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Abstract— We derive theoretical bounds on expected hitting
times in densely covered delay-tolerant networks (DTNs). We
consider a number of fixed (data collector) nodes deployed
in the DTN region, and a number of mobile (data generator)
nodes that move freely in the region according to Brownian
motion. As it moves, each mobile node is assumed to contin-
uously generate and buffer data. When a mobile node comes
within the communication coverage range of a data collector
node, it downloads its buffered data to it. Otherwise, it keeps
generating and buffering its data. In this paper, we derive
analytic bounds on the amount of time a mobile node spends
without communication coverage. Then, using these derived
bounds, we derive sufficient conditions on node density that
statistically guarantee that the expected hitting times remain
below a given threshold.

I. INTRODUCTION

Due to their importance and wide range of applications,

delay-tolerant networks (DTNs) have attracted consider-

able research focus, ranging from protocol design [1, 2]

to connectivity and delay modeling and analysis [3–7].

The work in [4] uses continuum percolation theory [8] to

show how delays in large wireless networks scale with the

Euclidean distance between the sender and the receiver.

Speed of information propagation has recently also been

studied analytically for static [5, 9] as well as mobile [6, 7,

10] DTNs. The authors in [5] derived upper bounds on

the maximum propagation speed in large-scale wireless

networks, and those in [10] derived analytic upper bounds

on information delay in large-scale DTNs with possible mo-

bility and intermittent connectivity. Network connectivity

has also been intensively studied, but mostly in the context

of large-scale networks only. In [3], the authors derived

an upper bound on the delay sufficient for disconnected

networks to become connected through node mobility. The

work in [4] derived the minimum node density required to

ensure connectivity in large static networks.

In contrast, this work aims at deriving analytic upper

bounds on the expected time a mobile node spends without

communication coverage in mostly, but not fully, covered

DTNs as a function of the communication coverage ratio;

i.e, DTNs whose coverage ratio is close to one. Intermeet-

ing times, defined as the time a mobile node spends before

running into another node, have been derived in [11] for

the generalized hybrid random walk mobility model. In this

work, La [11] shows that the distribution of intermeeting

times can be approximated by an exponential distribution

when mobile nodes move independently from one another

and when the probability of establishing communication

links among nodes is relatively low. This result provides

support for our use of a Brownian Motion model of a

mobile node, which we will show also has approximately

exponential intermeeting times under the assumptions of

the Poisson Clumping Heuristic [12] (and described in more

detail in Section III).

In our studied DTN model, a number of fixed nodes

(also referred to as access points) are deployed in the

DTN region, where mobile nodes (also referred to as

data generators) move freely in the region by following

a Brownian motion. As it moves, each mobile node is

assumed to continuously generate and buffer data. When

a mobile node comes within the communication coverage

range of a data collector node, it downloads all of its

buffered data to it. In this work, we first use the Poisson

Clumping Heuristic [12] to provide analytic bounds on the

expected hitting time, the time a mobile node spends with-

out communication coverage. Then, using these derived

bounds, we derive sufficient conditions on node density that

ensure that the expected hitting times are guaranteed to be

below a given time threshold. Finally, using simulations,

we validate/verify the derived results. Precisely, our contri-

butions in this paper are: we

• Derive analytic bounds on the expected time mobile

nodes spend without communication coverage.

• Provide sufficient node density conditions ensuring

that the expected time mobile nodes spend without

coverage remains below a fixed threshold.

• Validate/verify the derived results via simulations.

The rest of the paper is organized as follows. In Sec-

tion II, we state our network model. To introduce our

methods, we first overview the Poisson Clumping Heuristic

in Section III. We then present our analytic results in

Section IV. In Section V, we validate via simulations the

derived bounds. Finally, we conclude in Section VI.

II. MODEL

A number of fixed nodes (data collectors) are deployed

in the DTN region, where mobile nodes (data generators)

move freely in the region, following a Brownian motion.

As they move, mobile nodes are assumed to continuously

generate and buffer data independently from one another.

When a mobile node comes within the communication
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coverage range of a data collector node, it downloads all of

its buffered data to it. Otherwise, it keeps generating and

buffering its data until it goes by a collector node.

Our focus in this work is on the study of dense DTNs.

That is, DTNs that are mostly covered, but not fully. Hence,

the network formed by the data collector nodes is assumed

to be unconnected, and the communication coverage ratio

is assumed to be close to 1. In these dense DTNs, as mobile

nodes move, they will eventually traverse a data collector’s

communication coverage area, and can then download their

buffered data. To this end, the coverage ratio1 is assumed to

be close to 1 throughout this paper, and all the mathematical

analysis in this work depends heavily on this assumption.

