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this work, we consider the Gaussian interconnection networks. Unlike meshes and
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destination nodes in the Gaussian interconnection networks without depending on
the network size. Then, we prove that this algorithm always returns a solution.
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average 10% more hops than the sum of shortest paths are required to construct

the NDP.
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1. INTRODUCTION

Since the switching speed of the VLSI systems is
approaching the maximum limit, parallel systems play
important role in improving the system performance
by exploiting the inherent parallelism in problems.
In the last decade, supercomputers with thousands
of processors have been built - for example Cray
Jaguar [1], IBM BlueGene [2], etc. These processors are
linked to each other to form an interconnection network
where each node represents a processor.
Achieving high computing performance critically de-

pends on the interconnection networks. Designers of the
interconnection networks seek desirable attributes such
as low node degree, small diameter, and strong fault tol-
erance to maximize the computing performance [3–5].
Parallel computing performance depends primarily on
the network topology which describes how the nodes are
interconnected. As a result, many different topologies
have been investigated extensively in the literature with
the main objective of studying and assessing which ones
yield the best computing performance [6–11]. The prob-
ability of failure in delivering the massages between the
processors directly affects the computing performance.
This probability can become higher because of the con-

tinuous increase in the number of processors. Therefore,
it is critical to construct mutually node disjoint paths
(NDP) in order to establish communication routes un-
der such a faulty environment. Solving NDP problems
for one-to-one, one-to-many, and many-to-many is fun-
damental and essential for ensuring fault tolerance in
parallel systems.
The one-to-many NDP routing problem is described

as follows: given a source node s, a set of distinct
destination nodes T = {t1, t2, . . . , tℓ}, where s /∈ T and
ℓ is the node degree, construct ℓ NDP such that: 1)
each path connects the source node s with one of the
destination nodes tj ∈ T , j ∈ {1, 2, . . . , ℓ}, and 2) the
only common node along all paths is the source node s.
The NDP problems have been studied for different

interconnection networks. The following related works
are some examples [12–29]:

• One-to-One NDP: This problem has been
solved for the following interconnection networks:
Hierarchical Hypercube [12], k-ary n-cube [19],
Hypercube [20], and (n, k)-Star [21].

• Many-to-Many NDP: This problem has been
solved for the following interconnection networks:
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FIGURE 1: Comparing Gaussian networks with Mesh
and Tours networks

Hierarchical Hypercube [14], Metacube [28], Dual-
Cubes [29], and Hypercube [18].

• One-to-Many NDP: This problem has been
solved for the following interconnection net-
works: Hierarchical Hypercube [13], Dual-
Cubes [15], Metacube [16], Folded Hypercube [17],
Biswapped [23], Hypercube in optimal time [24],
Hyper-Star [25], k-ary n-cube [30], Rotator
graphs [26], and pancake graphs [27].

Unlike those previous works, we solve the problem
of routing from a single source node to the maximum
number of destination nodes (one-to-many) in Gaussian
networks using node disjoint paths (NDP).
Gaussian networks have significant topological ad-

vantages over traditional mesh and tours networks
in terms of diameter and average hop distance [31,
32]. Figure1 compares Gaussian networks with the
2-dimensional mesh and torus networks in terms of
the diameter (Figure1a) and the average hop distance
(Figure1b). Clearly, the diameter and average hop dis-
tance of Gaussian networks are less than the diameter
and average hop distance of meshes and tori with the
same number of nodes. This means Gaussian networks
can accommodate more nodes with less communication
latency while maintaining regular grid-like graphs.
The contributions of this work are:

1. proposing an efficient algorithm to solve the one-to-
many NDP routing problem in Gaussian networks
without depending on the network size,

2. theoretically proving that the proposed algorithm

always returns a solution,

3. theoretically proving that the sum of NDP lengths
from the source node to the destination nodes
constructed by the proposed algorithm is bounded
between the sum of the shortest paths and the this
sum plus (6k − 11) where k is the diameter,

4. analysing the time complexity to show that the
time complexity of the algorithm is constant O(1),
and

5. simulating the algorithm to show that on the
average the sum of NDP lengths is 10% more than
the sum of shortest paths.

The rest of the paper is organized as follows: Section
2 recalls several preliminaries about the Gaussian
networks, Section 3 describes the proposed routing
algorithm, Section 4 shows the simulation results, and
Section 5 concludes this paper.

