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Abstract—We develop resource and service management tech-
niques to support secondary users (SUs) with QoS requirements
in large-scale distributed dynamic spectrum access (DSA) systems.
The proposed techniques empower SUs to seek and exploit spectrum
opportunities dynamically and effectively, thereby maximizing the
SUs’ long-term received service satisfaction levels. Our techniques
are efficient in terms of optimality, scalability, distributivity, and
fairness. First, they enable SUs to achieve high service satisfac-
tion levels by quickly locating and accessing available spectrum
opportunities. Second, they are scalable by performing well in
systems with small as well as large numbers of SUs. Third, they
can be implemented in a decentralized manner by relying on
local information only. Finally, they ensure fairness among SUs by
allowing them to receive equal amounts of service.

I. INTRODUCTION

Dynamic spectrum access (DSA) has been recognized as a key

solution for solving the recently observed spectrum shortage [1,

2]. In the DSA context, there are two types of users: primary

users (PUs) and secondary users (SUs). While PUs have exclusive

access rights to use their licensed spectrum bands at all time, SUs

are allowed to use these bands only opportunistically. That is,

prior to using any licensed band, SUs must first sense the band

to make sure that it is vacancy. When a PU returns while SUs

are using its band, SUs must also vacate immediately. Spectrum

sensing and PU detection techniques are beyond the scope of

this work; we assume that SUs use existing sensing [3–6] and

signal classification [7, 8] techniques for detecting and coping

with PU activities.

DSA has great potential for improving spectrum efficiency

through distributed access and management of spectrum re-

sources [9–15]. As a result, it has generated a lots of research

interests in developing adaptive channel selection techniques [16–

18]. Zhao et al. [16] propose a prediction model that captures

the DSA environment’s dynamics under periodic channel sens-

ing. The authors use a simple, two-state Markovian model to

mimic PUs’ activities on each channel, and use this model to

derive an optimal access policy that leads to the maximization

of spectrum utilization. Similarly, Liu et al. [17] model PUs’

activities as a discrete-time Markov chain, which is then used to

develop channel decision policies for two SUs in a two-channel

DSA system. Chen et al. [18] propose DSA access methods that

integrate physical-layer’s with MAC-layer’s sensing and access

policy. They also assume that PUs’ activities follow a discrete-

time ON/OFF Markov process.
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Most of the proposed models developed for deriving optimal

spectrum selection make a Markovian process model assump-

tion about PUs’ activities, which may not be accurate. Unlike

traditional communication environments, the DSA environment

gives rise to some unique characteristics, making it too difficult

to model its dynamics and behaviors. This fact has created

research interests to develop new distributed techniques that

promote effective DSA [19–23]. For instance, game-theoretic

approaches have been the focus of many researchers who used

game-theory to develop distributed dynamic access methods [19,

20]. The authors in [19] study a DSA system with multiple,

non-cooperative SUs with restricted information exchange. In

this work, ON/OFF PUs’ activities are modeled as an i.i.d.

Bernoulli process, and DSA is formulated as a multi-armed

bandit problem with multiple, non-cooperating agents. In [20],

the authors investigated distributed DSA networks with non-

cooperative, selfish users by studying, through game-theoretic

approaches, the impact of incomplete information on system

performance. They show that the lack of information can degrade

the performance substantially. Learning-based techniques are also

of a particular interest to DSA because they can easily be im-

plemented in a decentralized manner without requiring any prior

knowledge of the DSA environment’s dynamics. Instead, these

learning algorithms allow SUs to use their knowledge acquired

from past and present interactions with the environment to take

the proper actions that lead to maximizing the long-term amount

of service that the SUs receive from accessing the DSA system.

In other words, SUs first define and choose their objectives,

then rely on a learning algorithm as a means to maximize these

objectives. However, when these objectives are not designed

carefully, learning algorithms can lead to poor overall system

performance. This is because the collective behavior of the SUs

aiming to maximize poorly designed objective functions is likely

to yield a low overall received system service, thereby worsening

the amount of service each SU receives. It is, therefore, essential

that SUs’ objective functions be carefully designed so that when

the SUs go after maximizing them, their behavior as a whole

leads to the maximization of the amount of service that each

SU receives from accessing the DSA system.

