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Abstract—We develop efficient coordination techniques that sup-
port inelastic traffic in large-scale distributed dynamic spectrum
access (DSA) networks. By means of any learning algorithm, the
proposed techniques enable DSA users to locate and exploit spec-
trum opportunities effectively, thereby increasing their achieved
throughput (or “rewards” to be more general). Basically, learning
algorithms allow DSA users to learn by interacting with the
environment, and use their acquired knowledge to select the proper
actions that maximize their own objectives, thereby “hopefully”
maximizing their long-term cumulative received reward. However,
when DSA users’ objectives are not carefully coordinated, learning
algorithms can lead to poor overall system performance, resulting
in lesser per-user average achieved rewards. In this paper, we
derive efficient objective functions that DSA users can aim to
maximize, and that by doing so, users’ collective behavior also
leads to good overall system performance, thus maximizing each
user’s long-term cumulative received rewards. We show that the
proposed techniques are: (i) efficient by enabling users to achieve
high rewards, (ii) scalable by performing well in systems with a
small as well as a large number of users, (iii) learnable by allowing
users to reach up high rewards very quickly, and (iv) distributive
by being implementable in a decentralized manner.

Index Terms: distributed resource allocation and management,
cooperative and coordinated learning, dynamic and opportunistic
spectrum access.

I. INTRODUCTION

Federal Communications Commission (FCC)’s foreseeable

approach for solving the spectrum shortage problem [1, 2] is

dynamic spectrum access (DSA). Essentially, DSA improves

spectrum efficiency by allowing unlicensed or secondary users

(SUs) to exploit unused licensed spectrum, but in a manner

that limits interference to licensed or primary users (PUs).

DSA requires that SUs sense any licensed spectrum band prior

to using it to check whether the band is vacant. When the band

is vacant, SUs can then use it opportunistically, in that upon the

return of any PUs, they must immediately vacate the band.

DSA has created tremendous research interests that resulted

in numerous works on protocol and algorithm design [3–6],

architectures and management strategies [7–12], and spectrum

sensing techniques [13–16]. Research efforts have also been

given to the development of adaptive techniques that also

promote effective DSA first by constructing models that can

predict the dynamics of the environment, and then, by using

these models to adjust to the environment’s behaviors so as

to maximize the performance [17–22]. The issue, however, is

that DSA gives rise to unique characteristics, making it too

difficult to construct models that can predict its environment’s

dynamics without making assumptions about the environment

itself. These assumptions are often unrealistic, leading to an

inaccurate prediction of spectrum availabilities.

Learning-based techniques that do not require models but

can still learn through interactions with the environment are

particularly well suited to DSA, and consequently, have recently

attracted the focus of many researchers [23–28]. Instead of

using models, learning-based techniques rely on learning algo-

rithms (e.g., reinforcement learners [29, 30] and evolving neuro-

controllers [31, 32]) to learn from past and present interaction

experience to decide what to do best in the future. In essence,

learning algorithms allow SUs to learn by interacting with

the environment, and use their acquired knowledge to select

the proper actions that maximize their own (often selfish)

objective functions, thereby “hopefully” maximizing their long-

term cumulative received rewards.

However, when SUs’ objective functions are not carefully

coordinated, learning algorithms can lead to poor performance

in terms of the SUs’ long-term received rewards. In other

words, when SUs aim to maximize these not so carefully

designed objective functions, their collective behavior often

leads to worsening each other’s long-term cumulative rewards.

It is, therefore, imperative that objective functions be designed

carefully so that when SUs maximize them, their collective

behavior does not result in worsening each other’s performance.

In this paper, we develop coordination techniques that max-

imize the achievable rewards of SUs’ inelastic traffic in large-

scale DSA networks. We investigate the use of difference ob-

jective functions, which have been successfully applied to other

system domains, such as controlling multi-robot systems [33]

and regulating air traffic flow [34], and are shown to perform

well in these systems. For our DSA system, we specifically

derive distributed and scalable objective functions that SUs

can aim to maximize, and that by doing so, SUs’ collective

behavior also leads to good overall system performance, thus

maximizing each SU’s long-term cumulative received rewards.



We consider a DSA network with several spectrum bands and a

large number of SUs, all continuously seeking and using unused

spectrum bands. By means of any learning algorithm, SUs can

maximize the derived objective functions to ensure that they

achieve high performances in terms of the long-term average

received rewards. We show that the proposed objective functions

(i) allow SUs to achieve high rewards, (ii) perform well in

systems with a small as well as a large number of SUs, (iii)
allow SUs to reach up high rewards very quickly, and (iv) are

implementable in a decentralized manner by relying on local

information only.

The rest of the paper is organized as follows. In Section II, we

present the model, describe the motivation, and state the objec-

tive of this work. In Section III, we present our proposed objec-

tive functions. In Section IV, we derive the optimal/theoretical

distribution of SUs across the available bands. We evaluate

the performances of the proposed functions in Section V.

Section VI discusses some practical/implementation aspects

of the proposed techniques. We present the related works in

Section VII. Finally, we conclude the paper in Section VIII.

II. MODEL, MOTIVATION, AND OBJECTIVE

We consider m non-overlapping spectrum bands, where each

band is associated with many PUs. We also consider a dis-

tributed DSA system, where PUs are assumed to arrive and

leave at the beginning and at the end of time slots. We assume

that each SU implements and uses a learning algorithm (e.g., a

reinforcement learner [29, 30]) to allow it to locate and select

the best available band. When a group of two or more SUs want

to communicate with each other, all members of the group must

first select and switch to the same spectrum band to be able to

carry out a communication among them. Throughout this paper,

these groups will also be referred to as agents.

At each time step, each agent using a band receives an

amount of service that is passed to it from that band. The

reward that the agent receives as result of using the DSA system

is a function of the amount of service the agent receives

from the band. Although the service the system offers can be

perceived/quantified in various forms (e.g., data rates, reliability

of the communication, signal to noise ratio, packet success rates,

etc), in this work, we consider the agent’s “received throughput”

as the service metric. Therefore, we can safely assume that once

the agent switches to a particular band, it can easily quantify

the service level that it receives from using such a band by

measuring the amount of throughput it receives. The methods

that agents use to quantify and measure the service received

as a result of using any particular band are beyond the scope

of this work. Throughout, let Sj represent the total amount of

service that spectrum band j offers.

