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Abstract—This paper is concerned with the design and analysis of
delay-tolerant networks (DTNs) deployed for free-roaming animal
monitoring, wherein information is either transmitted or carried to
static access-points by the animals whose movement is assumed to
be random. Specifically, in such mobility-aided applications where
routing is performed in a store-carry-and-drop manner, limited
buffer capacity of a carrier node plays a critical role, and data
loss due to buffer overflow heavily depends on access-point density.
Driven by this fact, our focus in this paper is on providing sufficient
conditions on access-point density that limit the likelihood of buffer
overflow. We first derive sufficient access-point density conditions
that ensure that the data loss rates are statistically guaranteed to
be below a given threshold. Then, we evaluate and validate the
derived theoretical results through comparison with both synthetic
and real-world data.

I. INTRODUCTION

The deployment of extremely versatile sensor networks in a

variety of real world applications is progressing from concept

to reality. Wildlife monitoring is an important example that has

involved intensive research activity in the past few years [1]. In

particular, biologists have long recognized the need for insight

into animal habitat, the need for monitoring endangered species,

and the need for studying animals’ behaviors and movements, as

these are all necessary to understand their physiology, behavior,

and ecology [2]. However, many wild species are, by nature,

free-roaming and wide-ranging which makes it too difficult to

track and monitor their behavior and mobility directly through

human intervention, thus calling for automated monitoring sys-

tems which demand less human presence in the field [1, 3]. In

addition, human presence may disrupt animals’ normal activities.

After initial attempts which, at times, provided inconsistent and

invalid outcomes, efforts have been made towards the deployment

of sensor networks with enormous potential for this kind of

application [4, 5].

In these sensor networks, light-weighted, battery powered,

small tracking devices, called collars, are attached to animals’

necks to collect and save spatio-temporal data (e.g., location

information, biometric, timing information, etc.) without dis-

rupting animals’ normal behaviors and movement. These collars

are typically equipped with small memory chips with limited

capacity, and are designed to operate inconspicuously. At regular

intervals, the collar transmits its data to a device where data

storage is not an issue. However, due to the continuous and

random movement of the animals and due to their sparsity nature,

traditional MANET techniques cannot be applied. Instead, a

number of static nodes (with unlimited or enough power and

data storage capacity) is deployed in the free-ranging area, and

whenever the animal comes close to one of these static nodes,

the collar attached to it downloads its generated data to the static

node. A special class of sensor networks, known as delay-tolerant

networks (DTNs), is considered to be well suited for these

wildlife monitoring applications that are typically underserved

by traditional networks [6].

Such DTNs can then be thought of as sparse networks com-

posed of mobile nodes (i.e., free-roaming animals), equipped with

buffers of limited capacity, and static access-points, equipped

with buffers of virtually unlimited (or enough) capacity. Since

every mobile node in the network stores an amount of data

that increases with time, and there is no guarantee of when

mobile nodes will reach the coverage area (the area surrounding

the access-point where data transfer can be performed), the

buffer may overflow, leading to data loss which may hamper the

reliability of the system. It is therefore important to understand

how the reliability of such networks depends on the density of

the static nodes, as this density relates to both the frequency with

which a mobile node visits coverage areas and the probability

of buffer overflow. Although considerable research efforts have

focused on protocol design [7–9], connectivity analysis [10,

11], delay modeling and characterization [12–14], and mobility

analysis [15, 16], the effect of access-point density on data loss

is still not well investigated.

In this paper, we derive sufficient conditions on access-point

node density of partially covered, intermittently connected DTNs

deployed for wildlife monitoring/tracking so that the data loss

rate does not exceed a given threshold. To the best of our knowl-

edge, there is no previous work addressing the issue of critical

density from this perspective. Due to the limited coverage (the

network is disconnected in the traditional sense), data delivery

is only possible through animals whose movements are assumed

random (henceforth referred to as mobile nodes), which store

and carry data until they come close to a fixed node with no

power constraints (henceforth referred to as an access-point),

where gathered data is then fully downloaded. The focus of this

work is then on partially-covered DTNs whose node density and



coverage ratio are both low.

