occupancy of some bands

in the 30-300 MHz range is less than 1%. This mea-

surement data confirms the availability of many spectrum

opportunities along time, frequency, and space that wireless

devices and networks can potentially utilize. Therefore, it

is imperative to develop mechanisms that enable effective

exploitation of these spectrum opportunities.

In order to meet the growing demand for spectrum

resources, FCC has resorted to more flexible spectrum

allotment policies and usage rights. Here, spectrum will be

managed and controlled dynamically by network entities

and end-user devices themselves with little to no involve-

ment of any centralized regulatory bodies. In this regard,

FCC has promoted the dynamic spectrum access (DSA),

which increases the spectrum efficiency by giving the right

to the unlicensed users to exploit unused licensed spectrum,

but in a way that limits interference to licensed users.

Due to its potentials, DSA has resulted in numerous

works ranging from protocol design and optimization [4–8]

to market-oriented access and management strategies [9–

12]. More recently, some research efforts have been given

to the development of learning based approaches [13–

15]. Generally, these reported techniques require models

that predict the environment’s dynamics and characteristics.

However, the DSA environment has very unique charac-

teristics that make it too difficult to derive models that

can predict its behaviors accurately enough. Therefore, it

is imperative to develop techniques that can achieve good

performance, but without needing models that predict the

environment’s behaviors.

In this paper, we present two multi-agent schemes,

non-cooperative and cooperative Q-learning, that improve

spectrum efficiency of DSA systems through reinforce-

ment learning. We evaluate the performance of these two

proposed schemes and compare them with the random

access scheme. Simulation results show that partial and

fully cooperative schemes perform better than the non-

cooperative and the random schemes in terms of achieved

throughput and balanced traffic loads. Depending on the

communication overhead due to the extra traffic in exchang-

ing information between the cooperating users, different

levels of partial cooperation can be used. Overall, the

proposed learning technique does not require prior knowl-

edge of the environment’s characteristics and dynamics,

yet achieves high throughput performance by learning from

interaction with the environment and intelligently locating

and exploiting spectrum opportunities.

The paper is organized as follows. In Section II, we

present a background on DSA. In Section III, we formulate

the RL framework, and present the two multi-agent RL

schemes. Section IV evaluates the proposed approach, and

finally, Section V concludes the paper.

II. DYNAMIC SPECTRUM ACCESS

The spectrum has traditionally been divided by FCC into

frequency bands, and assigned to licensed or primary users

(PUs) who have exclusive and flexible rights to use them.

PUs are also protected against interference when using their

assigned bands. Due to recent findings, showing that large

portions of the licensed bands are lightly used or unused at

all, and in order to address the spectrum scarcity problem,

FCC opens up for DSA.

The basic idea behind DSA is to allow unlicensed users,

also referred to as secondary users (SUs), to exploit unused

licensed spectrum on an instant-by-instant basis, but in a

manner that limits interference to PUs so as to maintain

compatibility with legacy systems. In DSA, an agent is

a group of two or more SUs who want to communicate

together. In order to communicate with each other, all SUs

in the same group must be tuned to the same spectrum band.

Throughout, agents will also be referred to as secondary



user groups (SUGs); the terms agent and SUG will then be

used interchangeably to mean the same thing.

Prior to using a licensed band, SUs must first sense the

band to assess whether it is vacant, and if it is, then they

can switch to and use it for so long as no PUs are present.

Upon the detection of the return of any PUs to their band,

SUs must immediately vacate the band. DSA has great

potentials for improving spectrum efficiency, but in order

to enable it, SUs must be capable of sensing, the ability

to observe and locate spectrum opportunities; identifying,

the ability to analyze and characterize these opportunities;

and switching, the ability to configure and tune to the best

available opportunities.

III. REINFORCEMENT LEARNING FOR DSA

Reinforcement learning (RL) is the concept of learning

from past and present experience to decide what to do

best in the future. That is, the learner, also referred to

as agent, learns from experience by interacting with the

environment, and uses its acquired knowledge to select the

action that maximizes a cumulative reward signal. RL is

well suited for systems whose behaviors are, by nature,

too complex to predict, but the reward, or reinforcement,

resulting from taking an action can easily be assessed or

observed. For example, in DSA, albeit it may be difficult to

predict which spectrum band will be available in the near

future, the reward resulting from the use of a spectrum band

can easily be determined. The reward can, for example,

be assessed through the amount of obtained throughput,

the experienced interference, the packet success rate, etc.