A. Inelastic Traffic Model

This work studies the inelastic traffic model. In this model,

an agent receives a constant reward if it switches to a band

offering a quality-of-service (QoS) level equal to or greater than

a certain required threshold Q, and receives a zero (or close to

zero) reward when the offered QoS level is below the threshold.

This model suits well inelastic applications, such as multimedia

applications, in which receiving a QoS level less than what is

required (i.e., Q) is not acceptable, thus yielding a zero (or

almost zero) reward. But also, receiving a QoS level higher

than what is required is not beneficial either, which explains

why the reward is kept constant. Formally, the inelastic reward,

rj(nj(t)) or simply rj(t), the spectrum band j contributes to

any agent using it at time step t can be written as:

rj(t) =

{
Q if nj(t) ≤ Sj/Q

Qe
−β

nj(t)Q−Sj

Sj otherwise
(1)

where nj(t) is the number of users/agents using band j at

episode (time step) t, and β is a decaying factor. Note that when

the number of users using band j is greater than1 cj ≡ Sj/Q,

the reward decreases exponentially. This means that none of the

users will be satisfied with the amount of service they receive

from band j if band j contains more than cj users.

For illustration purposes, we show in Fig. 1 the inelastic

traffic reward rj(t) contributed by band j as a function of the

number of users nj(t) using band j for β = 20 and Sj/Q = 4.
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Fig. 1. Reward function: β = 20 and Sj/Q = 4 for all j = 1, 2, . . . ,m.

From the system’s perspective, the system or global reward,

G(t), at time step t is the sum of all agents’ received rewards,

and can formally be expressed as

G(t) =

m∑

j=1

nj(t)rj(t) (2)

where again m is the number of bands. The per-agent average

received reward r̄(t) at time step t can then be written as

r̄(t) =
G(t)

∑m
j=1 nj(t)

(3)

B. Learning Algorithm

Our objective in this work is to derive distributive and

scalable objective functions for SUs that are aligned with

global system objective, so that when SUs (i.e., agents) aim

to maximize them, they indeed lead to the maximization of the

agents’ long-term cumulative received rewards. Basically, by

1cj here represents band j’s capacity; i.e., the maximum number of users
that the band can support while meeting the users’ required QoS levels.



means of any learning algorithm, these objective functions will

enable SUs to efficiently find and locate spectrum opportunities,

thus increasing the long-term achievable rewards that each

SU can receive from accessing the DSA network.

Even though the focus of this work is on the design of

efficient objective functions and not on the development of

learning algorithms, we choose to use throughout this work the

ǫ-greedy Q-learner [29] with a discount rate of 0 and an ǫ value

of 0.05 for the purpose of evaluating our proposed techniques.

Each agent is then assumed to implement and rely on the Q-

learner to maximize the proposed objective function. At the end

of every episode, each agent selects and takes the action with the

highest entry value with probability 1− ǫ, and selects and takes

a random action among all possible actions with probability ǫ.
After taking an action, the agent then computes the reward that

it receives as a result of taking such an action, and uses it to

update its Q-table. A table entry Q(a) corresponding to action

a is updated via Q(a) ← (1 − α)Q(a) + αu, where α (here,

the value of α is set to 0.5) is the learning rate, and u is the

received reward from taking action a. All the results presented

in this paper are based on this Q-learner. Readers are referred

to [29] for more details on the Q-learner.

C. Motivation and Objective

The key question that arises naturally and that we address in

this work is which objective function gi should each DSA agent

i aim to maximize so that its received reward is maximized?

There are two intuitive choices. One possible choice for gi is

for each agent i using band j to selfishly go after the intrinsic

reward rj contributed by the band j as defined in Eq. (1); i.e.,

gi = rj for each agent i using band j. A second also intuitive

choice is for each agent to maximize the global (i.e., total)

rewards received by all agents; i.e., gi = G for each agent i as

defined in Eq. (2), hoping that maximizing the overall received

rewards will eventually lead to maximizing every agent’s long-

term average received rewards.

For illustration purposes, we measure and show in Fig. 2 the

average reward r̄(t) (measured and calculated via Eq. (3)) that

each agent receives under each of these two private objective

function choices. In this experiment, we consider a DSA net-

work with 500 agents and 10 bands. There are two important

observations that we want to make regarding the performance

behaviors of these two objective functions, and that constitute

the main motivation of this work. First, note that when agents

aim to maximize their own intrinsic rewards (i.e., gi = rj
for each agent i using band j), the per-agent average received

reward goes up quickly at first but then drops down rapidly

too, and then starts to ramp up quickly and drop down rapidly

again, and so on. With the intrinsic function, an agent’s reward,

by design, is sensitive to its own actions, which enables it

to quickly determine the proper actions to select by limiting

the impact of other agents’ actions, thus learning about good

spectrum opportunities fast enough. However, agents’ intrinsic

objectives are likely not to be aligned with one another, which

explains the sudden drop in their received reward right after

learning about good opportunities; i.e., right after their received

reward becomes high.

1 50 100 150 200 250 300
  0  

0.02

0.04

Episode

P
e

r−
A

g
e

n
t 

A
v
g

. 
R

e
w

a
rd

 

 

g
i
(t)=G(t)

g
i
(t)=r

j
(t)

Fig. 2. Per-agent average achieved reward r̄(t) as a function of episode t
under the two private objective functions: intrinsic choice (gi = rj ) and global
choice (gi = G) for Q = 2, β = 2, Sj = 20 for j = 1, 2, . . . , 10.

The second observation is regarding the second objective

function choice, G. Observe that, unlike the intrinsic function,

when each agent i sets its objective function gi to the global re-

ward function G, this results in a steadier performance behavior

where the per-agent average received reward increases contin-

uously, but slowly. With this function choice, agents’ rewards

are aligned with one another by accounting for each other’s

actions, and thus are less (or not likely to be) sensitive to the

actions of any particular agents. The alignedness feature of this

function is the reason behind the observed monotonic increase in

the average received reward. However, this monotonic increase

is relatively slow due to the function’s insensitivity to one’s

actions, leading to slow learning rates.

