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Abstract—Femtocell (FC) is a new networking paradigm that
differs from the traditional, macrocell (MC) network in many
ways: size/coverage, random deployment, autonomous operation,
signal propagation environment, etc. Inter-cell interference is a
major issue in FCs operating over the same channel as the
underlying MC. In this paper, we present an analytic study of
the uplink (UL) physical interference and other related metrics,
namely the signal to interference ratio (SIR) and the outage
probability in FCs. We consider a stochastic model in which the
spatial distribution of the femto users (FUs) and the macro users
(MUs) is described by two independent, homogeneous Poisson
Point Processes (PPPs). We first characterize the UL interference
at the FC by deriving its first and second order statistics,
its probability density function (PDF) and its tail distribution.
Second, we derive the PDF of the per-FU SIR, its temporal auto-
correlation and the outage probability. Finally, we validate the
derived outage probability via Monte-Carlo simulations and show
how this probability constrains the system capacity in terms of
number (or density) of FUs that could be accepted in the MC.

Index Terms—Femtocells, Poisson Point Process, Large De-

viations, SIR, Temporal Correlation, Outage Probability.

I. INTRODUCTION

Femtocell is a new networking paradigm that has emerged

as a response to the wireless operators needs of providing

high capacity and high coverage for wireless users. A FC

is a low power, small-area-covering wireless cellular network

consisting of one Femto Access Point (FAP) and station-

ary or low-mobility FUs deployed in an indoor environment

such as a home or an office environment. Characterizing the

communication performance of single-hop transmissions from

a FU to its associated FAP is a fundamental step towards

understanding the phenomena that may affect the FC system

performance and designing efficient strategies to combat them.

It is well known that the presence of co-channel interference

represents the most important cause of performance degradation

in wireless systems. Therefore, it has been the focus of some

recent research works [1]–[7]. The study of the interference

in two-tier FC/MC networks presents new challenges mainly

due to: the particularity of the propagation environments to be

considered (Indoor, Indoor-to-Outdoor, Outdoor-to-Indoor) [8],

the presence of cellular users (FUs and MUs) with different

transmission capabilities and degrees of autonomy, the spatial

and the temporal distribution of these users, etc. Some of the

recent works [2]–[4] addressed the downlink (DL) physical

interference in two-tier FC/MC networks. For instance, in [2],
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the authors derived the PDF of the DL SIR for FC networks.

Although they took into account the shadowing effect, they did

not consider the spatial nor the temporal distribution of the

cellular users (CUs) in their analysis. In [3], Chu et al. derived

the DL outage probabilities for the CUs conditioned on their

distances from the macro base station (MBS). In [4], the authors

studied the performances of a two-tier FC network in terms

of DL outage probability, under the assumption of Poisson-

spatially-distributed FAPs. Other works [5]–[7] addressed the

UL interference in two-tier FC networks. In [7], Chandrasekhar

and Andrews investigated the UL capacity in overlaid FC/MC

CDMA systems through the derivation of lower bounds on the

per-tier outage probability. In [5], the authors used a hierarchi-

cal static geometric model to characterize the UL interference at

the FCs. Jeney [6] also presented an analytical characterization

of the UL interference and outage probability while assuming

uniformly-distributed MUs and FAPs locations. In this paper

we present a statistical characterization of the UL co-channel

physical interference, the SIR and the outage probability at the

FAPs in two-tier time division multiple access (TDMA) FC/MC

networks. In our analysis, we take into consideration the

wireless environment specificities (shadowing and pathloss), the

spatial distribution and the temporal distribution of the FUs and

MUs. We also study the tail probability distribution/asymptotic

behavior of the interference based on the large deviations

theory. Finally, we characterize the temporal auto-correlation of

the SIR for the case of stationary CUs and slowly-moving CUs.

The remainder of this paper is organized as follows. Section II

describes the system model. Section III characterizes the UL

interference of FC network. Section IV studies the SIR, its

temporal auto-correlation and the outage probability. Section V

presents system evaluation via simulations. Section VI con-

cludes the paper.