Thus, RL techniques are a natural choice for DSA where

it is difficult to precisely specify an explicit model of the

environment, but it is easy to provide a reward function.

RL is typically formalized in the context of Markov

Decision Processes (MDPs). An MDP represents a dynamic

system, and is specified by giving a finite set of states

S, representing the possible states of the system, a set of

control actions A, a transition function δ, and a reward

function r. For this work, we formulate DSA as a finite

MDP, defined by its state set S consisting of one state s
only (S = {s}), the action set A and the reward function

r described as follows.

Action set. At each time step, the agent chooses an action

from the action set A = {a1, a2, . . . , am}, where m is the

number of bands. The number of actions is equal to the

number of spectrum bands in the system. Taking action ai
while using spectrum band bj makes an SUG enter and use

spectrum band bi.

Reward function. The reward perceived by the agent when

taking action ai and entering spectrum band bi is a function

of the quality level the SUG receives when using the

band. We assume that each band bi has its own bandwidth

capacity Vi, and when more than one SUG use a spectrum

band, the bandwidth is equally divided among all the SUGs

using the band. For example, if there is a total number

of 3 SUGs, A, B, and C, each taking action i, j, and k

respectively, then the reward of SUG A, denoted by raijk ,

can be calculated as

raijk =























Vi/3 when i = j = k

Vi/2 when i = j 6= k or i = k 6= j

Vi when i 6= j 6= k

Non-cooperative Q-learning. The goal of the agent is to

learn a policy, π : S → A, for choosing the next action

ai that produces the greatest possible expected cumulative

reward. A function, Q : S × A → R, is defined so that

its value for each state-action (s, ai) pair corresponds to

the maximum discounted cumulative reward that can be

achieved when starting from state s and taking action ai.
Q can be constructed recursively [16] as follows.

Q(s, ai)(t+ 1) = Q(s, ai)(t) + α
×(E[r(s, ai)]−Q(s, ai)(t))

where 0 < α < 1 is the learning rate. When using the non-

cooperative Q-learning scheme, each SUG calculates its Q

table independently from other SUGs.

Action selection. The action selection mechanism plays

a very important role in Q-learning. During the learning

process, this selection mechanism is what enables the agent

to choose its actions. We consider the ǫ-greedy exploration

as the action selection mechanism, where the action corre-

sponding to the highest Q value in that time step is chosen

with a probability of (1 − ǫ) + ǫ/m, and any other action

from the action set A is chosen with a probability of ǫ/m.

The ǫ-greedy mechanism balances between exploration and

exploitation.

Probability vector. Based on the ǫ-greedy exploration, we

define the probability vector over the action set as follows.

X = (x1, x2, . . . , xm), where xi is the probability of taking

action i

xi =







(1− ǫ) + ǫ/m if Qi is the highest value

ǫ/m otherwise

where again m is the number of actions.

Cooperative Q-learning. Our multi-agent cooperative

scheme is based on the multi-agent Q-learning approach

derived in [17]. To illustrate, suppose that SUG A with

probability vector X is going to cooperate with two other

SUGs, B and C, with probability vectors Y and Z, respec-

tively. The Q table entry for SUG A choosing action i can

be calculated as [17]:

Q(s, ai)(t+ 1) = Q(s, ai)(t) + xi(t)α

× [(
∑j=m

j=1
yj(t)

∑k=m

k=1
(raijk)(zk(t)))−Q(s, ai)(t)]

Similarly, each SUG can compute its Q table values

based on the probability vectors of the other SUGs.



IV. EVALUATION

In this section, we evaluate the performance of the

proposed schemes. We show the importance of cooperation

in multi-agent DSA systems by comparing the per SUG av-

erage received throughput of the cooperative scheme with

that of a non-cooperative scheme. Specifically, we study

the effect that cooperation has on network load balancing

by allowing SUGs to make better action decision, leading

to more effective exploitation of bandwidth opportunities.