In this work, we propose efficient management techniques that

allow SUs to maximize their received service satisfaction through

efficient spectrum resource allocation. We consider a distributed

DSA system with multiple, non-overlapping spectrum bands. We

also assume that each SU implements a learning algorithm (e.g., a

reinforcement learner [24]) so it can use to maximize its objective

function, thus enabling it to locate and select the best available

spectrum opportunities. We want to emphasize that the focus



of this work is not on learning algorithms, but rather on the

design of efficient techniques that can be used by any learning

algorithm to promote effective resource utilization. We show

that the proposed techniques: achieve high service satisfaction

levels by allowing SUs to quickly locate and exploit available

spectrum opportunities; are very scalable by performing well in

systems with a small as well as a large number of SUs; can

be implemented in a decentralized manner by relying on local

information only; and ensure fairness among SUs by allowing

them to receive approximately equal amounts of service.

The rest of the paper is organized as follows. Section II

presents the model and describes our motivation. Section III

presents our proposed resource and service management tech-

niques. Section IV derives the optimal performance behaviors.

Section V evaluates the performances of the proposed techniques.

Finally, Section VI concludes the paper.

II. PROBLEM STATEMENT

When a group of SUs want to communicate, all members of

the group must first select and switch to the same band prior

to communicating. At each time step, each group using a band

receives a service that is passed to it from that band. The amount

of service that the band offers a group can be measured for e.g. in

terms of amount of throughput, reliability of the communication,

SNR, packet success rate, etc. We assume that once the group

switches to a particular band, it can immediately quantify and

measure the amount of service that it receives from using such a

band. The methods that are used to measure the service received

as a result of using a band are beyond the scope of this work.

Throughout this paper, we let Vj be the total amount of service

that spectrum band j offers, and we refer to communication

groups as agents.

Although the proposed network management techniques can be

used by all learning algorithms, we choose to use in this work the

ǫ-greedy Q-learner [24] with a discount rate of 0 and an ǫ value

of 0.05 for evaluation purposes. More details on the Q-learner

can be found in [24]. We want again to reiterate that this work

in not on learning, but rather on the development of management

techniques for DSA that can be used by any learning algorithms.

A. Traffic Model

In this paper, we study the inelastic traffic model, in which

an agent receives a constant service satisfaction level when the

band it uses offers an amount of service that is greater than

a certain required threshold, Q, and receives an almost zero

service satisfaction level when the amount of service offered

by the band is below the threshold. Under this inelastic traffic

model, receiving an amount of service that is less than what

is required (i.e., Q) is not acceptable (which explains why

the service satisfaction level drops immediately to zero), while

receiving an amount that is higher than what is required is not

beneficial either (which explains why the service satisfaction level

remains constant). This inelastic model suits well applications

with QoS requirements, such as video and audio applications,

where receiving a QoS level higher than what the application

requires does not typically improve the quality, whereas if the

received level is lower than the required one, the application

experiences a significant degradation in its quality. Formally, the

service satisfaction level, sj(t), any agent using band j receives

at time step t can be written as:

sj(t) =

{

1 if nj(t) ≤ Vj/Q

e
−β

nj(t)Q−Vj
Vj otherwise

(1)

where nj(t) is the number of agents using band j at episode t,
and β is a decaying factor. Note that when nj(t) is greater than

cj ≡ Vj/Q, the service satisfaction level decreases exponentially.

This means that none of the agents will be satisfied with the

service they receive from band j if the band has more than cj
agents (cj here is the maximum number of agents that the band

can support while satisfying the agents’ required service levels;

i.e., band j’s capacity). From the system’s perspective, the global

or system service satisfaction level can be regarded as the sum

of all agents’ service satisfaction levels. Formally, by letting m
denote the number of available spectrum bands, the global service

satisfaction level, G(t), at time step t can be expressed as

G(t) =

m
∑

j=1

nj(t)sj(t) (2)

B. Motivation

The goal of this work is to develop efficient resource and ser-

vice management techniques for large-scale, distributed DSA sys-

tems. Specifically, we aim to derive scalable and distributed ob-

jective functions for SUs that are aligned with system objective,

so that when SUs (i.e., agents) aim to maximize them, they indeed

lead to the maximization of their long-term received service

satisfaction levels. By means of any learning algorithm, these

functions will enable SUs to efficiently find and locate spectrum

opportunities, thus increasing the long-term service satisfaction

level that each SU can receive from accessing the DSA system.

With this in mind, the question that arises now is which private

objective function gi should each agent i maximize so that its

received service satisfaction level is maximized?

There are two intuitive objective function choices. One possi-

ble function choice is to have each agent i using band j maximize

its inherent service satisfaction level sj received from band j as

defined in Eq. (1); i.e., gi = sj for each agent i using band

j. A second also intuitive choice is for each agent to maximize

the global/total service satisfaction levels that all agents receive;

i.e., gi = G for each agent i as defined in Eq. (2), hoping

that maximizing the global received service satisfaction levels

eventually leads to maximizing every agent’s long-term average

received service satisfaction level.