II. NETWORK MODEL

We consider a single-carrier two-tier cellular system con-

sisting of FCs (with coverage radius R) overlaid on one MC

(with coverage radius RM >> R), where both of them operate

over an identical carrier frequency f . We model the spatial

distribution of the MUs and the FUs using two independent

homogeneous PPPs, φ1 and φ2, in the two-dimensional plane,

with intensities λ1 and λ2 respectively. For a PPP with intensity

λ, the probability of n nodes being inside a region Z depends

only on the total area AZ of Z and is given by:

P(n ∈ Z) =
(λAZ)

n

n!
e−(λAZ)



Here λ is the spatial density of interfering nodes (in our case

λ1 for FUs and λ2 for MUs), in nodes per unit area. In

this work, we consider the UL communication stream; i.e.,

communication from the MUs to the MBS and from the FUs to

their corresponding FAPs. We assume that TDMA is used by

the CUs (MUs and FUs) to access the wireless channel, and that

the UL communications at the FCs are synchronized with those

at the MC [9]1, and consequently are mutually synchronized.

We further assume that FUs residing in the same FC do not

interfere with each other since they are scheduled in different

time slots. In our model, each CU is in one of two states: On

or Off. We denote δi(t) the indicator of the activity of user i:

δi(t) =

{

1 if user i is active (On) at time t

0 if user i is inactive (Off) at time t

And, we assume that all FUs and MUs have the same average

activity rate, which we denote by δ. According to our model,

there is only one active FU (FUi) in each femtocell FCi at a

given time slot t. Hence, we are interested in the interference

caused by the neighboring active FUs and the neighboring

active MUs at FAPi. Using the PPP assumption about node

locations, we model the interference’s spatial distribution as

follows: We consider that the FAP (FAPi) is located at the

center of a disk of radius R representing the area of FCi

covered by FAPi. Since only FUi is active at time slot t

at FCi, then the interference at FAPi originates from the

active FUs located in the annulus Z1, delimited by the radii

R and R1 (with respect to the center FAPi of FCi), and also

from the active MUs confined in the annulus Z2, delimited by

the radii R and R2 from FAPi. R1 and R2 are chosen such

that the interference due to FUs beyond R1 (respectively MUs

beyond R2) is negligible. In our analysis, we assume that the

physical channel gain is represented by a combination of path-

loss and log-normal shadowing in compliance with the ITU

specification [10].

III. INTERFERENCE ANALYSIS

In this section, we present a statistical characterization of the

interference in FC networks. We first determine its average and

variance, based on PPP properties. Then, we derive its proba-

bility density function (PDF). We finally study/characterize the

asymptotic behavior of the interference, i.e. its tail probability

distribution in order to determine the factors that may cause a

large deviation of the interference at a FAP. In our FC network,

we assume a TDMA operation where only one FU is active

per FC per time slot. However, when the femto user FUi is

communicating with its associated FAPi at time slot t, its

signal may be affected by the transmissions of the neighboring

active FUs and MUs. Hence the interference at FAPi at time

slot t could be expressed as:

I(t) =
∑

j∈ZF1

δj(t)r
−α1

j Sj(t)Pj(t)+
∑

k∈ZM2

δk(t)r
−α2

k Sk(t)Pk(t)

1Once turned on and before initiating any communication, FCs get synchro-
nized to the cellular core network using an asymmetric communication link
such as xDSL thanks to an enhanced version of IEEE 1588 [9].

The interference expression consists of two sums: the first

one is over the set of neighboring active FUs, ZF1, confined

in the region Z1, and the second one is over the set of

neighboring active MUs, ZM2, confined in the region Z2.