To recap, objective functions must be designed with two

requirements in mind: (i) alignedness; when agents maximize

their own private objectives, their collective behavior should

indeed result in increasing each agent’s long-term received

rewards, and (ii) sensitivity; objective functions should be

sensitive to the agents’ own actions so that proper selections of

actions allow agents to learn about good spectrum opportunities

fast enough.

With this in mind, the objective of this work is then to derive

private objective functions for supporting inelastic traffic in

large-scale, distributed DSA networks that meet the following

design requirements. First, they should be efficient in that

they should enable agents to achieve high rewards. Second,

they should be scalable in that they should perform well in

DSA networks with a small as well as a large number of agents.

Third, they should be learnable in that they should enable agents

to find and locate spectrum opportunities quickly. Fourth, they

should be distributive in that they should be implementable in

a decentralized manner. The objective functions that we derive

in this work meet all of these design requirements.

III. SECONDARY-USER OBJECTIVE COORDINATION

In this section, we first begin by presenting the factoredness

and learnability concepts, both of which are essential for cap-

turing as well as ensuring the two required design properties:

alignedness and sensitivity. Then, we propose efficient objective

functions that meet the above design requirements.



A. Properties of Objective Functions

Again, let gi denote the function that DSA agent i aims to

maximize as its objective, and that we want to derive. Let z
characterize the joint move of all DSA agents in the system.

Here, the global reward, G, is a function of z, which specifies

the full system state (G can then precisely be written as G(z)).
Hereafter, we use the notation−i to specify all agents other than

agent i, and zi and z−i to specify the parts of the system state

controlled respectively by agent i and agents −i. The system

state z can then be written as z = zi + z−i.

For the joint actions of multiple DSA agents to lead to good

overall average reward, two (often conflicting) requirements

must be met. First, we must ensure that a DSA agent aiming

to maximize its own private objective function also leads to

maximizing the global (total achievable) rewards, so that its

long-term average received rewards are indeed maximized. This

means that the agents’ private objective functions (gi(z) for

agent i) need to be “aligned" or “factored" with the global

reward function (G(z)) for a given system state z. Formally,

for systems with discrete states, the degree of factoredness of

a given private objective function gi is defined as [35]:

Fgi =

∑

z

∑

z′ h[(gi(z)− gi(z
′)) (G(z)−G(z′))]

∑

z

∑

z′ 1
(4)

for all z′ such that z−i = z′−i, where h[x] is the unit step

function, equal to 1 if x > 0, and zero otherwise. Intuitively,

the higher the degree of factoredness of an agent’s objective

function gi, the more likely it is that a change of state will

have the same impact on both the agent’s (i.e., local) and the

total (i.e., global) received rewards. A system is fully factored

when Fgi = 1.

Second, we must ensure that each agent can discern the

impact of its own actions on its private objective function, so

that a proper action selection allows the agent to quickly learn

about good spectrum opportunities. This means that the agent’s

private objective function should be more sensitive to its own

actions than the actions of other agents. Formally, the level of

sensitivity or learnability of a private objective function gi, for

agent i at z, can be quantified as [35]:

Li,gi(z) =
Ez′

i
[|gi(z)− gi(z−i + z′i)|]

Ez′

−i
[|gi(z)− gi(z′−i + zi)|]

(5)

where E[·] is the expectation operator, z′i’s are parts of the

system states, controlled only by agent i, that are resulting from

agent i’s alternative actions at z, and z′−i’s are parts of the

system states, controlled by agent −i, that are resulting from

agent −i’s alternative joint actions. So, at a given state z, the

higher the learnability, the more gi(z) depends on the move of

agent i. Intuitively, higher learnability means that it is easier for

an agent to achieve higher rewards.

B. Proposed Objective Functions

The challenge in designing objective functions is to find the

best tradeoff/balance between the two properties: factoredness

and learnability (discussed in Section III-A). Doing so ensures

that agents can learn to maximize their own objectives while do-

ing so also leads to good overall system performance, resulting

then in increasing each agent’s long-term received rewards.

Let us first visit the behavior of the global reward function,

illustrated earlier in Section II-C, so as to provide some intuition

on our proposed function design. Recall that when agents set

the global reward G as their objective functions (i.e., gi = G
for each agent i), their collective behaviors did indeed result in

increasing the total system achievable rewards (i.e., did result in

a fully factored system), as agents’ private objectives are aligned

with system objective. The issue, however, is that because G
depends on all the components of the system (i.e., all agents),

it is too difficult for agents (using G as their objective functions)

to discern the effects of their own actions on their objectives,

resulting then in low learnability rates.

The key observation that leads to the proposed functions is

that by removing the effects of all agents other than agent i
from the function G, the resulting agent i’s private objective

function will have a much higher learnability level than G does,

yet without compromising its degree of factoredness. These

objective functions can formally be written as

Di(z) ≡ G(z)−G(z−i) (6)

where z−i again represents the parts of the state on which agent

i has no effect. These difference functions have been applied

to other domains (e.g., multi-robot control [33] and air traffic

flow regulation [34]), and are shown to perform well.

First, note that these proposed functions (Di for agent i) are

fully factored, because the second term of Eq. (6) does not

depend on agent i’s actions. On the other hand, they also have

higher learnability than G, because subtracting this second term

from G removes most of other agents’ effects from agent i’s
objective function. Intuitively, since the second term evaluates

the value of the system without agent i, subtracting it from

G provides an objective function (i.e., Di) that essentially

measures agent i’s contribution to the total system received

rewards, making it more learnable without compromising its

factoredness quality.

By substituting Eq. (2) into Eq. (6), explicitly noting the time

dependence t, and for clarity, removing the implicit dependence

on the full state z, the function Di for agent i selecting band j
at time t can then be written as:

Di(t)=

m∑

k=1

nk(t)rk(nk(t))

−





m∑

k=1,k 6=j

nk(t)rk(nk(t))+(nj(t)−1)rj(nj(t)−1)





= nj(t)rj(nj(t))− (nj(t)− 1)rj(nj(t)− 1) (7)

It is important to note that, by taking away agent i from

the second term of the function Di, the terms corresponding

to all spectrum bands k, except the band j that agent i is

using, cancel out. This explains why Di, as shown in Eq. (7),

depends on band j only. Therefore, the proposed function

Di is simpler to compute than the global function G. More

specifically and importantly, it is fully decentralized as agents



implementing/using it as their objectives need to gather and

share information only with the agents that belong to the same

band. This is one important property among few others (to be

described later) that this proposed function has.