For illustration purposes, we measure and show in Fig. 1 the

system/global service satisfaction levels received by all agents

under each of these two private objective function choices. We

consider a DSA system with n = 1600 agents and m = 10
spectrum bands. Now we make the following two key observa-

tions. First, note that when agents aim to maximize their own

inherent received service satisfaction level (i.e., gi = sj for

each agent i using band j), the global/system service satisfaction

level received by all agents presents an oscillating behavior: it

ramps up quickly at first but then drops down rapidly too, and

then starts to ramp up quickly and drop down rapidly again,

and so on. With the inherent objective function, an agent’s

received service satisfaction level, by design, is sensitive to its

2
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Fig. 1. System service satisfaction level under the two private objective functions:
inherent choice (gi = sj ) and global choice (gi = G) for m = 10, β = 2, and
Vj/Q = 50 for j = 1, 2, . . . , 10.

own actions, which enables it to quickly determine the proper

actions to select by limiting the impact of other agents’ actions,

thus learning about good spectrum opportunities fast enough.

However, agents’ inherent objectives are not aligned with one

another, which explains the sudden drop in their received service

satisfaction level right after learning about good opportunities.

Second, observe that, unlike the inherent function, the global

function results in a steadier performance behavior where the

system received service satisfaction increases continuously, but

slowly. With this function choice, agents’ objectives are aligned

with one another by accounting for each other’s actions, and

thus are less sensitive to the actions of any particular agents.

The alignedness feature of this function is the reason behind the

observed monotonic increase in the overall system performance.

However, the increase in the performance is relatively slow due

to the function’s insensitivity to one’s actions, leading to slow

learning rates.

Therefore, objective functions must be designed with two

(conflicting) requirements in mind: (i) alignedness; when agents

maximize their own private objectives, their collective behavior

should indeed result in increasing each agent’s long-term received

service satisfaction level, and not in worsening it, and (ii)
sensitivity; objective functions should be sensitive to agents’ own

actions so that proper action selections allow agents to learn about

good opportunities fast enough.

C. Work Objective

Our goal is to derive efficient objective functions for large-

scale DSA systems. Specifically, we aim to derive objective

functions that i) enable SUs to achieve high service satisfaction

levels by allowing them to quickly locate and exploit available

spectrum opportunities; ii) are scalable by performing well in

systems with a small as well as a large number of SUs/agents;

iii) are implementable in a decentralized manner by relying on

local information only; and iv) are fair by allowing agents to

receive approximately equal amounts of service.

III. RESOURCE AND SERVICE MANAGEMENT TECHNIQUES

The challenge in designing objective functions for DSA sys-

tems is to find the best balance between alignedness and sensi-

tivity. Doing so will ensure that agents can learn to maximize

their own objectives while also achieving good overall system

performance. Throughout, we use gi to denote the objective

function of agent i that we aim to derive in this work.

In this section, we will first present the difference objective

function, proposed in [25] and shown to perform well in var-

ious domains, such as multi-robot coordination [26], air traffic

control [27], and opportunistic spectrum access [12, 28, 29]. This

difference function will be used here as the basis for comparing

the performance of our proposed function. Then, we present

our proposed objective functions, whose performances, shown in

Section V, are compared against those achievable under the two

intuitive functions (sj and G), against those achievable under the

existing difference objective function, and against a theoretical

upper bound that we also derive and state in Section IV.

A. Difference Objective Functions

Recall that, as illustrated in Section II-B, when agents set

the global service satisfaction level, G, as their objectives (i.e.,

gi = G for each agent i), their collective behaviors did indeed

result in increasing the total (system) service satisfaction levels,

because agents’ private objectives are aligned, in this case, with

that of the system. However, because G depends on all agents, it

is too difficult for agents (using G as their objective functions)

to discern the effects of their own actions on their objectives,

resulting then in low learnability rates. The authors in [25]

address the above issue by proposing the difference objective

functions, which provide a good balance between alignedness and

sensitivity, leading to good system performance. The basic idea is

that by removing the effects of all agents other than agent i from

the function G, the resulting difference objective function will

have higher learnability (or sensitivity) than G . These difference

functions can formally be written as

Di(t) ≡ G(t)−G−i(t) (3)

where G−i(t) is the system service satisfaction level at time step t
when agent i is absent from the system. (G(t) is given in Eq. (2).)