In this expression, α1 > 2 and α2 > α1 > 2 denote the

path loss exponents associated with the FUs and the MUs

respectively, Sj denotes the log-normal shadowing amplitude

related to user j, Pj denotes the transmission power of user j,

and rj its distance from FAPi. Assuming that all the nodes

transmit with constant power, we denote Xj(t) = Sj(t)Pj(t),
∀j ∈ ZF1 ∪ ZM2. Xj(t) are independent log-normal random

variables ∀j ∈ ZF1 ∪ ZM2. We further assume that Xj(t)
are i.i.d (independent identically distributed) with mean µ1 and

variance σ2
1 , ∀j ∈ ZF1. Likewise, Xk(t) are i.i.d with mean

µ2 and variance σ2
2 , ∀k ∈ ZM2. Note here j and k represent

the interfering FUs and MUs indices respectively. Hence, I(t)

can be written as:

I(t) =
∑

j∈ZF1

δj(t)r
−α1

j Xj(t) +
∑

k∈ZM2

δk(t)r
−α2

k Xk(t) (1)

A. Statistical Characterization

For ease of derivation, we use the following notation:

I(t) = I1(t) + I2(t), with I1(t) =
∑

j∈ZF1
δj(t)r

−α1

j Xj(t)

and I2(t) =
∑

k∈ZM2
δk(t)r

−α2

k Xk(t).

Theorem 1: The average µI and the variance σ2
I of the

interference at FAPi can be expressed as

µI =
2Πλ1

α1 − 2
δµ1(

1

Rα1−2
− 1

Rα1−2
1

)

+
2Πλ2

α2 − 2
δµ2(

1

Rα2−2
− 1

Rα2−2
2

)

σ2
I = δ(σ2

1 + µ2
1)

Πλ1

α1 − 1
(

1

R2(α1−1)
− 1

R
2(α1−1)
1

)

+ δ(σ2
2 + µ2

2)
Πλ2

α2 − 1
(

1

R2(α2−1)
− 1

R
2(α2−1)
2

)

Proof: The proof of this theorem uses the law of total

expectation, the law of total variance and Campbell’s theorem

for PPP [11]. We have µI , E[I(t)] = E[I1(t)] + E[I2(t)].
Moreover the two sums I1(t) and I2(t) are independent since

the two PPPs φ1 and φ2 are independent, the activity of

MUs and FUs are independent, and the shadowing factors of

the different interfering users are also mutually independent.

Hence, σ2
I , V[I(t)] = V[I1(t)] + V[I2(t)]. In the rest of

this proof, we will only present the derivation of E[I1(t)] and

V[I1(t)] (the derivation of E[I2(t)] and V[I2(t)] uses exactly

the same techniques). Using the law of total expectation we

have:

E[I1(t)] = Er[Eδ[EX [I1(t)|r, δ]]] = Er[µ1δ
∑

j∈ZF1

r−α1

j ]



By applying Campbell’s Theorem, we get:

E[I1(t)] = µ1δ

∫ R1

R

1

rα1

2Πλ1r dr

=
2Πλ1µ1δ

α1 − 2
(

1

Rα1−2
− 1

Rα1−2
1

)

On the other hand, using the law of total variance we have

V[I1(t)] = E[V[I1(t)|r, δ]] + V[E[I1(t)|r, δ]] with:

E[V[I1(t)|r, δ]] = E[σ2
1

∑

j∈ZF1

(δj(t)r
−α1

j )2]

= σ2
1δE[

∑

j∈ZF 1

(r−α1

j )2]

V[E[I1(t)|r, δ]] = V[µ1

∑

j∈ZF1

δj(t)r
−α1

j ]

= µ2
1{E[V[

∑

j∈ZF1

δj(t)r
−α1

j |rj ]]

+ V[E[
∑

j∈ZF1

δj(t)r
−α1

j |rj ]]}

= µ2
1{(δ − δ

2
)E[

∑

j∈ZF 1

(r−α1

j )2]

+ δ
2
(E[(

∑

j∈ZF 1

r−α1

j )2]− E[
∑

j∈ZF1

r−α1

j ]2)}

On the other hand, we have:

E[(
∑

j∈ZF 1

r−α1

j )2] = E[
∑

j∈ZF1

(r−α1

j )2] + E[
∑

i6=j∈ZF 1

1

rα1

i rα1

j

]

= E[
∑

j∈ZF1

(r−α1

j )2]

+

∫

ZF1

∫

ZF1

r−α1

1 r−α1

2 φ1(dr1)φ1(dr2)

= E[
∑

j∈ZF1

(r−α1

j )2] + E[
∑

j∈ZF 1

r−α1

j ]2

Hence, V[E[I1(t)|r, δ]] = µ2
1δE[

∑

j∈ZF1
(r−α1

j )2]. Thus:

V[I1(t)] = δ(σ2
1 + µ2

1)E[
∑

j∈ZF 1

(r−α1

j )2]

= δ(σ2
1 + µ2

1)
Πλ1

α1 − 1
(

1

R2(α1−1)
− 1

R
2(α1−1)
1

)

The knowledge of the statistics of the UL interference may

have many interesting applications in the design of FC networks

and the improvement of its PHY layer performance such as the

reduction of the aggregate interference, or QoS-aware network

design, etc. Another important feature of interference is its PDF.

In fact, in some noncooperative systems, the estimation of the

interference value is of a paramount importance [12]. And,

we believe that the characterization of the interference’s PDF

would be helpful for the estimation of its realization per time

slot (this is not the scope of this work, but we are planning to

investigate it in some future work). It would also help us study

the asymptotic behavior of the interference and provide some

insights about the factors that induce a large deviation of this

interference.

We notice that the expression of the interference at FAPi at

any time slot t is nothing but the sum of independent log-

normal random variables. Hence, using the Fenton-Wilkinson

approximation [13] about the distribution of the sum of log-

normal random variables we conclude the following:

Corollary 1: At any time slot t, I(t) is a log-normal random

variable characterized by the following PDF:

fI(x) =
1√

2Πxσeq

exp(
−(lnx− µeq)

2

2σ2
eq

) (2)

Where: µeq = ln(
µ2

I√
σ2

I
+µ2

I

) and σ2
eq = ln(

σ2

I+µ2

I

µ2

I

).

B. Asymptotic Behavior

In this section, we study the probability of the interference

blowing up as a function of the number of interferers and

their transmission power. Therefore, we resorted to some large

deviation theory results developed for the heavy tailed type

of distributions, more particularly the log-normal distribution.

Based on the fact that the mean and the standard deviation of

the shadowing of the MUs are higher than those of the FUs [14],

and using the large deviation lemma for the sum of log-normal

distributions [15], we derived the following theorem.

Theorem 2: Let n1 and n2 denote the number of FU inter-

ferers and MU interferers respectively, and let n = n1 +n2 be

the total number of interferers. Let I(n) denote the interference

at FAPi in the presence of n interferers. Then, for α2 = 4, we

have as x → ∞:

P(I(n) > x) ∼ n2Fµmax,σ2
max

(x) (3)

Fµmax,σ2
max

(x) is the Complementary Cumulative Distribution

Function (CCDF) of the log-normal distribution with parame-

ters µmax (mean) and σ2
max (variance), where

σ2
max = ln(

σ2
2 + µ2

2

µ2
2

)

µmax = ln(
µ2
2

√

σ2
2 + µ2

2

) + ln{e
−λ2ΠR

R
− e−λ2ΠR2

R2

+ ln(
R2

R
) +

∞
∑

n=0

(−λ2Π)
n(Rn

2 −Rn)

n.n!
}

Proof: The proof of this theorem follows from the lemma

in [15]. This lemma implies that the sum of independent log-

normally distributed random variables is asymptotically equiv-

alent to that of their maximum. In our case, the interference

is consisting of two sums: the first one is over the log-

normal random variables ( 1
rα1

Xj)j∈ZF1
associated with the

FUs, the second one is over the log-normal random variables

( 1
rα2

Xk)k∈ZM2
associated with the MUs. In what follows, for

ease of derivation we substitute 1
rα1

and 1
rα2

with their means

E[ 1
rα1

] and E[ 1
rα2

] respectively. By applying the lemma in [15],

we get P(I(n) > x) ∼ mnFµmax,σ2
max

(x), with mn is the



number of summands in the interference expression whose

variances are equal to σ2
max, and µmax is their corresponding

mean. In a two-tier MC/FC network, the mean and the standard

deviation of the shadow fading of the MUs are higher than those

of the FUs [14]. Hence, mn = n2 and:

σ2
max , max(V[ln(E[

1

rα1

]Xj)]ZF1
,V[ln(E[

1

rα2

]Xk)]ZM2
)

= V[ln(Xk)]k∈ZM2
= ln(

σ2
2 + µ2

2

µ2
2

)

µmax = E[ln(E[
1

rα2

]Xk)]k∈ZM2

= ln(E[
1

rα2

]) + ln(
µ2
2

√

σ2
2 + µ2

2

)

Moreover, in a network where node positions are distributed

according to PPP with intensity λ2, the distance between the

origin (in our case the FAP) and any other node is Rayleigh-

distributed with mean 1
2
√
λ2

. Hence, we have for α2 > 2:

E[
1

rα2

] ,

∫ R2

R

1

rα2

2Πλ2re
−λ2Πr2 dr

= λ2Π{
e−λ2ΠR

R(
α2

2
−1)

− e−λ2ΠR2

R
(α
2
−1)

2

+

∫ R2

R

e−λ2Πr

r(
α
2
−1)

dr}

Particularly, for α2 = 4 we have:
∫ R2

R

e−λ2Πr

r(
α2

2
−1)

dr =

∫ R2

R

e−λ2Πr

r
dr

= ln(
R2

R
) +

∞
∑

n=0

(−λ2Π)
n(Rn

2 −Rn)

n.n!

In this derivation we have considered α2 = 4 for ease of

computation. Moreover, α2 = 4 is a typical value of the

pathloss for MUs in two tier FC/MC networks [10].

We notice that the probability of the interference deviating

from its mean is fully characterized by the interferers with the

highest signal amplitude mean and variance. That is, a large

value of the UL interference at a FC is mainly caused by

the interfering transmitters with maximum transmitted signal

amplitudes, which happen to be the MUs in our case, rather

than the total number of interferers.

IV. SIGNAL TO INTERFERENCE RATIO AND OUTAGE

PROBABILITY

In this section, we first derive some statistical characteristics

of the UL signal to interference ratio (SIR) that allowed us

characterize the link outage probability. Then, we study the

temporal auto-correlation of the SIR for the case of stationary

CUs and the case of slowly-moving CUs using the uniform

mobility model.

A. Statistical Characterization

The SIR of FUi transmitting at time slot t to its associated

FAPi could be written as:

γ(t) =
LiPi(t)r

−2
i

I(t)

where Pi(t) represents the transmission power of FUi and

Li represents the attenuation corresponding to the wall loss

(assumed constant), and ri represents the distance between

FUi and FAPi. In this analysis we assume that ri does not

vary much with time and that FUi transmits with a constant

power for a certain number of time slots. Moreover, since

FUi is located inside the femtocell FCi (indoor environment)

and close enough to FAPi, we assume that there aren’t

enough obstructions to affect its transmitted signal. Therefore,

we use the free space propagation model (no shadowing) to

model the transmission from FUi to FAPi, and we denote

Ki = LiPi(t)r
−2
i the signal received at FAPi from FUi.