Let us now formally prove the claims that we made regarding

the performances of the proposed objective functions.

Proposition 3.1: Di is fully factored.

Proof: Differentiating both sides of Eq. (6) w.r.t. agent i’s
state zi yields ∂

∂zi

Di(z) = ∂
∂zi

G(z) − ∂
∂zi

G(z−i), which also

yields ∂
∂zi

Di(z) =
∂
∂zi

G(z) since ∂
∂zi

G(z−i) = 0.

Proposition 3.2: The expected learnability of Di is higher

than the expected learnability of G.

Proof: We now sketch this proof. From Eq (5), the inner

term of the numerator of Di’s learnability is equal to Di(z)−
Di(z−i+z′i), which, from Eq. (6), can also be written as G(z)−
G(z−i) − (G(z−i + z′i) − G(z−i)) or equivalently as G(z) −
G(z−i + z′i). Hence, the numerator of the learnability is the

same for Di and G. Therefore, any gains in learnability must

come from the denominator. Now, for a state z where agent i
picked band j and a state z′ where it did not, the inner term of

the denominator of Di’s learnability is:

DENL,D = Di(z)−Di(z
′
−i + zi)

= njgj(nj)− (nj − 1)gj(nj − 1)

−
(
(n′

j + 1)gj(n
′
j + 1)− n′

jgj(n
′
j)
)

where we dropped the t terms for clarity and where n′
k is the

number of agents that choose band k in the alternate state z′.
That is the denominator consists of two terms, representing two

bands that differ by only one user. Now, let us focus on the

denominator for the learnability of G for a state z where agent

i picked band j and a state z′ where it picked band k:

DENL,G = G(z)−G(z′−i + zi)

=
m∑

l=1,l 6=j,l 6=k

nlgl(nl)− n′
lgl(n

′
l)

+ nkgk(nk)− (n′
k − 1)gk(n

′
k − 1)

+ njgj(nj) + (n′
j + 1)gj(n

′
j + 1)

Now, here, there are also two terms, representing two bands (j
and k) that differ by only one user. The expected magnitude of

these values will be the same as those for the only two terms for

DENL,D. However, there are m−2 terms that differ by as many

as the total number of agents minus 1. As a consequence, we

have E[DENL,G] >> E[DENL,D] leading to D having much

higher learnability on average than G.

IV. OPTIMAL AGENT DISTRIBUTION

In order to help understand the behaviors and explain the

intuition behind the achievable performances of our proposed

functions (to be presented later in Section V), we will begin by

deriving in this section the optimal behaviors of the DSA agents.

Specifically, we will derive the optimal distribution of agents

across the m available spectrum bands that leads to the optimal

overall achievable rewards.

Without loss of generality and for simplicity, let us assume

that Sj = S for j = 1, 2, · · · ,m. Let n denote the total

number of agents in the system at any time. First, note that

when n ≤ m S
Q

, the optimal agent distribution is trivial, which

basically corresponds to having each band contain no more than
S
Q

agents, leading to the maximum possible overall achievable

rewards (which equals mS when n = m S
Q

). Therefore, in what

follows, we assume that n > m S
Q

, and we let c = S
Q

, which

denotes the capacity (i.e., maximum number of agents) of each

spectrum band.

Next, we first begin by proving the following lemma, which

will later be used for proving our main result.

Lemma 4.1: The global/total received rewards of a loaded2

DSA network with a given number of agents reduces less when

a new agent joins a more crowded band than when joining a

less crowded band.

Proof: Recall that when a band j has n′ > c agents, its re-

ward is Gj(n
′) = n′Qe−β(n′

c
−1). If a new agent joins this band,

the new reward becomes Gj(n
′ + 1) = (n′ + 1)Qe−β(n′+1

c
−1).

First, it can easily be shown that when n′ > c ≥ 1, Gj(n
′) >

Gj(n
′ + 1); i.e., the reward when joining band j decreases

by ∆j(n
′) ≡ Gj(n

′) − Gj(n
′ + 1). Now we can easily see

that ∆j(n
′) decreases when n′ increases. Hence, the greater

the number n′ (i.e., the more crowded the band), the smaller

the decrease in reward.

Proposition 4.2: The optimal agent distribution corresponds

to when m − 1 bands each has exactly c agents and the m-th

band has the remaining n− c(m− 1) agents.

Proof: Let k = n−mc, and let’s refer to the agent distribu-

tion stated in the proposition as C. Note that C corresponds to

when m−1 bands each has exactly c agents and the other m-th

band has the remaining c+k agents (since n−c(m−1) = c+k).

We proceed with the proof by comparing C with any possible

distribution C′ among all possible distributions. Let c+ k1 be

the number of agents in the most crowded band in C′, c+ k2
be the number of agents in the second most crowded band in

C′, and so forth. We just need to deal with the bands that each

contains more than c agents. If there are p bands each containing

more than c agents, then we know that
∑p

i=1 ki ≥ k.

For each band having c + k′ agents, let ǫi be the amount

by which the global reward is reduced when agent i joins the

band for i = 1, 2, · · · , k′. From Lemma 4.1, it follows that

ǫi > ǫi+1 > 0, for all i = 1, 2, · · · , k′ − 1.

Note that for the distribution C, the global reward is reduced

by t =
∑k

i=1 ǫi, and for C′, it is reduced by t′ =
∑k1

i=1 ǫi +∑k2

i=1 ǫi+ · · ·+
∑kp

i=1 ǫi. It remains to show that t′− t > 0 for

any C′ 6= C. We consider three different scenarios:

• k1 > k: Here, we have

t′ − t =

k1∑

i=1

ǫi +

k2∑

i=1

ǫi + · · ·+

kp∑

i=1

ǫi −

k∑

i=1

ǫi

=

k1∑

i=k

ǫi +

k2∑

i=1

ǫi + · · ·+

kp∑

i=1

ǫi

which is greater than zero.