Intuitively, since the second term evaluates the system satisfaction

level without agent i, subtracting it from G provides an objective

function that essentially measures agent i’s contribution to the

total received system service satisfaction level, making it more

learnable. The difference function Di can then be thought of

as the individual or agent contribution to the system. Now

by substituting Eq. (2) into Eq. (3) and after some algebraic

manipulation, Di for agent i selecting band j at time t can then

be written as:

Di(t) = nj(t)sj(nj(t))−(nj(t)−1)sj(nj(t)−1) (4)

B. Team Contribution Objective Functions

We now present our proposed functions. Our key idea is that

instead of removing the impact of all agents other than agent

i from the global service satisfaction level G (which led to the

difference function design), we consider removing the impact

of only those agents that may not be aligned with the agent

itself. That is, in terms of contribution, we propose that an agent’s

objective function accounts for not only its contribution, but also

for the contributions of all the agents that are aligned with it.

More specifically, we propose that when the agents sharing a

particular band/resource make, as a team, a positive contribution

3



to the overall system performance, each agent in the team gets

rewarded the team contribution; i.e., the sum of the contributions

made by all agents in the team. But when the team contribution

is negative (i.e., the resource is overcrowded, and hence none

of the agents sharing it meet their required service), each agent

in the team gets rewarded its own (negative) contribution only.

The intuition is that when a group of agents (sharing a particular

resource) succeed, they should celebrate their success as a team,

but when they fail, each individual is only responsible for its own

failure.

The proposed functions can then be thought of as the team or

resource contribution to the entire system, and hence, they will

be termed as team (or resource) contribution objective functions.

Formally, when agent i chooses band j, its team contribution

function can be written as

Ti(t) =

{

∑nj(t)
k=1 Dk(t) if nj(t) ≤ Vj/Q

Di(t) otherwise
(5)

where again nj(t) is the number of agents using band j at episode

t and Di(t) is the individual contribution function of agent i using

band j, given in Eq. (4). Note that because Di is the same for

all agents sharing spectrum band j, Eq. (5) can be rewritten as

Ti(t) =

{

nj(t)Di(t) if nj(t) ≤ Vj/Q
Di(t) otherwise

(6)

With the proposed team contribution function, SUs are capable

of effectively distributing themselves across the bands in a way

that benefits all of them by increasing the amounts of service

they receive in the long-term. Thus, the proposed technique can

be thought of as a resource allocation method that enables SUs to

quickly locate best spectrum opportunities, and distribute them-

selves among the available bands effectively without cooperation.

C. Distributed Computation of Team Contribution Function Ti

Before proceeding with the performance evaluation of the

proposed objective functions in terms of optimality, scalabil-

ity, learnability, and fairness, we want to shed some light on

their implementation aspects. Specifically, we want to discuss

methods that agents can use to compute them in a distributed

manner in spite of the large number of interacting agents, the

restricted information sharing, and the limited communication

and coordination capability among agents. Note that the design

of computation methods for the proposed functions is beyond

the scope of this work, and is in itself a different challenging

problem. But here we only want to give some insights and

reiterate on the distributed feature of these proposed functions.

Note that, by taking away agent i from the second term of the

function Di (as shown in Eq. (4)), the terms corresponding to

all spectrum bands k except the band agent i is using cancel

out, thus making the proposed functions implementable in a

decentralized manner; i.e., each agent can implement them by

relying on local information that can be observed locally by

the agent itself. Let us now elaborate further on this. From the

expression of Di(t) given in Eq. (4), note that Di(t) depends only

on nj(t), the number of agents that happen to be contending

with agent i for band j. Hence, in order to compute/estimate

Di(t), one needs to estimate nj(t) given the information that

agent i observes locally. Now an agent i using band j can

easily/locally quantify the service, ai(t), it receives once it uses

the DSA system, which can for e.g. be measured in terms of the

amount of throughput the agent receives. Thus, assuming that all

agents sharing a band will roughly receive the same amount of

throughput, and that Vj is known to all agents, the number of

agents, nj(t), using band j can be estimated to Vj/ai(t), which

can then be used to estimate/compute Di(t). Hence, the function

Di(t) can be computed by using information that an agent can

observe/measure locally, and so can the function Ti(t).