We explore the linear (1-D) and two two-dimensional (2-

D) access point deployment structures, and use a mathematical

model based on Brownian motion to analyze the movement of

mobile nodes. The following summarizes our main contributions:

• Derivation of sufficient access-point density conditions of

partially covered, intermittently connected DTNs, consisting

of both mobile and static nodes, deployed for wildlife

monitoring, to ensure that data loss rates are bounded by

a given threshold;

• Asymptotic behavioral analysis of the access-point density

when varying the buffer size and/or data loss rate threshold;

• Verification of the derived theoretical results through inten-

sive simulations; and

• Validation of the theoretical analysis and the considered

model through real/field data, collected from free-roaming

horses via GPS collars.

The remainder of the paper is organized as follows. The

network model is introduced in Section II. The sufficient bounds

on access-point density is derived in Section III. Verification and

validation results are presented in Section IV. Finally, the article

is concluded in Section V.

II. DTN MODEL

We consider a delay-tolerant sensor network used for tracking

and monitoring free-roaming animals in their natural environ-

ment. For this, we study DTNs that can experience long data

transmission delays and frequent disconnection, and that consist

of access-points laid out on a grid structure and a set of mobile

nodes (animals) that can freely move in an open area. We assume

that mobile nodes in these sensor networks independently and

continuously generate data (for example, the animal’s position

and speed provided via GPS) at rate c, and buffer it in their

collars’ memory chips. Whenever a mobile node comes within

the coverage area of an access point, it can then download its

generated/buffered data to the access point. Each mobile node is

assumed to be equipped with a memory chip that has a buffer

with limited size of B bits, and when the buffer is full the

newly generated data is dropped. Let τ = B/c, which basically

represents the minimum amount of time required to overflow

the buffer of the mobile node. Also, let ǭ denote the data loss

rate threshold that mobile nodes (i.e., the monitoring system) can

tolerate.

In these delay-tolerant sensor networks, the access points can

only cover the network partially, due to the large size of the

sensed area. Therefore, throughout this paper, we assume that

the coverage ratio1 of the studied DTNs is relatively low. Here,

mobile nodes rely on their mobility to maintain connectivity with

the access points. As mobile nodes move, they will eventually

traverse an area covered by an access point, allowing them to

download their buffered data.

Finding an optimal deployment structure of access points

requires an understanding of animal behavior and movement.

Wildlife scientists study animals for years and would optimally

place the access points based on data from statistical observa-

tional studies. However, there is still no good understanding of

1The coverage ratio is defined as the fraction of the area covered by access-
points’ communication ranges relative to that of the network area.

 

 

 

 

 

 

 

 

 

 

   
 

   

 

 

 

Fig. 1. Each access-point has communication range of length r surrounding it,
and is of distance n away from its closest two neighbors in the line structure.

movement behavior of free-roaming animals [17]. This being the

case, in this work, we place our access points with a uniform

spacing. More specifically, we investigate a one-dimensional (1-

D) access point deployment structure with equal spacing, and

two two-dimensional (2-D) access point deployment structures

in an open space: the square grid and the hexagonal grid. Before

describing the studied access-node deployment models, it is

worth mentioning that although the main focus of our analysis is

on the 2-D deployment models, we are studying the 1-D model

here, so as to help us analyze and understand the 2-D case, which

is more accurate and realistic than the 1-D case.

We describe the movement pattern of the free-roaming animal

as Brownian motion. Random walk and Brownian motion models

have already been used in many works that study mobile net-

works (e.g., [12, 14, 18]). In this work, we validate our mobility

model choice via real data traces collected by fitting six free-

roaming horses with collars that are equipped with GPS units ca-

pable of recording positional fixes at 1-second intervals (Fig. 7).

The horses were part of larger herds of about 20 mares, geldings

and stud, which were pastured together (data field collection

details are given in Section IV-B).