III. POISSON CLUMPING HEURISTIC

Given a time-dependent stochastic process and a set A,

if the process intersects the set A rarely, then we can

approximate the behavior of this process’ arrivals to the

set by the Poisson Process. The Poisson Process states that

the inter-arrival times of the mobile node are exponentially

distributed, with parameter λ, and that the number of times

the mobile node has hit an access point up to time t is

Poisson distributed, with parameter λt. In the language of

the heuristic, λ is called the clump rate, so named because

the random sets of times that the process spends in A,

denoted C, appear to “clump” together. The approximations

given by the Poisson Clumping Heuristic improve if the

process is unlikely to return to A immediately after leaving

A; there should typically be some drift away from A.

Let π be the probability (of the stationary distribution)

that the process is in A. Then, the main result of the

Poisson Clumping heuristic is: π = λEC, where EC the

expected size of C. The assumption that the interarrival

times follow an exponential distribution additionally gives

us that λ = 1/T , where T is the hitting time. A detailed

description/explanation of the theory behind the Poisson

Clumping Heuristic can be found in [12].

IV. EXPECTED HITTING TIME

We consider that mobile nodes follow a Brownian motion

and move in a plane. Collector nodes are placed in the plane

to form a grid. We assume that each of the collector nodes

has a circular coverage region with radius κ. The spacing

distance D between two neighboring collector nodes is

assumed to be larger than
√
2κ. This distance is also

assumed to be smaller than 2κ so as to ensure that the DTN

contains regions of no coverage, referred to as uncovered

regions, that are disconnected. As shown in Fig. 1, we then

draw a square of side length D around each uncovered

region, with the center of each region placed in the middle

of the square. Each corner of each square corresponds to

one collector node.

We make two observations before proceeding with our

derivation and analysis. First, the problem is symmetric,

1The coverage ratio is defined as the fraction of the area covered by
collector nodes’ communication ranges to that of the total DTN area.

Fig. 1. Grid geometry: the uncovered area (the star shape) is bounded
by two circles, one of radius ρ2 from within and one of radius ρ1 from
without, which will be used to calculate bounds on the expected time a
mobile node spends outside the communication coverage area. D is the
distance between two neighboring collector nodes; κ is the radius of the
communication coverage area of a collector node.

and hence studying one square suffices. Note that once a

mobile node reaches the edge of a square coming from the

edge of an uncovered region, returning back to the same

region or another one makes no difference vis-a-vis of our

clumping analysis. Second, because the uncovered region

has an odd shape and our boundary region has a square

shape, it is too difficult to derive the exact clump rate.

Instead, we derive bounds on the clump rate.

We inscribe the largest possible circle in the uncovered

region, centered at the center of the square, and denote the

radius of the circle ρ1. We also circumscribe the smallest

possible circle around the uncovered region, centered at the

center of each region, and denote the radius of this circle

ρ2. The geometry of this grid is shown in Fig. 1.

In our model, the distribution of hitting times satisfies the

assumptions stated in Section III regarding the rarity with

which the mobile node hits the uncovered area, because of

1) the assumption of a high coverage ratio, and 2) the fact

that the drift for the radial part of Brownian Motion, given

by the Bessel Process, has drift µ(r) = 1/(2r), where r is

the Euclidean distance of the Brownian Motion from the

origin.

Let π(C) be the probability (given by the stationary

distribution) that the process is in the uncovered region

and EC the expected amount of time spent in the uncov-

ered region. As described in Section III, it follows that

π(C) = λEC.

The time a mobile node spends with communication

coverage corresponds to the time it takes a mobile node

to reach the edge of the square from the edge of an

uncovered region, and then to return to one of the uncovered

regions again. To derive an upper bound, we first investigate

a radial diffusive process on an inner disk with radius

ρ1 = 1

2
D −

√

κ2 − 1

4
D2 and an outer disk with radius

R1 = 1

2
D centered at the same point (both circles are

shown in Fig. 1). We then investigate a radial diffusive

process on an inner disk with radius ρ2 =
√
2

2
D−κ and an
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outer disk with radius R2 =

√
2

2
D to find a lower bound

on the clump rate. We can see that with these two disks,

we are inscribing the square within a disk and another

within the square, as is shown in Fig. 1. The geometric

properties of the square allow for a probabilistic coupling

construction, where the radial Brownian motion on a square

region is stochastically dominated from above and below

by the radial Brownian motions (Bessel processes) whose

boundary conditions are respectively the inner and outer

circle.

Since we are investigating the radial diffusive process on

a disk with radius Ri centered at the center of a circle of

radius ρi where i ∈ {1, 2}, the Brownian motion in either

case can be modeled as a Bessel process with parameter 2,

i.e., with drift µ(r) = 1

2r
and variance σ2 = 1 [13].