D. Performance Comparison: Ti versus Di

We now want to compare the performance of Ti with that of Di

in terms of their ability to increase the overall achieved service

satisfaction level. For this, we first provide an overview of the

concept of “factoredness”, which basically captures how aligned

the agents’ objectives are. Intuitively, the higher the degree of

factoredness, the more likely it is that a change of state will have

the same impact on the value of the objective function and on

the achieved system satisfaction level. In other words, the more

factored the objective function is, the more likely the system

satisfaction level increases as agents maximize their objective

functions, which eventually results in a higher long-term per-

agent achieved service satisfaction level.

Let z(t) characterize the joint move of all DSA agents in the

system at time t. The global service satisfaction level, G, is then

a function of z(t), which can precisely be written as G(z(t)). The

system state z(t) basically captures the agent-channel assignment

information and depends on the actions taken by the agents. For

simplicity of notation, we often omit throughout the paper the

dependency of these states on time t. With this, for systems with

discrete states, the degree of factoredness for a given objective

function gi can formally be defined as [30]:

Fgi =

∑

z

∑

z′ h[(gi(z)− gi(z
′)) (G(z)−G(z′))]

∑

z

∑

z′ 1
(7)

for all system states z and z′ such that z−i = z′
−i, where z−i

(or z′
−i) represents the system state that does not depend on the

state of agent i (i.e., the parts of the system state controlled by

all agents other than agent i), and h[x] is the unit step function,

equal to 1 if x > 0 and zero otherwise. A system is said to be

fully factored when Fgi = 1.

Proposition 3.1: The degree of factoredness of the proposed

team contribution objective function Ti is higher than that of the

difference objective function Di, i.e., FTi
≥ FDi

.

Proof: Note that the only term in FDi
that is different from

that in FTi
is gi(z)− gi(z

′); everything else is the same. Let us

then compute and compare this term for Ti and Di.

Let nj and n′

j be the number of users in spectrum band j for

system state z and z′, respectively. Again, let us denote band j’s

capacity by cj and define cj = Vj/Q (here, we assume cj = c
for j = 1, ...,m). We consider the following four cases for nj

and n′

j that cover all possible cases:

• n′

j > c > nj :

In this case, from Eqs. (1) and (4), we can see that Di(z)−
Di(z

′) is positive. Similarly, from Eqs. (4) and (6), it follows

that Ti(z)−Ti(z
′) = njDi(z)−Di(z

′) is positive. Thus, the

term gi(z)− gi(z
′) is positive for both objective functions,
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and hence, there is no difference between FDi
and FTi

since

each depends on the sign of the term, and not on its value.

• nj > c > n′

j :

Eqs. (1) and (4) imply that Di(z)−Di(z
′) is negative, and

similarly, from Eqs. (4) and (6), we easily see that the value

of Ti(z) − Ti(z
′) = Di(z) − n′

jDi(z
′) is also negative.

Thus, the term gi(z)− gi(z
′) is negative for both objective

functions. Hence, FDi
= FTi

.

• n′

j , nj > c:
Eq. (6) implies that Ti(z)−Ti(z

′) = Di(z)−Di(z
′). Thus,

the term gi(z)− gi(z
′) has the same sign for both objective

functions, and hence, there is no difference between FDi

and FTi
in this case either.

• n′

j , nj < c:
From Eqs. (1) and (4), it follows that Di(z)−Di(z

′) is zero,

but from Eq. (6), it follows that the value of Ti(z)− Ti(z
′)

depends on nj and n′

j and is not zero unless nj = n′

j . This

is the only case where the term gi(z) − gi(z
′) in FDi

is

different from that in FTi
. So for these terms, the numerator

in Eq. (7) is greater when gi = Ti than when gi = Di.

This is because Di(z)−Di(z
′) is equal to zero, and hence

so is the step function value, whereas Ti(z)− Ti(z
′) is not

always equal to zero (when n′

j, nj < c) and the step function

value is equal to 1 for some values of nj and n′

j . Thus,

FTi
≥ FDi

. This completes the proof.

IV. OPTIMAL SERVICE SATISFACTION

We now derive the optimal achievable service satisfaction

level. This derivation will serve as a means of assessing how

well the developed objective functions perform when compared

with the optimal achievable performances.

Without loss of generality and for simplicity, assume that Vj =
V for j = 1, 2, · · · ,m. Let n denote the total number of agents

in the system at any time. Let us also assume that n > mV
Q

,

since when n ≤ mV
Q

, the problem is trivial, and let c = V
Q

,

which denotes the capacity (in terms of the number of supported

agents) of each spectrum band. Now, we start by proving the

following lemma, which will later be used for proving our main

result.

Lemma 4.1: The system/global service satisfaction level re-

duces less when a new agent joins a more crowded spectrum

band than when it joins a less crowded band.