This also ensures fairness among SUGs by making sure that

all SUGs receive (approximately) equal throughput shares.

A. Simulated Access Schemes

We consider that the spectrum is divided into m non-

overlapping spectrum bands with n SUGs. We mimic the

presence of PUs by considering different spectrum bands

with different bandwidth capacities. Let Vj denote the

bandwidth capacity of band j. A spectrum band with a

higher bandwidth capacity is meant to have a lower PU ac-

tivity, and vice versa. We consider a time-slotted system,

and assume that SUGs interact with the environment in

accordance with these time slots. That is, SUGs can only

enter or leave a band at the beginning and at the end of these

time steps. We now summarize the three access schemes

that are evaluated in this section.

Random Access Scheme. At the end of each time slot/step,

an SUG using the random access scheme selects a spectrum

band among the m available bands randomly, and uses it

during the next time slot. If more than one SUG happen to

select the same spectrum band, they share the bandwidth

of the band equally.

Non-cooperative Access Scheme. In the non-cooperative

access scheme, each SUG uses the non-cooperative Q-

learning policy discussed in Section III to create and update

its own Q table. Each SUG enters the environment and

takes actions based on its own Q table without cooperating

with any of the other SUGs. When two or more SUGs

choose the same band during the same time step, they share

its bandwidth equally. Although the SUGs are typically

unaware of the other agent’s actions and act independently,

the effect of the other SUG’s actions are reflected in the

reward that the SUGs receive from the spectrum band.

Cooperative Access Scheme. In the cooperative access

scheme, each SUG maintains its own Q table using the

cooperative Q-learning, discussed in Section III. Here, an

agent’s Q table is formulated by taking into account the

probabilities associated with the actions of the other SUGs

with which it cooperates. In this case, at each time step,

the SUG is provided with the probability vector of every

other SUG with which it cooperates. The tradeoff here

is between the communication overhead caused by extra

traffic needed for exchanging the probability vectors among

the cooperating SUGs and the performance gains due to

improved action selections because of cooperation.
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(a) Random
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(b) Non-cooperation
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(c) Full cooperation

Fig. 1. SUG distribution: m = 3, n = 6, Vj = [5 10 15].

B. Cooperation Vs. Non-cooperation

First, we consider a DSA system with m = 3 spectrum

bands and n = 6 SUGs. Bandwidth capacities are set to

Vj = [5 10 15]. In this scenario, an ideal balanced

spectrum load is reached when each of the SUGs gets a

reward of 5 units, which implies that the 1st band has 1
SUG, the 2nd has 2 SUGs, and the 3rd band has 3 SUGs.

We simulate the three different access schemes for this

scenario, and plot the average number of SUGs (averaged

over 10000 episodes) in each of the three spectrum bands

(i.e., the distribution of SUGs) in Fig. 1.

The figure shows the average number of SUGs that end

up choosing each of the three spectrum bands for each

of the three studied schemes. It can be observed that the

fully cooperative access scheme leads to the ideal balanced

system load. As explained earlier, this is because in the

fully cooperative method, each SUG accounts for all the

possible actions that could be taken by its counterparts

when making a decision. On the other hand, when SUGs do

not cooperate, they may not select the best available band,

as they have no clue what other SUGs will select, leading
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Fig. 2. Coefficient of variation of the rewards of all the SUGs at each
time period: m = 3, n = 6, Vj = [5 10 15].

to a lesser balanced load distribution when compared with

that of the cooperative scheme. Clearly and as expected,

the Random access scheme results in an equally distributed

SUGs among all bands, leading to the worst load balance

when compared with the other two schemes1.

Fairness is another important metric that we also evaluate

in this work. To do this, we plot in Fig. 2 the coefficient

of variation (CoV) of the received rewards of all the SUGs

as a function of time period (each time period corresponds

to 500 epochs). Observe that the fully cooperative access

scheme has the lowest CoV among the three schemes. The

lower the CoV is, the closer the SUGs’ received rewards

are to one another, indicating a fairer access scheme. It

can also be seen that the CoV of the non-cooperative

access scheme is approximately twice that of the fully

cooperative access scheme, and the CoV of the random

access scheme is substantially higher than the other two.