2Here, we consider that n is large enough to assume that no band contains
less than the capacity c.



• k1 = k: In this scenario, we have

t′ − t =

k1∑

i=1

ǫi +

k2∑

i=1

ǫi + · · ·+

kp∑

i=1

ǫi −

k∑

i=1

ǫi

=

k2∑

i=1

ǫi + · · ·+

kp∑

i=1

ǫi

which is also greater than zero.

• k1 < k: In this scenario, we have

t′ − t =

k1∑

i=1

ǫi +

k2∑

i=1

ǫi + · · ·+

kp∑

i=1

ǫi −
k∑

i=1

ǫi

=

k2∑

i=1

ǫi + · · ·+

kp∑

i=1

ǫi

︸ ︷︷ ︸

part a

−

k∑

i=k1

ǫi

︸ ︷︷ ︸

part b

Since k1 + k2 + · · · + kp ≥ k, the number of ǫi terms in

part a is greater than the number of terms in part b. From

Lemma 4.1, we know that the largest term in part b is

ǫk1 , which is smaller than the smallest term ǫk2 in part a.

Hence, part a is greater than part b, and thus t′ − t is

greater than zero.

In all scenarios, we showed that t′ − t > 0. Therefore, the

global reward for any distribution C′ is smaller than that for

the distribution C; i.e., C is the distribution that corresponds to

the maximal global achievable reward.

The optimal agent distribution that we derived in this section

leads to the maximum/optimal per-agent average achievable

rewards. This optimal distribution will help us, as will be shown

in the next section, understand and evaluate the performance of

our proposed objective functions.

V. PERFORMANCE EVALUATION

In this section, we evaluate the effectiveness of the proposed

objective functions by measuring their achievable rewards, and

comparing them with those achievable under each of the two

intuitive functions rj and G.

A. Optimality

We first begin by considering the same experiment that we

conducted in Section II-C, where again the total number of

agents is set to 500 and the number of bands is set to 10. Here,

we assume that all agents enter and leave the DSA network

at the same time. Also, we ignore the PUs’ activities in this

section; these activities will be considered in Section V-E.

Fig. 3 shows the per-agent average achievable reward under

each of the three functions: intrinsic (gi = rj), global (gi = G),

and proposed (gi = Di). Our results show that the proposed

function Di outperforms substantially the other two functions.

Observe that Di achieves a per-agent average reward of about

0.12, whereas, each of the other two functions achieves a reward

of no more than approximately 0.02. That is, Di achieves almost

6 times as much as each of the other two functions does.

Another property that Di has, and that requires attention is

learnability. Observe how quickly the rewards achievable under
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Fig. 3. Per-agent average achieved reward under intrinsic (gi = rj), global
(gi = G), and proposed (gi = Di) functions: Q = 2, β = 2, Sj = 20 for all
j.

Di reach up their high value. To recap, these obtained results

show that the proposed function outperforms the other two

functions in terms of both optimality and learnability.

B. Scalability

We now study the proposed function with regard to scalabil-

ity. For this, we plot in Fig. 4 the per-agent average achievable

reward under each of the three studied objective functions when

varying the number of agents, n, from 100 to 800 while keeping

the number of bands m equal to 10. Observe that unlike the
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Fig. 4. Per-agent average achieved reward under intrinsic (gi = rj), global
(gi = G), and proposed (gi = Di) functions for various numbers of agents:
Q = 2, β = 2, Sj = 20 for all j.

functions rj and G, the proposed function Di is highly scalable.

Note that as the number of agents increases, Di maintains high

achievable rewards, whereas the achievable reward under either

of the other two functions drops dramatically with the number

of agents.

C. Agent Distribution

In this section, we want to further investigate the behaviors

of agents in terms of their distribution/repartition across the m
available spectrum bands. More specifically, we compare the

actual/measured distribution of agents as a result of using the

proposed objective functions with that ideal/theoretical distri-

bution derived in Section IV. Recall that the ideal/theoretical



agent distribution, as stated in Proposition 4.2, corresponds to

the repartition that leads to the maximum achievable rewards.

To illustrate, we plot in Fig. 5 the actual, measured distri-

bution of the n = 500 agents across the m = 10 bands at

different times (i.e., every 250 episodes) under the three studied

objective functions. Note that in the case of rj (Fig. 5(a)) and
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(a) Intrinsic objective: gi = rj
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(b) Global objective: gi = G
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(c) Proposed objective: gi = Di

Fig. 5. Distribution of the 500 agents across the m = 10 different bands:
Q = 2, β = 2, Sj = 20 for all j. Each bar corresponds to one band.

G (Fig. 5(b)), agents are (approximately) equally distributed

among the 10 bands (≈ 50 agents/band), and at all times. But

when using Di (Fig. 5(c)), 9 bands out of 10 each contains

about 10 agents, which represent the capacity c = S
Q

, and the

rest (≈ 410 agents) are in the 10th band. It is important to note

that this corresponds to (or very close to) the optimal agent dis-

tribution that we derived in Proposition 4.2. Thus, the proposed

objective function, Di, when used as an objective function, leads

then to a distribution of agents across the available bands that

is very close to the optimal agent distribution stated through

Proposition 4.2, which explains the high performances that it

achieves.

It is important to mention, as it will become clearer in next

sections, that the most crowded band (led to under Di) does

not always contain the same set of agents. That is, agents

belonging to this crowded band (which of course offers the

least per-agent reward) change over time, since agents move

across bands at different time steps. The fact that agents do

not get stuck in the crowded band is an important property of

Di, as it ensures fairness among agents by allowing different

agents to receive approximately equal amounts of rewards. This

is studied thoroughly in the next section.