A. One-dimensional Node Deployment Model

We now define the one-dimensional (1-D) node deployment

model, where the movement pattern of a mobile node can be

described as 1-D Brownian motion on a straight line divided into

segments, and each segment has length of n. In line deployment

structure, as shown in Fig. 1, each access-point is located at the

center of the line segment and has two access-points of distance n
away on both sides. From a practical viewpoint, this 1-D model

can be used for designing DTNs for tracking and monitoring

animals that roam along for e.g. long rivers.

We consider that each access-point has coverage area of length

r on each of the two sides. Note that if a mobile node is on any

line segment, its closest access-point is at most of distance n
2

away from it (as an access-point is placed at the center of the

line segment). The node density, ν, and coverage ratio, η, can

respectively be expressed as 1

n
and 2r

n
.

B. Two-dimensional Node Deployment Model

We also consider node deployment structures where access-

points are placed via a grid structure, and mobile nodes are free

to move within the plane—their paths are modeled by a 2-D

Brownian motion. In this paper, we study two node deployment

structures: the square grid and the hexagon grid. In the square grid

structure, shown in Fig. 2 (left), each access-point is surrounded
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Fig. 2. Each access-point has a communication disk of radius ρ surrounding
it, and is distance 2κ away from its four closest neighbors in the square grid
structure and its six closest neighbors in the hexagon grid structure.

by four access-points of distance 2κ away. We assume that each

access-point is surrounded by a communication disk of radius ρ.

We draw a square around each access-point, of side length 2κ,

and note that if an animal is anywhere in the square, the access-

point at the center is its closest access-point. Thus, the node

density, ν, and coverage ratio, η, can respectively be expressed

as 1/(4κ2) and πρ2/(4κ2).
In the hexagon grid structure, shown in Fig. 2 (right), access-

points are placed in the plane to form a hexagon grid—each

access point is surrounded by six access-points in each direction,

each 2κ away. We identify an arbitrary point’s closest access-

point by drawing a hexagon around each access-point. We assume

that each access-point is surrounded by a small communication

disk of radius ρ, and that each hexagon has apothem κ, where

the apothem is defined to be the length of the shortest line from

the center to an edge (the radius is the length of the longest

such line). In the hexagon grid structure, the node density ν
and the coverage ratio η can be expressed as 1/(2

√
3κ2) and

πρ2/(2
√
3κ2), respectively.

III. ACCESS-POINT DENSITY ANALYSIS

It is clear that the density of access-points in a given network

affects the data loss rate of a mobile node. In this section,

we derive and provide sufficient conditions on the access-point

density for both 1-D and 2-D access-point deployment models to

ensure that the data loss rate does not exceed a given threshold.

Before delving into our analysis, it is important to reiterate

that although the 1-D model is not as practical/realistic as the

2-D model, we are studying it here because its mathematics can

easily be understood, and hence, it will give us useful insights

as well as can facilitate the study of the 2-D model that we

investigate later.

A. One-Dimensional Analysis

We begin our analysis by investigating the one-dimensional

model. Recall that for this case we delineate the movement of a

mobile node by a Brownian motion on a straight line of equal

length segments of length n and the access-point is located at

the center of each segment and has coverage area of length r
surrounding it.

In the 1-D case we define the hitting time as the time it takes

a mobile node that just left the edge of the coverage area to

reach one of the edges of the line segment and then return to the

coverage area again. As the problem is symmetric, it suffices to

consider one area between two neighbouring access-points.

Proposition 3.1: The expected hitting time σ̄ of a mobile node

in a line deployment is n2/2− nr.

Proof: The expected hitting time to the endpoints of interval

[a, b], starting at a point x such that a < x < b is given by

ET(a, x, b) = (b − x)(x − a) [19]. Thus, the expected time it

takes a mobile node to hit the endpoint (e.g., t1 or t2 as shown

in Fig. 1) of the line segment when it has just left the coverage

area (e.g., t0 as shown in Fig. 1) is

ET(t2, t0, t1) =
(n

2

)2

− r2,

and the expected time it takes a mobile node to return back to

the coverage area (e.g., t0 or t3 as shown in Fig. 1) from the

end-point (e.g., t1 as shown in Fig. 1) of the segment is

ET(t0, t1, t3) =
(n

2
− r
)2

.