Therefore, cooperation improves performances not only in

terms of network load balancing, but also in terms of

ensuring fairness among all SUGs.

C. Impact of Degree of Cooperation

Recall that cooperation increases the performance be-

cause it allows the SUGs to make a better decision when

selecting their next actions. This is because the SUGs take

into account what other SUGs will select when making

their action decisions. However, acquiring such informa-

tion would necessitate the exchange of messages among

cooperative SUGs, which clearly incurs extra overhead.

Therefore, the challenge is to strike a good balance between

the desire for a higher level of cooperation that enables

a better action selection and the need for a lower level

of cooperation so as to keep the cooperation overhead to

a minimum. Cooperation overhead comes from the extra

traffic needed to exchange the probability vectors and also

from the computing delay/time resulting from solving the

complex equations involved in updating the Q table entries

of the cooperative SUGs.

1We want to mention that these above results do not account for the
communication overhead caused by message exchange needed to share
the probability vectors among cooperative SUGs.

We now study the impact of degree of cooperation on

the achievable performances of a DSA system with m = 3
spectrum bands and n = 12 SUGs. The bandwidth capac-

ities of the spectrum bands are set to Vj = [10 20 30]. In

this scenario, an ideal balanced load is reached when each

of the SUGs earns a reward of 5 units, corresponding to

when the 1st band houses 2 SUGs, the 2nd band houses 4
SUGs, and the 3rd band houses 6 SUGs. For this simulation

scenario, we evaluate and compare the performances of

the cooperative access scheme by considering three degrees

of cooperation: 2 (i.e, each SUG cooperates with 2 other

SUGs), 4 (i.e, each SUG cooperates with 4 other SUGs),

and 6 (i.e, each SUG cooperates with 6 other SUGs).

Fig. 3 shows the average number of SUGs that end up

choosing each of the three spectrum bands for the random

scheme, non-cooperative scheme, and cooperative access

scheme with 2, 4 and 6 degree of cooperation. Note that

as the degree of cooperation increases, the system load

becomes more balanced. That is, the cooperative access

scheme with degree of cooperation equal to 6 leads to a

better balanced system load when compared with the other

two degrees of cooperation.

We also study fairness achieved under each of the three

cooperation degrees, and plot the CoV of the received

rewards of the SUGs in Fig. 4. Observe that cooperation

with a degree of 6 has the lowest CoV, followed by a degree

of 4, and then followed by a degree of 2. This indicates

that a higher degree of cooperation leads to a lower CoV,

meaning that SUGs receive closer amounts of rewards,

thus ensuring fairness among SUGs. Therefore, cooperation

improves performances not only in terms of network load

balancing, but also in terms of ensuring fairness among all

SUGs. Note that each of the three degrees of cooperation

has a lower CoV when compared with the non-cooperative

and random access schemes.

It is important to mention again that although higher

degree of cooperation results in improved action selection

decisions, it also incurs more communication overhead and

execution times. Therefore, one must choose the degree of

cooperation that balances between good selection decision

and minimum overhead so as to lead to an increased overall

system performance.

V. CONCLUSION

In this paper, we developed a reinforcement learning

based framework for DSA system with multiple secondary

users. We evaluated and compared two multi-agent Q-

learning algorithms, namely the non-cooperative and the

cooperative Q-learning schemes along with the random

scheme. Simulation results showed that partial and fully

cooperative access schemes perform better than the non-

cooperative and the random access schemes in terms of

achieving a higher throughput and a better balanced traffic

loads. We also showed that cooperation improves perfor-

mances not only in terms of network load balancing, but

also in terms of ensuring fairness among all users.
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(b) Non-cooperation
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(c) Cooperation with 2 SUGs
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(d) Cooperation with 4 SUGs
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(e) Cooperation with 6 SUGs

Fig. 3. SUG distribution: m = 3, n = 12, Vj = [10 20 30].
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