A. Inner and Outer Disks of Radii ρi and Ri > ρi

Let us now consider a disk of radius ρi centered in a disk

of radius Ri > ρi as shown in Fig. 1, where i ∈ {1, 2}.

Let us assume that a mobile node moves inside the disk of

radius Ri, and it bounces back when it hits the boundary

of the disk. We define then the smaller disk of radius ρi to

be our clump, and the hitting time to be the time between

two consecutive clump visits. The hitting time is then the

time it takes a mobile node to reach the boundary of the

outer disk of radius Ri given it just left the inner disk of

radius ρi plus the time it takes a mobile node to hit back the

inner disk given that it just bounced back from hitting the

boundary. The expected value of this hitting time is stated

in the following proposition (refer to Appendix B of [14]

for proof).

Proposition 4.1: For a smaller disk of radius ρi centered

in the larger disk of radius Ri, the expected hitting time is

h(ρi, Ri), where h(ρ,R) = R2 ln
∣

∣

∣

R
ρ

∣

∣

∣.

The following corollary, which is an immediate applica-

tion of the hitting time function, h, is used throughout to

derive the main results of this paper.

Corollary 4.2: For a star-shaped inner region and a

square boundary of side length D, the expected hitting

time is lower bounded by h(ρ1, R1) and upper bounded

by h(ρ2, R2).

B. Upper Bounds and Sufficient Conditions

We now derive upper bounds on the expected hitting

times, and provide sufficient conditions on node density that

guarantee that the expected time the mobile node spends

without coverage does not exceed a given threshold. We

define the node density ν to be equal to 1/D2.

Proposition 4.3: The expected amount of time a mobile

node spends without communication coverage, EC, is

bounded above by

κ√
2ν

(

1− 2

√

κ2ν − 1

4

)

.

Proof: The probability of being in the uncovered

region, π(C), is the ratio of the expected amount of time

the mobile node spends in the clump, EC, to the expected

amount of time the mobile node spends between clumps,

ET . More formally, π(C) ≈ EC
ET

. From Corollary 4.2, it

follows then that

π(C) · h(ρ1, R1) ≤ E(C) ≤ π(C) · h(ρ2, R2).

From a geometric argument, we can find the area of the

uncovered region and divide it by the area of the square

surrounding it to find π(C),

π(C) = 1−2

√

κ2ν − 1

4
−πκ2ν+4 cos−1

(

1

2
√
κ2ν

)

·κ2ν,

where the π in the right hand side of the equation is the

constant and the π on the left hand side of the equation is

the terminology for the stationary distribution.

Because 1

4
≤ κ2ν ≤ 1

2
, we can then write

π(C) ≤ 1− 2

√

κ2ν − 1

4
.

Now since

− 1

2ν
ln
(

1−
√
2κ2ν

)

≤ κ√
2ν

,

then,

E(C) ≤ κ√
2ν

(

1− 2

√

κ2ν − 1

4

)

.

Corollary 4.4: For a sufficiently small threshold, τ ,

(where we require τ ≤ 2κ2 for the square root to remain

real), the expected time a mobile node spends without

communication coverage is guaranteed to remain below the

threshold (i.e., EC ≤ τ ) if the density ν of collector nodes

satisfies

ν ≥ 2 ·
(

κ

τ +
√
4κ4 − τ2

)2

.

Proof: Proposition 4.3 provides an upper bound on

EC, so it suffices that

κ√
2ν

(

1−
√

4κ2ν − 1
)

≤ τ

in order for the expected time to remain below τ .

By letting ν̂ = κ2ν, the above inequality becomes

κ2

√
2ν̂

(

1− 2

√

ν̂ − 1

4

)

≤ τ.

Now, solving for ν̂, we find
√

ν̂ − 1

4
≥ −1

2

(√
2ν̂τ

κ2
− 1

)

.

Because 1

4
≤ ν̂ ≤ 1

2
and τ ≤ κ2, we have that

−1

2

(√
2ν̂τ

κ2
− 1

)

≥ 0.
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This implies that

(

τ2

2κ4
− 1

)

(√
ν̂
)2

−
√
2τ

2κ2

√
ν̂ +

1

2
≤ 0.

The leading coefficient is negative, so this is a parabola

in
√
ν̂ that opens downwards. Using the quadratic formula

to find the roots of this polynomial in
√
ν̂, (note one root

will be negative, which is impossible for a square root, so

we only need to concern ourselves with the positive root),

√
ν̂ ≥

√
2τ

2κ2 −
√

τ2

2κ4 + 2
(

1− τ2

2κ4

)

2
(

τ2

2κ4 − 1
)

which implies that

ν̂ ≥ 2 ·





1

τ
κ2 + 2

√

1− 1

4

(

τ
κ2

)2





2

.