Proof: Recall that when a band j has n′ > c agents, the

total service satisfaction level offered by the band is Gj(n
′) =

n′e−β(n′

c
−1). If a new agent joins this band, the new total service

satisfaction level offered by the band becomes Gj(n
′ + 1) =

(n′ + 1)e−β(n′+1
c

−1). First, it can easily be shown that when

n′ > c ≥ 1, Gj(n
′) > Gj(n

′ + 1). Hence, the total service

satisfaction level offered by a band j decreases by ∆j(n
′) ≡

Gj(n
′)−Gj(n

′ +1) when a new agent joins the band. Now we

can easily see that ∆j(n
′) decreases when n′ increases. Hence,

the greater the number n′ (i.e., the more crowded the band), the

smaller the decrease in the total service satisfaction level when

a new agent joins the band.

Theorem 4.2: When there are n agents in the system, the

global service satisfaction level reaches its maximal only when

m−1 bands (out of the total m bands) each has exactly c agents,

and the m-th band has the remaining n− c(m− 1) agents.

Proof: Proof is in [31].

Corollary 4.3: The system service satisfaction level is at most

(m− 1)V/Q + (n− (m− 1)V/Q)e−β(nQ
V

−m).

Proof: The proof follows from Theorem 4.2 by calculating

the achievable global service satisfaction level for the derived

optimal agent distribution.

Note that the optimal achievable system satisfaction level

(stated in Corollary 4.3) is a theoretical upper bound on the

sum of all agents’ possible achievable service satisfaction levels.

In the next section, we will evaluate the performances of the

proposed functions and compare them with those of the difference

functions as well as with this derived upper bound.

V. PERFORMANCE EVALUATION AND ANALYSIS

In this section, we evaluate the effectiveness of the proposed

techniques by measuring and comparing their achievable satisfac-

tion levels with those of the existing functions, inherent (gi = sj),

global (gi = G), and difference (gi = Di), as well with the

optimal achievable performance, derived in Corollary 4.3.

A. Simulation Method and Setting

We consider a DSA system consisting of m non-overlapping

spectrum bands and a large number of agents (SUs) all using the

system opportunistically. We assume that each agent uses the Q-

learning algorithm to implement the proposed objective function.

Each agent does so independently from all other agents, and as

long as it needs to access the DSA system. At each episode,

each agent receives an amount of service (i.e., throughput) that is

passed to it from the system. The learning algorithm utilizes this

amount of service to compute and maximize its objective function

so as to help the agent make the best spectrum decision/choice.

All simulation scenarios are run (using MATLAB) until the

measured achievable satisfaction level reaches its maximum peak.

Each simulation point in all figures is averaged over all runs.

Unless stated otherwise, throughout this performance evalua-

tion section, the decaying factor β is set to 2, the number of

agents is set to 1600, the number of bands is set to 10, and the

capacity Vj/Q is set to c = 50 for all j.

B. Static DSA without Primary Users

We begin by considering a static DSA system, in which all

SUs enter and leave the system at the same time. We also

ignore PU activities for the moment. Fig. 2 shows the system

service satisfaction level normalized w.r.t. the optimal service

satisfaction level (derived and stated in Corollary 4.3) achieved

under each of the four functions: inherent, global, difference,

and proposed. The figure shows that the proposed function, Ti,

outperforms substantially the two intuitive functions, sj and G,

and outperforms the difference function, Di, by about 25% in

terms of the overall system service satisfaction levels. When

compared to the optimal achievable performances, the proposed

team function Ti is shown to achieve about 85 to 90% of the

maximal achievable service satisfaction levels. Also, observe that

our proposed function is very learnable as it enables agents to

reach up their achievable service satisfaction levels quite quickly.
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Fig. 2. Normalized system service satisfaction levels under the four studied
functions: inherent (gi = sj), global (gi = G), difference (gi = Di), and
proposed team (gi = Ti) at various time steps.
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(a) η = 10%
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(b) η = 50%

Fig. 3. Normalized system satisfaction level under the four studied functions:
inherent (gi = sj), global (gi = G), difference (gi = Di), and proposed team
(gi = Ti) at various time steps with PUs traffic load of η = 10% and 50%

C. Static DSA with Primary Users

We again consider a static system where SUs enter and leave at

the same time, but with the presence of PU activities. We model

PU activities on each channel as a renewal process alternating

between ON and OFF periods [32–34], which represent the time

during which primary users are respectively present (ON) and

absent (OFF). For each channel j, we assume that ON and

OFF durations are exponentially distributed with means νON
j and

νOFF
j , respectively. We use ηj ≡ νON

j /(νOFF
j + νON

j ) to denote

the PU traffic load on channel j.