2. GAUSSIAN NETWORKS PRELIMINAR-
IES

Gaussian networks are defined in terms of Gaussian
integers. The following subsections explain the
Gaussian integers, describe the Gaussian networks, and
formally define the one-to-many node disjoint paths
(NDP) routing problem in these networks.

2.1. Gaussian Integers

A Gaussian integer is a complex number such that its
real and imaginary parts are both integers. The set of
all Gaussian integers Z[i] is defined as follows:

Z[i] = {x+ yi|x, y ∈ Z}.

The set Z[i] is an Euclidean domain and the norm of a
Gaussian integer ω = ωx+ωyi is defined as follows [31]:

N (ω) = ωx
2 + ωy

2.

So, an Euclidean division algorithm for Gaussian
integers exists. Let ω1, ω2 ∈ Z[i] and ω2 6= 0. Then,
there exist q, r ∈ Z[i] such that ω1 = qω2 + r and
N (r) < N (ω2) [31]. Let α = a + bi ∈ Z[i] be nonzero
where a and b are integers. Then, ω1, ω2 ∈ Z[i] are
congruent modulo α if there exists γ ∈ Z[i] such that
ω2 − ω1 = γα. Congruence and the Gaussian integers
modulo α are denoted by ω2 ≡ ω1(mod α) and Z[i]α,
respectively. The number of elements in Z[i]α is equal
to N (α) = a2+b2 [31]. For example, if a = 1 and b = 2,
then α = 1 + 2i and Z[i]α has N (1 + 2i) = 12 + 22 = 5
elements.

2.2. Gaussian Networks

Gaussian networks are two-dimensional networks
generated by Gaussian integers [31, 32]. Let α ∈ Z[i]
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(a) Two adjacent meshes (α = 6 + 8i)

(b) Leaned square (α = 3 + 4i)

FIGURE 2: Different representations of Gaussian
networks
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be nonzero. Each node address in a Gaussian network
generated by α is a Gaussian integer that belongs to
the Gaussian integers modulo α denoted by Z[i]α. So,
the number of nodes in this Gaussian network is equal
to N (α). These nodes can be represented in several
ways. One representation is by placing the nodes on
two adjacent square meshes (see Figure2a) [32, 33].
Another representation is by placing the nodes on a
leaned square (see Figure2b) [31, 33]. In this work, we
use different representation which is explained in [34]
(see Figure3). In this representation, the nodes are
placed on a two-dimensional Cartesian plan where the
x-axis and y-axis represent the real and imaginary parts
of each node respectively.
For a specific integer k ∈ Z

+, the following theorem
shows how to get the largest Gaussian network in terms
of the number of nodes. Its proof is given in [33].

Theorem 2.1 ([33]). For a given integer k ∈ Z
+,

Gaussian network achieves the largest network size with
k2+(k+1)2 nodes when it is generated by α = k+(k+
1)i.

The Gaussian network generated by α = k+ (k+1)i
has the shortest network diameter k among all Gaussian
networks with the same number of nodes. In this work,
we assume the generator of the Gaussian network is
α = k + (k + 1)i and denote this Gaussian network by
Gk where k is the network diameter. Figure3 shows the
Gaussian network G3 generated by α = 3 + 4i. In this
example, the number of nodes is equal to N (3 + 4i) =
32 + 42 = 25 and the diameter k = 3.
In the following, we describe some concepts and

properties that are important to understand the
proposed one-to-many node disjoint paths (NDP)
routing in Gk.
Addressing: Each node in the Gaussian network
generated by α = k + (k + 1)i is represented as ω =
ωx + ωyi ∈ Z[i]α. For simplicity, we write ω = (ωx, ωy)
to denote node ω in the network. The set of all nodes
in Gk is {ω = (ωx, ωy) ∈ Z × Z | |ωx| + |ωy| ≤ k}. In
Figure3, the 2-tuples inside each node are the addresses.
Connectivity: Two nodes ω1, ω2 ∈ Z[i]α in Gk are
connected (neighbors) if and only if (ω1 − ω2) ≡
±1,±i(mod α) where α = k + (k + 1)i is the generator
of Gk. So, each node ω = ωx +ωyi ∈ Z[i]α is connected
to four neighbours:

1. the north neighbor ωN = ωx + (ωy + 1)i (mod α),

2. the west neighbor ωW = (ωx − 1) + ωyi (mod α),

3. the south neighbor ωS = ωx + (ωy − 1)i (mod α),
and

4. the east neighbor ωE = (ωx + 1) + ωyi (mod α)

where ωN , ωW , ωS, ωE ∈ Z[i]α.
The module function (mod α) is used to build the

wraparound links. Let β = βx + βyi ∈ {ωx + (ωy +
1)i, (ωx− 1)+ωyi, ωx+(ωy− 1)i, (ωx+1)+ωyi} be one
of the neighbors before applying the module function
where β /∈ Z[i]α. Then, the module function β (mod α)
is given by the following [31]:

β (mod α) =



















β − α if (βx ≥ 0) ∧ (βy ≥ 1)

β − iα if (βx ≤ −1) ∧ (βy ≥ 0)

β + α if (βx ≤ 0) ∧ (βy ≤ −1)

β + iα if (βx ≥ 1) ∧ (βy ≤ 0)
(1)

In Figure3, the dashed links are the wraparound
links built using Equation 1. For example, the south
neighbor of ω = −2− i is ωS = −2− 2i(mod 3 + 4i) =
(−2 − 2i) + (3 + 4i) = 1 + 2i where β = −2 − 2i.
Another example, the north neighbor of ω = −2 + i
is ωN = −2 + 2i(mod 3 + 4i) = (−2 + 2i)− i(3 + 4i) =
(−2 + 2i) + (4− 3i) = 2− i where β = −2 + 2i.
Diameter: The diameter is the largest possible
distance between any two nodes in a network. The
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diameter of Gk is equal to k [34]. For example in
Figure3, the diameter of G3 is equal to three.
Degree: The node degree is the number of its
neighbors. In Gaussian networks, each node is
connected to four other nodes. So, the node degree
is always equal to four for all nodes [34].
Distance: The shortest distance between any two
nodes ω1, ω2 ∈ Z[i]α is defined as follows [32]:

Dα(ω1, ω2) = {|x|+ |y| | (ω1−ω2) ≡ (x+ yi)(mod α)}.

For example in Figure3, the shortest distance between
(0, 1) and (1, 2) is Dα((0, 1), (1, 2)) = |0− 1|+ |1− 2| =
| − 1|+ | − 1| = 2.
Since Gk is vertex symmetric, the shortest distance

between node (0, 0) and node ω = (ωx, ωy) ∈ Z[i]α is
equal to ω’s weight W (ω) ∈ {0, 1, 2, . . . , k} which is
defined as follows [32]:

W (ω) = |ωx|+ |ωy|. (2)

For example in Figure3, the weight of (1, 2) is
W ((1, 2)) = 3 which is the shortest distance between
(0, 0) and (1, 2).
Based on the weight’s value, Definition 2.1 defines a

border node.

Definition 2.1. Let ω ∈ Z[i]α be any node. Then,
ω is a border node if and only if W (ω) = k where k is
the network diameter.

For example in Figure3, the nodes (1, 2), (3, 0), and
(−1,−2) are all border nodes.
The distance distribution of Gk gives the number of

nodes H(r) at distance r ∈ {0, 1, 2, . . . , k} from the
(0, 0) node. This distribution is defined as follows [32]:

H(r) =

{

1 if r = 0

4r if 1 ≤ r ≤ k

For example, the distance distribution of G3 (see
Figure3), is shown in Figure4 where the number inside
each node is its weight. In this example, H(0) = 1,
H(1) = 4, H(2) = 8, and H(3) = 12.
Theorem 2.2 gives the shortest distance between the

node (0, 0) and any other node ω ∈ Z[i]α through one

wraparound link as a function of its weight W (ω). We
use this theorem to calculate the length of some NDP.