Hence, the length of the total block T0, or the expected time it

takes a mobile node to leave a coverage area and reach the edge

of the line segment plus the time it leaves the edge of a segment

and enter a coverage area is ET0 = n2

2
− nr.

Recall that ν = 1

n
denotes the access-point density. We now

provide a sufficient condition on the critical density for the 1-D

access-point deployment model.

Theorem 3.2: For sufficiently small r, when τ ≥ r2, the data

loss rate is guaranteed to remain below the threshold, ǭ, if the

following condition on access-point density holds:

ν ≥
−r − r ln 1

ǭ
+

√

(

r − r ln 1

ǭ

)2
+ 2τ ln 1

ǭ

2τ − 4r2

Proof: Recall that because of symmetry, it suffices to con-

sider the motion of a mobile node in between two neighbouring

access nodes on a line. Let C be a random variable representing

the amount of time the mobile node spends inside the communi-

cation range r (i.e., inside the coverage area). For small coverage

ratio η, we can write η ≈ EC/σ̄ or equivalently EC ≈ ησ̄, where

σ̄ is the expected hitting time and EC is the expectation of C;

i.e., the mean time a mobile node spends in the coverage area.

Now, note that buffer overflow occurs when T minus EC
exceeds τ . Hence, the probability of overflow, PO , can be

expressed as P (T − EC > τ) or P (T > τ + EC). Since T can

be approximated with an exponential distribution with parameter

1/σ̄ [19], PO can be written as PO = exp
{

− τ
σ̄
− 2r

n

}

.

To ensure that the probability of overflow PO does not exceed

the threshold ǭ, it suffices to prove that exp
{

− τ
σ̄
− 2r

n

}

≤ ǭ.
Now, replacing n by 1

ν
and for τ ≥ r2 yields (after some

algebraic simplification),

(

2τ − 4r2
)

ν2 +

(

2r2 + 2r ln
1

ǭ

)

ν − ln
1

ǭ
≥ 0.

Solving the above quadratic equation provides the sufficient

condition on ν stated in the above theorem.

B. Two-Dimensional Analysis

This section deals with the derivation and analysis of the two

two-dimensional models: square and hexagonal grids. We first

observe the symmetric structures of the square and hexagon grid

deployments: as a mobile node reaches the edge of a square
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(a) Square (b) Hexagon

Fig. 3. We approximate the square/hexagon by two circles, one inscribed inside,
and the other circumscribing the outside, in order to calculate bounds on the
hitting time.

or an hexagon, there is no difference between approaching a

new communication disk (i.e., coverage area), or returning to the

same communication disk, in terms of the time spent outside of

coverage areas. Therefore, in our analysis, we restrict our focus

to one square in the square grid deployment and to one hexagon

in the hexagon deployment.

In this work, we use 2-D Brownian motion to model the

movement of the mobile nodes. In the 2-D case we define the

hitting time as the time it takes a mobile node that just left the

edge of the coverage area to hit the edge of the square or hexagon

and then to hit (return to) the coverage area again.

We now provide lower and upper bounds on the hitting time for

both 2-D deployment models. Recall that the coverage area has a

circular shape and the boundary region has either a square or an

hexagonal shape. We then derive a lower bound by considering

a mobile node traveling in the circle inscribed in the square

(Fig. 3(a)) or in the hexagon (Fig. 3(b)) with radius κ and

centered at our access point. Similarly, we find an upper bound

on the hitting time by considering a mobile node travelling in the

outer circle that circumscribes the square or hexagon. In the case

of the square grid, this circle has radius
√
2κ and in the case

of the hexagon grid, this circle has radius 2
√
3κ/3, as shown

respectively in Figs 3(a) and 3(b).