Theorem 3: The PDF of the SIR corresponding to the trans-

mission of FUi in FCi to FAPi is:

fγ(u) =
1√

2Πuσeq

exp(
−(ln(u)− (ln(Ki)− µeq))

2

2σ2
eq

) (4)

And the average and variance of the SIR are:

µs = e(ln(Ki)−µeq+
1

2
σ2

eq)

σ2
s = (eσ

2

eq − 1)e(2(ln(Ki)−µeq)+σ2

eq)

Proof: Note that γ(t) = Ki

I(t) is a decreasing function of

I(t) whose PDF expression is derived in (2). Hence, applying

the statistical transformation method gives

fγ(u) = fI(
Ki

u
)|d(

Ki

u
)

du
|

=
1√

2Πuσeq

exp(
−(ln(u)− (ln(Ki)− µeq))

2

2σ2
eq

)

In addition, we assume that the transmission from FUi to

FAPi fails if its SIR (γ) is below a certain defined threshold

γth. This is the case if the interference at FAPi is high enough

compared to the amplitude of the signal transmitted by FUi,

so that this FAP cannot detect it.

Corollary 2: The outage probability Po , P(γ < γth) of

FUi’s transmission to FAPi is:

Po =
1

2
erfc(− ln(γth)− [ln(Ki)− µeq]

√

2σ2
eq

) (5)

B. The Temporal Auto-Correlation of the SIR

In many link outage analysis works, the realizations of the

SIR are assumed independent across time. However, this is not

always the case, especially when the interferers positions are

correlated across time. In our analysis, we assume that the

nodes are fixed (stationary) or are (at most) moving slowly.

Therefore, in the following we derive the temporal autocor-

relation of the SIR in two different time slots s and t while

distinguishing between two cases:

Case(1)—Mobile interferers: We consider that the interferers,

the MUs and the FUs, are moving with constant speeds v1 and

v2 respectively, and their displacement direction is described



by an angle θ uniformly distributed in [0, 2Π].
Case(2)—Stationary interferers: We consider v1 = v2 = 0.

Theorem 4: The temporal autocorrelation of the SIR (γ)

corresponding to the transmission of FUi to FAPi at the time

slots s and t (s < t) is:

Under case(1)—Mobile interferers:

Rγ(τ) =
K2

i E[
1

δ
2
(β1Xj+β2Xk)(β3Xj+β4Xk)

]− µ2
s

σ2
s

(6)

where τ = t− s, Xj and Xk denote the log-normal shadowing

coefficients related to the FUs and MUs respectively (as defined

in (1)), and

β1 =
2Πλ1

α1 − 2
(

1

Rα1−2
− 1

Rα1−2
1

)

β2 =
2Πλ2

α2 − 2
(

1

Rα2−2
− 1

Rα2−2
2

)

β3 =

∫ R1

R

∫ 2Π

0

λ1r

(r2 + (v1τ)2 + 2v1τr cos(θ))
α1

2

dr dθ

β4 =

∫ R2

R

∫ 2Π

0

λ2r

(r2 + (v2τ)2 + 2v2τr cos(θ))
α2

2

dr dθ

Under case(2)—Stationary interferers:

β1 = β3 and β2 = β4, thus:

Rγ(τ) =
K2

i E[
1

δ
2
(β1Xj+β2Xk)2

]− µ2
s

σ2
s

(7)

Proof: Given that the SIR realizations are identically

distributed but not independent (i.e. correlated) across time, the

temporal autocorrelation of the SIR at the time slots s and t

(s < t) is:

Rγ(τ) =
E[γ(s)γ(t)]− µ2

s

σ2
s

where

E[γ(s)γ(t)] = K2
i E[

1

I(t)I(s)
]

= K2
i E[

∫ +∞

0

∫ +∞

0

e−(xI(s)+yI(t)) dx dy]

= K2
i

∫ +∞

0

∫ +∞

0

E[e−(xI(s)+yI(t))] dx dy

By further decomposing the interference into two interference

terms induced by the neighboring FUs and MUs as in (1), it

follows that

E[γ(s)γ(t)] = K2
i

(
∫ +∞

0

∫ +∞

0

E[e−(xI1(s)+yI1(t))]

E[e−(xI2(s)+yI2(t))] dx dy

)

(8)