D. Fairness

Fairness is also another important performance metric that

we want to evaluate. We want to assess how fair Di is when

compared with the other two functions. For this, we plot in

Fig. 6 the coefficient of variations (defined as the ratio of

the standard deviation to the mean of the agents’ received

rewards; we use this metric as a means of assessing the fairness,

which reflects how close agents’ received rewards are to one

another) of the per-agent average received rewards under the

three studied functions for various numbers of agents. First,
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Fig. 6. Coefficient of variation (CoV) of per-agent average received reward
under intrinsic (gi = rj), global (gi = G), and proposed (gi = Di) functions
for various numbers of agents: Q = 2, β = 2, Sj = 20 for all j.

observe that Di achieves small coefficient of variation values,

and this is independent of the number of agents in the system;

i.e., even when the number of agents is large, coefficient of

variation values are maintained low. Second, note that as the

number of agents increases, while the coefficient of variation

values are maintained low under Di, they increase under each

of the other two functions (but worse under the intrinsic function

than under the global function).

Our fairness results, therefore, show that the most crowded

band does not always contain the same set of agents. In other

words, agents do move across bands as time goes on. Agent

movement across bands is triggered by the exploration nature

of the learning algorithm, which forces agents to constantly

rotate across the different bands, thereby ensuring fairness

among agents by allowing them to receive approximately equal

amounts of rewards.

Now to further study the fairness of the proposed technique,

we now look at how an individual agent’s reward behaves

over time. For this, we randomly picked three agents/users

(out of 500) and for each of the three users, we tracked the

instantaneous received rewards that the user receives as time

progresses. These new results are shown in Fig. 7 for different

time scales (1, 2, and 5 aggregated slots). The figure shows

that each user does indeed rotate among the bands; that is,

users do not get stuck in the worst band all times. First,

observe that users’ received rewards fluctuate (because users



move across different bands), but on average all receive roughly

equal rewards. This can be seen clearly in Fig. 7(c) when the

rewards of each individual user are aggregated over each 5

consecutive slots. The figure also shows that the received reward

of a given individual user stays above the threshold for several

consecutive slots but then drops below also for some consecutive

slots, then goes above and down again, and so on. For example,

as shown in Fig. 7(a), user 2’s reward stays below the threshold

for 2 consecutive slots, then above for 3 consecutive slots, then

below for 1 slot, then above for 1 slot, then below for 1 slot,

then above for 3 slots, etc. For completeness, we also measured

the maximum number of consecutive time slots during which

the received rewards stay below the threshold; this maximum

number is about 4 slots.

What our proposed technique tries to do is to make the best

use of the system in terms of the per-user average received

rewards as well as fairness, and more importantly, does so

distributively. Observe that agents’ received rewards fluctuate

above and below the threshold as time goes on. That is, the

instantaneous throughput that agents receive may not always be

above the required throughput threshold. However, even when

the instantaneous throughput fluctuates, as long as the average

throughput (even at higher time scales, not necessarily on a per

time slot basis) is above threshold, the perceived quality can

still be acceptable for applications like video and audio. Mul-

timedia applications can overcome these short-term throughput

fluctuations by relying on existing techniques such as resolution

adaptation techniques, which adjust playing resolution based on

achievable rates.

To summarize, we showed that the proposed functions (i)
achieve high per-agent average rewards, (ii) are scalable as they

perform well in small- as well as large-scale systems, (iii) are

learnable as rewards reach up high values very quickly, (iv)
are distributive as they require information sharing only among

agents belonging to the same band, and (v) are fair as they

ensure that agents receive approximately equal rewards.

In the next section, we show that these performance qualities

still hold when considering primary users (PUs)’ activities too.

E. PUs’ Activities

In this section, we want to investigate how well these obtained

results hold when considering the presence of PUs. We also

consider that agents can choose to enter and leave the network

at different independent times. Recall that agents here refer to

SUs or DSA users, and can be viewed as data sessions/flows

that are initiated by SUs, which can start and finish at different

times, and independently from one another.

1) Impact of SUs’ traffic behaviors: We first begin by study-

ing the impact of SUs’ traffic behaviors without considering

the presence of primary users. The impact of the presence of

primary users will be investigated in the next section. To mimic

the agents’ dynamic behaviors, we assume that agents (e.g.,

data sessions) arrive according to a Poisson process with arrival

rate λ, and stay in the network for an exponentially distributed

duration of mean τ . We use κ = λτ to designate the SU load,

which essentially represents the average number of agents in

the system. In this section, we study the impact of the average

1 5 10 15 20
0

1

2

3

4

5

Time

In
d

iv
id

u
a

l 
R

e
c
e

iv
e

d
 R

e
w

a
rd

 

 

user 1 user 2 user 3

Threshold Q

(a) Time scale: 1 slot per time unit
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(b) Time scale: 2 slots per time unit
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(c) Time scale: 5 slots per time unit

Fig. 7. Individual agent reward behaviors.

length of the period SUs spend in the system. For this, we fix

the average number of agents (i.e., SU load) to κ = 500 and

evaluate the performance of the proposed function for different

values of the ratio λ/τ . Recall that for a fixed SU load, the

higher the ratio λ
τ

, the shorter the sessions’ durations. For

example, when κ = 500, λ
τ

= 1 implies that the sessions’

average duration τ and arrival rate λ are both equal to ≈ 22.3,

whereas λ
τ
= 5 implies that τ = 10 and λ = 50.

Fig. 8 shows the per-user average received reward when κ is

fixed to 500 but for various combinations of λ and τ . Fig. 8(a)

for λ = 22.3 and τ = 22.3 (i.e., λ
τ
= 1); Fig. 8(b) for λ = 50

and τ = 10 (i.e., λ
τ

= 5); and Fig. 8(c) for λ = 100 and

τ = 5 (i.e., λ
τ
= 20). First, the figure shows that the proposed

function outperforms the other two regardless of the average

length of SUs’ staying periods. Second and more importantly,

we observe that as the average duration decreases (that is, as

agents spend less and less time on average in the system), the

proposed functions’ achievable performance decreases as well.

This is merely because short periods of times will not be enough

for the agents learn, and by the time they start to learn where

the best opportunities are, their sessions end.

2) Impact of PUs’ traffic behaviors: To mimic PUs’ activ-

ities, we consider that each band is associated with a set of
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(a) λ = 22.3, τ = 22.3
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(b) λ = 50, τ = 10
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(c) λ = 100, τ = 5

Fig. 8. Per-user average received reward under Poisson arrival traffic model for κ = 500 and with no PUs traffic (η = 0%).