Proposition 3.3: For sufficiently small η, the expected hitting

time σ̄ in the square grid deployment is bounded below and above

by

κ2 ln

(

κ

ρ

)

≤ σ̄ ≤ 2κ2 ln

(√
2κ

ρ

)

Proof: Using the theorem given in [20], it follows that

when the coverage area has circular shape of radius ρ and the

boundary region also has circular shape of radius R > ρ, the

expected hitting time can be expressed as h(ρ,R) = R2 ln
∣

∣

∣

R
ρ

∣

∣

∣
.

Hence, applying this result to the inner boundary region of radius

κ and to the outer boundary region of radius
√
2κ, as shown

in Fig. 3(a), the expected hitting time σ̄ in the square grid

deployment can then be lower bounded by h(ρ, κ) and upper

bounded by h(ρ,
√
2κ).

Proposition 3.4: For sufficiently small η, the expected hitting

time σ̄ in the hexagon grid deployment is lower and upper

bounded as

κ2 ln

(

κ

ρ

)

≤ σ̄ ≤ 4

3
κ2 ln

(

2
√
3κ

3ρ

)

Proof: Similar to the previous proof, provided that the

expected hitting time, when the coverage area has circular shape

of radius ρ and the boundary region has circular shape of radius

R > ρ, can be expressed as h(ρ,R) = R2 ln
∣

∣

∣

R
ρ

∣

∣

∣
, the expected

hitting time σ̄ in the hexagon grid deployment can be lower

bounded by h(ρ, κ) and upper bounded by h(ρ, 2
√
3κ/3).

1) Sufficient Access-Point Density of Square Deployment:

Recall that ν = 1

4κ2 denotes the access-point density of the square

grid deployment. We now provide a sufficient condition on the

critical density when deploying the access points in the square

grid structure.

Theorem 3.5: For sufficiently small ρ, when τ ≥ πρ2

8
, the data

loss rate is guaranteed to remain below the threshold, ǭ, if the

following condition on access-point density holds:

ν ≥
−π − 2 ln 1

ǭ
+

√

(

π + 2 ln 1

ǭ

)2
+ 8

(

4τ
ρ2 − π

)

ln 1

ǭ

16τ − 4ρ2π

Proof: Recall that because of symmetry, it suffices to con-

sider the motion of a mobile node on a single square of the grid.

In this case, let C be a random variable representing the amount

of time the mobile node spends inside the communication disk

of radius ρ (i.e., inside the coverage area), and T be a random

variable representing the total amount of time spent inside the

square of length 2κ. Following the similar definition provided

in proof of the Theorem. 3.2, for this case, the probability of

overflow PO can then be expressed as

PO = exp
{

− τ

σ̄
− πρ2ν

}

= exp

{

− τ

σ̄
− πρ2

4κ2

}

.

From Proposition 3.3, it then follows that PO is lower and

upper bounded as

exp

{

− τ

h(ρ, κ)
− πρ2

4κ2

}

≤ PO ≤ exp

{

− τ

h(ρ,
√
2κ)

− πρ2

4κ2

}

where again h(x, y) = y2 ln
∣

∣

y
x

∣

∣.

We know that for all z > 0, ln z ≤ z − 1 holds. Hence,

it follows that h(ρ,
√
2κ) ≤ f(ρ,

√
2κ), where f(ρ,

√
2κ) =

κ2

(

2κ2

ρ2 − 1
)

, which implies that

exp

{

− τ

h(ρ,
√
2κ)

− πρ2

4κ2

}

≤ exp

{

− τ

f(ρ,
√
2κ)

− πρ2

4κ2

}

(1)

Eq. (1) implies that PO is also bounded above by

exp

{

− τ

f(ρ,
√
2κ)

− πρ2

4κ2

}

.

To ensure that PO does not exceed the threshold ǭ, it suffices

that

exp

{

− τ

f(ρ,
√
2κ)

− πρ2

4κ2

}

≤ ǭ.