When considering mobile interferers, we have

rj(t) =
√

rj(s)2 + (v1τ)2 + 2v1τrj(s) cos(θ) ∀j ∈ ZF1 (9)

rk(t) =
√

rk(s)2 + (v2τ)2 + 2v2τrk(s) cos(θ)∀k ∈ ZM2

(10)

On the other hand for any point process φ, its Laplace func-

tional is defined as

Lφ(f) , E[e−
∫
Z
f(x)φ(dx)] = E[e−

∑
x∈Z

f(x)] (11)

Using (9) and (10), and applying (11) yield

E[e−(xI1(s)+yI1(t))] = e−δXj(β1x+β3y)

where

β1 =

∫ R1

R

r−α12Πλ1r dr =
2Πλ1

α1 − 2
(

1

Rα1−2
− 1

Rα1−2
1

)

β3 =

∫ R1

R

∫ 2Π

0

λ1r

(r2 + (v1τ)2 + 2v1τr cos(θ))
α1

2

dr dθ

Likewise,

E[e−(xI2(s)+yI2(t))] = e−δXk(β2x+β4y)

where

β2 =

∫ R2

R

r−α22Πλ2r dr =
2Πλ2

α2 − 2
(

1

Rα2−2
− 1

Rα2−2
2

)

β4 =

∫ R2

R

∫ 2Π

0

λ2r

(r2 + (v2τ)2 + 2v2τr cos(θ))
α2

2

dr dθ

Hence, it follows that

E[γ(s)γ(t)] = K2
i E[

(
∫ +∞

0

∫ +∞

0

e−δXj(β1x+β3y)

e−δXk(β2x+β4y) dx dy

)

]

E[γ(s)γ(t)] = K2
i E[

1

δ
2
(β1Xj + β2Xk)(β3Xj + β4Xk)

]

The characterization of the temporal auto-correlation of the

SIR in FCs is important. In fact, it helps characterize the

correlation of transmission failures over time. Thus, it provides

useful information for the design of retransmission strategies,

or power control schemes for efficient reliable FC networks.

V. NUMERICAL RESULTS

Using the physical model discussed in Section II, we apply

Monte Carlo numerical techniques to simulate the co-channel

interference observed at the FAP for 106 samples. At each sam-

ple instant, the locations of the active MU and FU interferers

are generated as a realization of their corresponding PPPs, and

their shadowing coefficients as realizations of their related log-

normal distributions. In our simulation, we use the same PHY

propagation parameters as in [14] and [10]. Moreover, unless

otherwise stated, we fix the PPP intensities to λ1 = 0.15
and λ2 = 0.02. In Fig. 1, we plot a snapshot of our two-

tier FC/MC network. In Fig. 2, we plot the theoretic outage

probability derived in (5) and compare it with the Monte
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Carlo simulation. Note that at the low SIR regime and the

high SIR regime, the analytical outage probability and the

simulated one match perfectly. Finally, in Fig. 3, we illustrate

the evolution of the outage probability as a function of the

FU density for different MC loads (i.e. load in MUs). This

curve is of a paramount importance since it constrains the

density and consequently the number of active FUs that could

be accepted in the underlying MC to meet a desired value of

the outage probability. Hence, it would be useful for the design

of admission control mechanisms. For instance, in order to

maintain the outage probability at the FAP Po ≤ 0.02, the

density of active FUs in the MC should not exceed 0.06 for a

MU density λ2 ≈ 0.1.

VI. CONCLUSION

In this paper, we derived statistical characterizations of the

UL interference, SIR, and the outage probability in FC net-

works. This characterization helped us determine the dominant

factors affecting the physical interference and the SIR at FCs.

One of the main assets of our work is that it provides insights on

the interaction of the system design parameters (spatial density,

wireless propagation, user activity) and their impact on the two-

tier FC/MC system performance. It also extends the calculations

to describe the temporal auto-correlation of the SIR with respect
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Fig. 3. The Outage Probability as a function of the FU density

to the CU mobility, thereby providing a key parameter that

could help in the design of power control or admission control

schemes in such networks.
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