PUs that enter and leave the band at random times. We model

PUs’ activities on each band as a renewal process alternating

between ON and OFF periods, representing the time during

which PUs are respectively present (ON) and absent (OFF). For

each spectrum band j, we assume that ON and OFF durations

are exponentially distributed with means νON
j and νOFF

j , re-

spectively3. In what follows, we use ηj ≡ νON
j /(νOFF

j + νON
j )

to denote the PU traffic load on spectrum band j. In this

experiment, we fix λ/τ to 1, and vary the average number of

agents κ from 250 to 1000; i.e., κ = λτ is varied from 250 to

1000.

Figs. 9 and 10 show the per-agent average received reward

under each of the three studied objective functions for a

DSA network with, respectively, 10% and 50% PU traffic load

(i.e., η = ηj = 50% ∀j) while considering various numbers of

agents in the network: κ = 500, κ = 750, and κ = 1000. There

are three observations that we can make out of these results.

First, observe that regardless of the number of agents in the

network, the proposed function Di achieves (on average) higher

rewards than those achieved under the other two functions, and

the performance gain increases with the number of agents (i.e.,

the greater the number of agents κ, the greater the performance

gain between the proposed function and any of the other two

functions). Second, note that the achievable rewards quickly

reach up high values when PUs are not present, but also quickly

drop down to zero as soon as the PUs return to their bands.

This explains the observed ups and downs behavior of the

achievable rewards. Third, note that as the number of agents

(i.e., κ) in the network increases, the achievable rewards under

the global function G or the intrinsic function rj decreases

substantially. For example, when the number of agents equals

κ = 1000 (Fig. 10(c)), the achievable rewards under each of

these two functions (G or rj) is almost zero. However, unlike

these two functions, the proposed function Di yields much

higher per-agent average received rewards than what the other

two functions achieve, and does so even under large numbers of

agents (e.g., when the number of agents equals 750 or 1000). In

other words, the proposed function is still highly scalable even

in the presence of PUs’ activities.

In this work, real data traces [36] are also used to evaluate the

effectiveness of the proposed techniques. This data is measured

3Recall that learners do not actually need prior knowledge of PUs’ traffic
behavior. Here, the exponential distributions will be used to generate samples
so as to be able to mimic the DSA environment.

over 60 channels each having a bandwidth of 25kHz, and over a

100-minute time period through spectral measurements of PUs’

activities in the 850-870MHz band at every 0.01 second with

a frequency resolution of 8.333kHz [36]. Our obtained results

show that the proposed functions outperform substantially the

other methods when also considering real PU traffic behaviors,

and these performances are as good as those obtained when

PUs’ activities are mimicked via simulation.

Therefore, these results confirm that our proposed coordina-

tion techniques perform well in the presence of PUs’ activities

too, and also in terms of achievable rewards, scalability, and

learnability.

Next, we show that these proposed functions perform well

in the presence of PUs’ activities when it also comes to

fairness. In Fig. 11, we show coefficient of variation of the per-

agent average received rewards under the three functions when

varying the number of agents from 250 to 1000 for various

PU traffic loads η: Fig. 11(a) for η = 10%, Fig. 11(b) for

η = 30%, and Fig. 11(c) for η = 50%. Observe that when PUs

are present, the proposed objective function achieves coefficient

of variation values also lower than those achievable under any of

the other two functions, especially when the number of agents

present in the network is large. This is true, and independent of

the PU traffic load. We also observe that coefficient of variation

increases with the number of agents when the global function

G or the intrinsic function rj is used; whereas, it remains low

when the proposed function is used.

Therefore, in terms of fairness, our results show that the

band having the largest number of agents does not always

contain the same set of agents. That is, agents belonging to the

crowded band change over time, as agents move across bands at

different time steps. Agent movement across bands is triggered

by the exploration nature of the learning algorithm by exploring

new opportunities every once in a while. This constant rotation

of agents across the different bands is what ensures fairness

among agents by allowing them to receive approximately equal

amounts of rewards. This is independent of the number of

agents. This explains why the coefficient of variation under the

proposed function does not change much with the number of

agents.

As for the existing functions, because the agents are equally

distributed among the bands under these functions, all agents

will receive low, but almost equal rewards, yielding then very

low variability (e.g., low variance) of received rewards. Now
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(a) κ = 500
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(b) κ = 750
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(c) κ = 1000

Fig. 9. Per-user average reward under DSA agent traffic with Poisson arrival of λτ = 1 and with PUs traffic load of η = 10%.
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(b) κ = 750

0 200 400 600 800
  0   

0.05

0.10

0.15

Episode

P
e
r−

A
g
e
n
t 
A

v
g
. 
R

e
w

a
rd

 

 

g
i
(t)=D

i
(t) g

i
(t)=G(t) g

i
(t)=r

j
(t)

(c) κ = 1000

Fig. 10. Per-user average reward under DSA agent traffic with Poisson arrival of λτ = 1 and with PUs traffic load of η = 50%.
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(b) η = 30%
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Fig. 11. Coefficient of variation (CoV) of per-agent average achieved reward under intrinsic (gi = rj), global (gi = G), and proposed (gi = Di) functions for
various PU traffic loads: Q = 2, β = 2, Sj = 20 for all j.

when the number of agents is low, the average received reward

is high (less agents will have to share the same bands), thereby

resulting in a higher coefficient of variation values. But as

the number of agents increases, the per-user average received

reward decreases, explaining then the observed increase in the

coefficient of variation values.

To recap, our results show that the proposed functions,

when used in practical, dynamic network settings, achieve good

performances in terms of scalability, learnability, and fairness.

VI. DISCUSSIONS

A. Distributed Function Computation Method

One key feature of the proposed techniques is that agents can

implement them by relying only on information that can be ob-

served and gathered locally. Although the design of distributed

methods for computing these functions is in itself a different

problem, we shed some light on it here for completeness.