For τ ≥ πρ2

8
, replacing κ2 by 1

4ν
yields (after some algebraic

simplification),

(

8τρ2 − 2ρ4π
)

ν2 +

(

πρ2 + 2ρ2 ln
1

ǭ

)

ν − ln
1

ǭ
≥ 0.

Solving the quadratic equation provides the sufficient condition

on ν proposed in the theorem for square grid deployment.
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2) Sufficient Access-Point Density of Hexagon Deployment:

Now, we apply the same approach to derive a sufficient condition

on the access-point density for the case of hexagon grid deploy-

ment. Recall that in the hexagonal deployment, the access-point

density ν can be expressed as 1

2
√
3κ2

(as mentioned in Section II).

Theorem 3.6: For a sufficiently small ρ, when τ ≥
(πρ2)/(6

√
3), data loss rates are guaranteed to remain below

a given threshold, ǭ, if the following condition on access-point

density holds:

ν≥
−2π−3

√
3 ln 1

ǭ
+
√

(2π+3
√
3 ln 1

ǭ
)2+24

√
3(2

√
3τ

ρ2 −π)ln 1

ǭ

54τ − 6
√
3ρ2π

Proof: Following similar derivation to that given in the proof

of Theorem 3.5, PO can be written as PO = exp{− τ
σ̄
− πρ2

2
√
3κ2

}.

Now from Proposition 3.4, PO can be bounded below by

exp

{

− τ

h(ρ, κ)
− πρ2

2
√
3κ2

}

,

and bounded above by

exp

{

− τ

h(ρ, 2
√
3

3
κ)

− πρ2

2
√
3κ2

}

.

Again, as ln z ≤ z − 1 holds for all z > 0, it follows that

h(ρ, κ) ≤ f(ρ, κ) where f(ρ, 2
√
3

3
κ) = 2κ2

3
(4κ

2

3ρ2 − 1). This implies

exp

{

− τ

h(ρ, 2
√
3

3
κ)

− πρ2

2
√
3κ2

}

≤exp

{

− τ

f(ρ, 2
√
3

3
κ)

− πρ2

2
√
3κ2

}

which in turn implies that PO can be bounded above by

exp

{

− τ

f(ρ, 2
√
3

3
κ)

− πρ2

2
√
3κ2

}

.

To keep the probability of overflow from exceeding the data loss

rate threshold ǭ, it also suffices that the above bound to be less

than or equal to ǭ. Then, replacing κ2 by its expression 1

2
√
3ν

and after some algebra, it yields that for τ ≥ πρ2

6
√
3

,

(

27τρ2 − 3
√
3ρ4π

)

ν2+

(

2πρ2 + 3
√
3ρ2 ln

1

ǭ

)

ν−2 ln
1

ǭ
≥ 0.

Solving the above quadratic equation provides the stated suffi-

cient condition on ν for hexagonal access-point deployment.

C. Asymptotic Analysis

We are also interested in studying the asymptotic behaviors of

the access-point density for the studied DTNs. Note that to ensure

that the probability of overflow does not exceed the required

threshold, it suffices that the density remains below a certain

value; which we derived and proposed in Theorems 3.2, 3.5

and 3.6—we call this value the sufficient access-point density

and denote it as νs. Note that νs depends on the communication

range r or radius ρ, the time to overflow the buffer τ , and the

given threshold ǭ.
Corollary 3.7: For fixed ǭ, the sufficient density νs in line,

square and hexagon grid deployments is Θ(1/
√
τ) as τ → ∞.

Thus for all deployments, as the buffer size increases to infin-

ity, the sufficient access-point density decreases asymptotically

as fast as the inverse of the square root of the buffer size.

Corollary 3.8: For fixed τ , the sufficient density νs in the line,

square and hexagon grid deployments is Θ(ln 1

ǭ
) as ǭ → 1.

In other words, as the data loss rate threshold ǭ goes to 1, the

sufficient density νs decreases asymptotically as fast as ln 1

ǭ
.