Fig. 3 shows the service satisfaction levels under two different

PU traffic loads. As it can be seen, even when considering PU ac-

tivity, Ti still outperforms the other objective functions. However,

the performance difference gap decreases as the PU traffic load

increases. This is expected because the system satisfaction level,

under any of the function, decreases as the PU load increases,

since PU’s presence makes the resources less available and

hence, the overall system capacity decreases. Also, note that the

achievable satisfaction levels, under any of the studied function,
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(a) λ
τ
= 1
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(b) λ
τ
= 20

Fig. 4. Normalized system satisfaction level under the four studied functions:
inherent (gi = sj ), global (gi = G), difference (gi = Di), and proposed team

(gi = Ti) at various time steps under DSA agent traffic with λ
τ

= 1 and 20,
and without PU activities (total number of agents κ = 1600).

drop to zero whenever PUs come back, as it forces SUs to

leave that channel, resulting then in an immediate decrease of

the system service satisfaction levels.

D. Dynamic DSA without Primary Users

Now, we consider a dynamic DSA system, in which SUs

(i.e., the agents) can independently enter and leave the system at

various different times. To model the dynamic behaviors of SUs,

we assume that agents arrive according to a Poisson process with

arrival rate λ. Each agent is characterized with an exponentially

distributed duration of mean τ , during which the agent seeks

and exploits available spectrum opportunities. We use κ = λτ to

designate the DSA agent load, which essentially represents the

average number of agents that are using the system at any time.

PU activities are ignored in this section and are considered in the

next section.

In Fig. 4, we show the achieved performances under each of

the four studied functions when considering dynamic behaviors

of SUs: (Fig 4(a) for λ
τ

= 1; Fig 4(b) for λ
τ

= 20). Observe

that the proposed objective function Ti outperforms all the other

functions even when considering dynamic behaviors. Note that as

the ratio λ
τ

increases, the system satisfaction levels (under any of

the function) decrease. This is because the higher the ratio λ
τ

, the

lesser time (on average) SUs spend in the system (provided that

κ is kept constant), and hence, the shorter the exploration time;

i.e., SUs do not have enough time to explore better spectrum

opportunities. This explains why the higher the λ
τ

, the smaller

the system satisfaction level.
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(a) η = 10%
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(b) η = 50%

Fig. 5. Normalized system satisfaction level under the four studied functions:
inherent (gi = sj), global (gi = G), difference (gi = Di), and proposed team

(gi = Ti) at various time steps under DSA agent traffic of λ
τ

= 1 and with

PU activities of η = 10% and 50%

E. Dynamic DSA with Primary Users

We again consider a dynamic DSA system, but while also

accounting for the activities of PUs. As in the previous scenario,

we assume that agents arrive according to a Poisson process with

arrival rate λ. Each agent is characterized with an exponentially

distributed duration of mean τ . Figs. 5 and 6 show the system

service satisfaction levels normalized w.r.t. the optimal service

satisfaction level in a dynamic DSA system with PU activity for

various combinations of the SU traffic ratio, λ
τ

, and the PU traffic

load, η. In all cases, the proposed objective function Ti outper-

forms the other objective functions, but the performance gain

depends on how loaded the system is. When the PU traffic load

is relatively low as in Figs. 5(a) and 6(a) when η = 10%, both

the difference and the team contribution functions outperform

the other two functions substantially. But as expected, when

the PU load η increases, all functions achieve small service

satisfaction levels, because the system is already loaded by PUs

and hence there is no available spectrum for SUs to exploit.

Likewise, as the ratio λ
τ

grows (i.e., as the time each SU spends

in the system decreases), the system satisfaction levels decrease,

because when SUs spend lesser times in the system, it may not

be enough for them to find good spectrum opportunities.

F. Scalability Performance

To also study scalability performance, we plot in Fig. 7

the normalized system service satisfaction level while varying

number of agents, n, from 800 to 1600 while keeping m equal

to 10. Since it takes some time for the technique to converge (to

reach its maximum performance level), the performance values

presented in this and the next subsections are measured after

600 episodes, which gave enough time for the performance to
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(b) η = 50%

Fig. 6. Normalized system satisfaction level under the four studied functions:
inherent (gi = sj ), global (gi = G), difference (gi = Di), and proposed team

(gi = Ti) at various time steps under DSA agent traffic of λ
τ

= 20 and with

PU activities of η = 10% and 50%
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Fig. 7. Normalized system service satisfaction levels under inherent (gi = sj),
global (gi = G), difference (gi = Di), and proposed team (gi = Ti) functions
for various numbers of agents.

reach its best. Observe that Ti is highly scalable. Note that as

the number of agents increases, Ti maintains high achievable

system service satisfaction level, whereas the satisfaction level

under sj or G drops dramatically with the number of agents.