What makes the proposed function implementable in a de-

centralized manner is the following observation: by taking away

agent i from the second term of Eq. (6), the terms corresponding

to all spectrum bands, except the band that agent i uses, cancel

out. This leads to Eq. (7). From this equation, note that Di(t)
depends only on nj(t), the number of agents that happen to

be contending with agent i for band j. Hence, in order to

compute Di, one needs to estimate nj(t) given the information

that agent i observes locally. Now, an agent i using band j can

easily measure (without needing any collaboration) the amount

of throughput/data rates, ai(t), it receives from using the DSA

system. Thus, assuming that all agents sharing a band will

roughly receive the same amount of throughput, the number of

agents, nj(t), using band j can be estimated to Sj/ai(t), which

can then be used to estimate/compute Di. Now when different

agents receive different amounts of throughput, the problem can

indeed be very challenging without any cooperation from the

primary network providers/owners. We believe that economical

incentives (such as in [37]) can be used in this case to encourage

the primary network providers to reveal such information.

The design of distributed methods for computing the pro-

posed functions is in itself a different, challenging problem.

A more thorough study of these methods requires further

assessment of the tradeoffs between the estimation accuracy

and the incurred overhead due to cooperation. This is left for

future investigation.



B. Band Switching Overhead

Switching from a spectrum band to another often incurs delay.

Such switching delay mainly depends on how far the frequency

band to be switched to is from the current band, as well as on the

sensing delay needed for discovering and locating an available

spectrum band. This delay is incurred every time an agent

switches to a new band due to, for example, the return of pri-

mary users to their bands. During this switching process/delay,

an agent has to cease its communication and hence will not

be able to send data, thereby impacting/reducing the amount

of its received throughput. This amount of received throughput

is what is used to update the reward function. Therefore, the

switching and sensing delays are indirectly incorporated in

the proposed reward model through the received throughput.

However, other types of overhead like energy overhead resulting

from the spectrum sensing process have not been investigated,

and are left as a future work.

C. Resource Access and Sharing Methods

Numerous medium access control (MAC) protocols have

been proposed during the last few years to enable multiple

access in cognitive radio/dynamic spectrum access networks;

[38, 39] are just a couple of (among many) surveys on MAC

designs that can be found in literature. Our proposed coor-

dination technique assumes a CSMA/CA-like multiple access

technique. More specifically, we rely on our recently proposed

and implemented IEEE 802.11-like multichannel MAC proto-

col [40]. Here, we want to mention that even though we propose

to use a CSMA/CA-like approach, our proposed technique is

independent of the MAC protocol being adopted by the users,

and can be used regardless of the MAC being used.

That is said, we now want to bring up the following point

for the sake of discussion and completeness. We believe that

in order to truly enable successful dynamic spectrum access,

more sophisticated medium access and sharing approaches

are needed. Although so many MAC design ideas have been

proposed over the years for alleviating medium contention

in cognitive radio networks, most of (if not all) these pro-

tocols require/assume that all SUs deploy the same commu-

nication/modulation/medium access strategy and policy (e.g.,

TDMA, FDMA, CSMA, etc). This is of course needed so that

multiple users can access and share the medium among them-

selves. However, we believe that spectrum users (or DSA users),

as envisioned by the cognitive radio paradigm, will (or at

least are very likely to) be deploying different communica-

tion/software techniques, belonging to various different tech-

nology platforms, and using different architectures. Therefore,

the assumption that all SUs will be using the same MAC,

though seems needed to enable resource sharing, is somehow

unrealistic. Having an universal MAC that SUs ought to use

if they want to use spectrum opportunistically seems essential

and necessary. SUs can still deploy their MAC technique when

communicating in their home networks, but when wanting to

exploit spectrum opportunities, they are required to conform to

the universal MAC policies.

VII. RELATED WORK

There have been significant research efforts on the devel-

opment of learning-based techniques that promote effective

DSA [23, 24, 26, 27]. In [23], the authors propose an approach

for the detection of spectral resources based on reinforce-

ment learning, allowing the cognitive radio to select the most

available channels. In [24], a greedy channel-selection strategy

and access policy are introduced. The proposed techniques

maximize the instantaneous reward that SUs receive from the

DSA system, where DSA is modeled as a partially observable

Markov decision process (POMDP). Liu et al. [26] propose a

cooperative multiuser approach based on explicit communica-

tion between the secondary users, which is basically a learning-

based approach that involves and relies on the use of collision

feedback information to locate good opportunities.

In [41], an auction-based framework is developed that allows

spectrum users to bid for primary and secondary access based

on their utilities and traffic demands, and uses the bids to

solve the access allocation problem. These auctions can be

set up to maximize revenue, utilization, and/or efficiency. In

[28], the authors propose a game-theoretical approach with a

new solution concept, the correlated equilibrium. To achieve

this correlated equilibrium, they construct an adaptive algorithm

based on no-regret learning that guarantees convergence. Some

proposed solutions for enabling effective DSA in cognitive radio

networks adopt market-based approaches in order to effectively

regulate the available spectrum resources. It is shown how

various centralized and decentralized spectrum access market

strategies can be designed based on a stochastic game frame-

work, where SUs can compete over time for the dynamically

available transmission opportunities [42].

In [43], multiagent reinforcement leaning (MARL) is used

to allow SUs to learn good strategies of channel selection to

avoid collisions incurred by the lack of coordination, where each

SU learns how to select channels based on its past experience.

Shetty et al. [44] propose a non-cooperative and learning-based

approach to allow multiple SUs to achieve maximal throughput

in an unslotted DSA network. They also consider collisions

among SUs while making channel sensing decisions. Unlike

these works where the main focus was on learning- and/or

market-based approaches, this work (as well as [45], a con-

ference version) focuses instead on the design of coordination

techniques (e.g., efficient objective functions) that can be used

by these learning schemes to promote efficient DSA; i.e., our

work complements these proposed learning-based approaches.

VIII. CONCLUSION

In this paper, we propose and study scalable and distributive

objective functions that DSA users can use to locate and

exploit the best spectrum opportunities. DSA users can rely on

any learning algorithms to maximize these proposed objective

functions, thereby ensuring high performances in terms of the

long-term average received rewards. Our results show that

these proposed objective functions (i) enable DSA users to

receive high rewards (optimal), (ii) perform well in small- as

well as large-scale DSA networks (scalable), (iii) reach up



optimal reward values very quickly (learnable), and (iv) require

information sharing only among users belonging to the same

spectrum band (distributed).
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