IV. VERIFICATION AND VALIDATION

The derived results are first verified via simulations using

MATLAB, and then validated via real-field traces collected by

equipping six free-roaming horses with GPS units capable of

gathering and recording position and speed information.

A. Verification Through Simulated Data

We use MATLAB to verify the derived sufficient conditions

presented in Theorems 3.2, 3.5 and 3.6 by mimicking 1-D

Brownian motion on a line and 2-D Brownian motion in the

bounded square and hexagonal regions.

Because of the symmetry and equidistant placement of access

points on a line, for the 1-D case, we consider a unit line segment

of length n, with one access point located at its middle. To

simulate a 1-D Brownian motion, we generate a normal random

variable with parameters (µ = 0, σ2 = 1) for the displacement

of random variable on the line segment. An access point with

communication range of r on its both sides is placed in the middle

of the line segment of length n. We use it to simulate hitting

time which is as previously defined: the time it takes a mobile

node that just left the edge of the coverage area to reach one of

the edges of the line segment and then return to the coverage area

again. The hitting time is in turn used to measure the average data

loss rate (ǫm), which is a function of the communication range r,

access-point density ν, and time required to overflow the buffer

τ . In our simulation, we consider three different values of r =

10, 20 and 30. We also consider different values of ν (which

depends only on r) for measuring the average data loss rate (for

each r). We set the data loss rate threshold ǭ = 0.9 (but other

values can also be tried). For a given r, we calculate the value of

τ as τ = r2. Also, for a fixed r, from Theorem 3.2, we calculate

the theoretical sufficient density, νs, which is a function of r, τ ,

and ǭ. For each νs, we simulate and measure the average data

loss rate for various values of ν.

Similarly, we perform the 2-D Brownian motion simulation

by taking two normal random variables with distribution (µ =
0, σ2 = 1) at each time step for the distance the mobile node

travels in a unit time interval in the x- and y-directions. In

the 2-D cases, we then use it to simulate the hitting time as

previously defined: the time it takes the Brownian motion to

leave a communication disk (i.e., coverage area), having radius

ρ centered at the origin, then hit the boundary of the square

or hexagon, and then return to the communication disk. Here

also, the hitting time is in turn used to measure the average

data loss rate (ǫm), which is a function of the radius of the

communication disk ρ, access-point density ν, and time required

to overflow the buffer τ . Similar to the 1-D case, in the 2-D

simulation we consider three different values of ρ, ρ = 10, 20, and

30 and ν (which depends only on κ) for measuring the average

data loss rate (for each ρ). We set the data loss rate threshold

ǭ = 0.9 for each of the two grid deployments. For a given ρ, we

calculate the value of τ as τ = πρ2/8 for square deployment and

τ = πρ2/(6
√
3) for the hexagon deployment (for both cases, it
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is notable from Theorem 3.5 and Theorem 3.6 that for a given

ρ, any two fixed values greater than the above values can be

used). Also, for a fixed ρ, from Theorem 3.5 and Theorem 3.6,

similar to the 1-D model verification, we measure the theoretical

sufficient density, νs, as a function of ρ, τ , and ǭ and various

values of ν.

Figs. 4, 5 and 6 illustrate the verification of Theorems 3.2,

3.5 and 3.6. There are three observations that we make from

these three figures. First, observe that when ν is higher than the

theoretical sufficient density, νs, the measured average data loss

rate is below the given threshold, regardless of the deployment

structure. Second, also observe that when the measured data

loss rate is above the given threshold, then the corresponding

density violates the sufficient density condition. For example,
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Fig. 6. Measured average data loss rate for the hexagon grid deployment

Fig. 7. The GPS collar/unit attached to a gelding

the first bar from the right (in both figures) corresponds to a

measured data loss rate that exceeds the threshold, but note

that the corresponding density ν does not meet the sufficient

density condition either; i.e., ν = 0.5νs < νs. Third, note

that when ν is lower than the sufficient density, νs, the average

data loss rate may or may not exceed the given threshold, since

our derived conditions are sufficient (for both 1-D and 2-D

models). For example, the measured data loss rate exceeds the

required threshold in the case of square grid deployment, as

shown in Fig. 5 for ν = 0.8νs (second bar from the right)

and νs = 0.0816× 10−3. Whereas, the measured data loss rate

does not exceed the threshold in the case of line deployment and

hexagon grid deployment even when ν = 0.8νs, as shown in

Fig. 4 for νs = 0.0025 and Fig. 6 for νs = 0.1084× 10−3. This

means, as mentioned earlier, that the conditions provided in the

theorems are sufficient, but not necessary.