When compared with the difference function Di, our proposed

team contribution function Ti still achieves satisfaction levels that

are about 30% higher than those achievable under Di.

G. Fairness Performance

To also see how well the proposed functions do when it comes

to fairness, we plot in Fig. 8 the coefficient of variations (CoV)1

of the received system service satisfaction levels for various

numbers of agents. Observe that the proposed function achieves

1CoV is the ratio of the standard deviation to the mean of the agents’ received
service satisfaction levels; we use this metric as a means of assessing the fairness,
which reflects how close agents’ received satisfaction levels are to one another.

7



800 1000 1200 1400 1600
   0  

   1  

   2  

   3  

   4  

Number of agents

C
o

V

 

 

D
i

T
i G s

j

Fig. 8. Coefficient of variation (CoV) of satisfaction levels under inherent
(gi = sj), global (gi = G), difference (gi = Di), and proposed team (gi = Ti)
functions for various numbers of agents.

CoV values approximately similar to those achievable under any

of the other three studied functions. These results show that not

only does the proposed function achieve good performance in

terms of optimality, scalability, and learnability, but also does so

while ensuring a fairness quality as good as those achieved via

the other approaches.

To summarize, we showed that the proposed team contribution

objective functions achieve high satisfaction levels of agents’ re-

ceived service, are highly scalable as they perform well regardless

of the number of agents, are highly learnable by enabling agents

to reach up high values very quickly, are distributive as they

require information sharing only among agents belonging to the

same spectrum band, and are fair by allowing agents to receive

similar amounts of service.

H. Discussion

There are two points that are worth mentioning and clarifying.

Firstly, we want to reiterate that the reason for why our pro-

posed objective functions are capable of achieving high service

satisfaction levels is mainly because they lead to a distribution of

agents across the available bands that is very close to the optimal

agent distribution stated through Theorem 4.2, thus yielding

near-optimal achievable performances and very scalable results

regardless of the number of agents. That is, under the proposed

techniques, m− 1 bands will each have about c agents, whereas

the rest of the agents will all go to the mth band. In other words,

unlike the other two functions which tend to jam all bands by

distributing the agents uniformly across all bands, the proposed

functions avoid band jamming by distributing the agents across

the bands in a way that benefits all agents by increasing their

long-term average achievable service. Now, one may think that

this may be unfair to those agents that happen to be in the most

crowded band (i.e., the mth band), in that they will receive very

low satisfaction levels when compared with those that happen to

be in one of the other m − 1 bands. Fortunately, this is not the

case. Our experiments (not included in this paper due to limited

number of figures) indicate that the most crowded band does not

always contain the same set of agents. That is, agents belonging

to this crowded band (which offers the least per-agent service)

change over time, since agents move across bands at different

time steps. The fact that the same agents do not get stuck in the

most crowded channel is what ensures fairness among agents by

allowing different agents to receive approximately equal amounts

of service. This is justified via the fairness results shown in Fig. 8.

Secondly, in order for a group of SUs (e.g., a SU transmitter-

receiver pair or an agent) to communicate on a given data

channel, the SUs must first agree on the data channel before

switching to it. SUs must rely on MAC protocols to do so.

Most MAC designs for cognitive networks typically designate

one channel, referred to as control channel, where all control mes-

sages needed for selecting data channels take place. Numerous

MAC protocols have already been proposed in the literature to

enable and coordinate multiple access in cognitive radio/dynamic

spectrum access networks; [35, 36] present two surveys on MAC

protocols. In this work, we assume that SUs use one the existing

MAC protocols to negotiate data channels.

VI. CONCLUSION

In this paper, we proposed efficient resource and service

management techniques that effectively support SUs in large-

scale DSA systems. The proposed techniques allow SUs to

exploit spectrum opportunities effectively, thereby maximizing

the service satisfaction levels that SUs receive in the long term.

We showed that the proposed techniques achieve high service

satisfaction levels, are very scalable, are highly learnable by

reaching up high values fast, are distributive by relying on local

information only, and are fair.
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