Replacing ν̂ by νκ2 results in the sufficient node density

stated in the corollary, which guarantees that the expected

time a mobile node spends without communication cover-

age will be less than the threshold, τ .

V. SIMULATIONS

In this section, we first validate the use of the Poisson

Clumping Heuristic by measuring the expected hitting

times and comparing them against the derived bounds, and

then verify the derived sufficient conditions on node density

by mimicking and simulating a Brownian motion.

A. Poisson Clumping Heuristic Validation

Recall that, as illustrated in Section III, the derived

theoretical results are based on the assumption that Brow-

nian motion in dense networks yields approximately ex-

ponentially distributed intermeeting times (i.e., times with-

out communication coverage are exponentially distributed),

thus allowing us to use the Poisson Clumping Heuristic ap-

proach. In this section, we focus on validating the Poisson

Clumping Heuristic approach by simulating and measuring

the hitting times of a Brownian motion, and comparing

them with the theoretical upper bound (in Corollary 4.2)

for a fixed value of κ. Recall that D can range, for

fixed κ, from 2κ, where the circles of the covered regions

just barely touch, to
√
2κ, where the circles overlap so

that the uncovered region is at its smallest; the coverage

ratio η varies respectively from about 0.7854 to 1. In our

simulation, we set κ = 5.

We use Matlab to simulate a Brownian motion in a square

by generating a normal random variable with distribution

(µ = 0, σ2 = 1) for the displacement of the mobile node,

and a uniform random number selected from [0, π] for the

angle the mobile node’s path makes with the x-axis.

Because of symmetry, simulating a Brownian motion

on a plane is equivalent to simulating it on a square of

side length D with 4 collector nodes each located at one

corner and an uncovered area located at its center. The
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Fig. 2. Measured and theoretical hitting times for a Brownian motion
on a square with κ = 5 and D ranging from

√

2κ to 2κ.

covered region then is the area within κ of any corner.

If the simulated Brownian motion exits the square, it is

equivalent to continue the simulation with the mobile node

placed back inside the box at the opposite position. Fig. 2

shows that the simulated times are well bounded by the

derived upper bounds for a range of values for η, and as

expected, the higher the coverage, the tighter the bound.

B. Sufficient Node Density Conditions Verification

In this section we test and verify the sufficient conditions

on node density stated in Proposition 4.3 to ensure that the

expected time a mobile node spends without communica-

tion coverage is guaranteed to remain below the threshold.

We discuss here how to determine which values of

the thresholds are appropriate for consideration with our

heuristic. First, we fix values for κ and D. Because the

expected amount of time the mobile node spends in the

uncovered region is related to the size of the uncovered

region relative to the side length, D, of the square, and

thus the hitting time, and because the Poisson Clumping

Heuristic most closely approximates the behavior of our

process when these hitting times are large, we choose

τ = π(C)/0.08 · T
where T is in the 99th percentile of an exponential distribu-

tion function with mean h(ρ2, R2), which is the distribution

the heuristic assumes the hitting times fall into. The 1/0.08
term accounts for the step size in the simulation.

We verify the sufficient condition for the expected time

a mobile node spends without communication coverage to

be guaranteed to remain below a threshold, τ , for a range

of values of κ: 2, 5, 10 and 20, and for D near to
√
2κ for

each (1.45κ to 1.78κ). We calculate the sufficient density

from Proposition 4.3, which is a function of τ and κ. For

each ratio of density to sufficient density (which is varied by

varying the values of D), we simulate and measure the time
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Fig. 3. The measured and the derived upper bound (Proposition 4.3) on the time a mobile node spends without communication coverage when
varying D at values near

√

2κ, for κ = (2, 5, 10, 20).

spent outside the coverage for each value of κ. The results

are presented in Fig. 3. Observe that when the ratio of

density to sufficient density (ν/νs) is greater than one (i.e.,

the sufficient density condition is met), the time a mobile

node spends without communication coverage is below the

threshold τ .

To summarize, through simulations, we are able to first

validate/support the use of the Poisson Clumping Heuristic

techniques and then illustrate/verify the applicability of the

derived sufficient conditions on the node density.

VI. CONCLUSION

In this paper, we derived theoretical bounds on expected

hitting times in mostly covered DTNs. We first provided an-

alytic bounds/approximations on the expected time mobile

nodes spend without communication coverage, and then

derived sufficient conditions ensuring that these times are

guaranteed to remain below a given threshold. Finally, we

verified our derived results via simulations.
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