B. Validation Through Real Field Data

In the previous section, we verified our derived sufficient

conditions by generating and simulating Brownian motions using

MATLAB. We now use real position information (traces) of free-

roaming horses (obtained from an interdisciplinary project under-

taken in collaboration with biologists at the Rangeland Ecology

and Management Department at Oregon State University) to not

only verify our derived results, but also to validate our Brownian

motion assumption.

Field data collection. GPS data (position, speed, and time) is

gathered by fitting three mares and three geldings with collars

that contained GPS units capable of collecting and recording

positional fixes at 1-second intervals (Fig. 7). The horses were

part of larger herds of about 20 mares, geldings and stud which

were pastured together. GPS information was collected for up to

149 hours between 26 March 2009 and 1 April 2009. Animals

with GPS collars were free-roaming throughout this period. The

study pasture used for this investigation are located on the Catlow

Rim of Harney County, Oregon, and consisted of a series of

longitudinal valleys drained by Skull Creek and Echart Creek.

The area of the pasture is approximately 8,100 ha (20,000 acres).

We take the GPS data of each horse individually and plot them

in x- and y-directions with the aim of validating our theoretical

results with real data. For illustration, we consider and show in

Fig. 8 the movement data of one horse among the six.
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Fig. 8. Tracklogs of a gelding carrying a GPS Unit between 26 March 2009
and 1 April 2009
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Fig. 9. Measured average data loss rate based on real-world data for the square
grid deployment

Analysis. We use the same validation set-up used in Sec-

tion IV-A for the square grid deployment. We set ρ = 10, 20,

and 30. We also consider different values of ν (derived from the

theoretical sufficient density νs, which is a function of ρ, τ , and

ǭ ) for measuring the average data loss rate (for each ρ). We

set the data loss rate threshold ǭ = 0.9 and for a given ρ, we

calculate the value of τ as τ = πρ2/8, the same as performed

for the square grid deployment in the previous section.

Fig. 9 clearly shows that in all cases, the proposed model

of the sufficient node density conditions show fairly accurate

performance when applied to the real horse data. Note that when

ν is higher than the theoretical sufficient density, νs, the measured

average data loss rate remains below the given threshold. Again,

when the measured loss rate surpasses the given threshold, the

corresponding density violates the sufficient density condition.

Moreover, when the sufficient condition is being violated, it either

remains below (for example, ν = 0.8νs (second bar from the

right) and νs = 0.0360 × 10−3) or goes above (for example,

ν = 0.5νs (first bar from the right) and νs = 0.03241×10−3) the

data loss rate threshold. Note that the validation with hexagonal

grid deployment yields a similar conclusion.

To summarize, in this section, we first verified our derived

results via MATLAB simulations; i.e., we validated the derived

theoretical conditions, provided the Brownian motion assump-

tion. Second, since our derived theoretical results and analysis

are based on the Brownian motion model, as the real data is

shown to follow the sufficient conditions (stated in the derived

theorems), we conclude that our assumption that the free-roaming

animal movement can be approximated by Brownian motion is

realistic for free-roaming horses.

V. CONCLUSION

We derived sufficient conditions on the density of access-points

of DTNs deployed specifically for wildlife tracking. We also

analyzed the asymptotic density behavior under various design

parameters. Finally, we validated our results via synthetic and

real field data. By verifying and validating our model with real

data, we found that our analysis can be useful for modelling

and designing delay-tolerant sensor networks for tracking and

monitoring free-roaming and wide-ranging animals.
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