Theorem 2.2. In a Gaussian network Gk, let 1)
ω ∈ Z[i]α be any node such that ω 6= (0, 0) and 2)
δ = 2(k − W (ω)) + 1 where k is the network degree
and W (ω) the weight of ω. Then using one and only
one wraparound link, the shortest distance R(ω) from
node (0, 0) to node ω is given as follows:

R(ω) = W (ω) + δ (3)

Proof. Since any wraparound link connects two border
nodes, let a and b be the border nodes that are
connected using the wraparound link in the path from
node (0, 0) to node ω. Then using this wraparound link,
the shortest distance distance from node (0, 0) to the
border node a and from the border node b to node (0, 0)
through node ω is equal to W (a) +W (b) + 1 = 2k + 1.
Since this path goes through ω, this distance includes
the distance from node (0, 0) to node ω. It follows that
R(ω) = 2k+1−W (ω) = 2k+1−W (ω)+W (ω)−W (ω) =
W (ω) + 2(k −W (ω)) + 1 = W (ω) + δ.

Note that δ in Equation 3 represents the extra
number of hops in order to use the wraparound link.
For example in Figure3, the shortest distance from node
(0, 0) to node (1, 2) through a wraparound link is equal
to R((1, 2)) = 3 + 2(3− 3) + 1 = 3 + 1 = 4.
Path: A path from node ω1 to node ω2 is denoted
by P (ω1, ω2) = 〈ω1, a1, a2, . . . , a(|P (ω1, ω2)| − 1), ω2〉
where |P (ω1, ω2)| is the length and each two consecutive
nodes (e.g. ω1 and a1) along the path are neighbors.
Sometimes, we write the path P (ω1, ω2) as ω1 → a1 →
a2 → · · · → ω2.
The length of the shortest path(s) from ω1 to

ω2 is equal to the shortest distance Dα(ω1, ω2)
between them. For example in Figure3, one of the
shortest paths between (0, 0) and (1, 1) is (0, 0) →
(1, 0) → (1, 1) of length two which is equal to
Dα((0, 0), (1, 1)) = W ((1, 1)). Another example of
a longer path P ((0, 0), (1, 1)) is (0, 0) → (−1, 0) →
(−1, 1) → (0, 1) → (1, 1).
One-to-Many NDP: Given a source node s and a set
of distinct destination nodes T = {tj = (tjx , tjy )|1 ≤
j ≤ 4}, where s /∈ T , the one-to-many NDP connect s
with each destination node tj and satisfy the condition
(called disjointness condition) that the only common
node among all these paths is the source node s. Under
this condition, the maximum number of NDP from the
source node s is equal to the number of its neighbors (i.e.
the node degree). Accordingly, the maximum number
of destination nodes is equal to four. Since Gk is vertex
symmetric, we assume the source node is s = (0, 0).
For a particular set of destination nodes T , there

are more than one possible NDP from s to T . One
of these possibilities is denoted by P(s, T ). For ex-
ample, consider the network G3 in Figure3, let the
source node be s = (0, 0) and the set of destination
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FIGURE 5: Different examples of NDP in G3

nodes be T = {(1, 2), (−2, 1), (−1,−1), (1,−1)}.
Then, one possible NDP is P(s, T ) =
{〈(0, 0), (0, 1), (0, 2), (1, 2)〉, 〈(0, 0), (−1, 0), (−2, 0), (−2, 1)〉
, 〈(0, 0), (0,−1), (−1,−1)〉, 〈(0, 0), (1, 0), (1,−1)〉} (see
Figure5a). Another different possibility is P(s, T ) =
{〈(0, 0), (1, 0), (1, 1), (1, 2)〉, 〈(0, 0), (0, 1), (−1, 1), (−2, 1)〉
, 〈(0, 0), (−1, 0), (−2, 0), (−2,−1), (−1,−1)〉, 〈(0, 0),
(0,−1), (1,−1)〉} (see Figure5b).

Definition 2.2. In the Gaussian network Gk where
k is the network diameter, let the source node be s =
(0, 0) and the set of destination nodes be T = {tj =
(tjx , tjy )|1 ≤ j ≤ 4}. Then, the sum of the lengths of
the shortest distances is given by the following:

L(T ) =

4
∑

j=1

W (tj) (4)

For example in Figure5a, L(T ) = 3 + 3 + 2+ 2 = 10.

Definition 2.3. In the Gaussian network Gk where
k is the network diameter, let the source node be s =
(0, 0), the set of destination nodes be T = {tj =
(tjx , tjy )|1 ≤ j ≤ 4}, and the disjoint path from the
source node s to the destination node tj be P (s, tj).
Then, the sum of the lengths of the paths in P(s, T )
is given by the following:

|P(s, T )| =
4

∑

j=1

|P (s, tj)| (5)

For example in Figure5a, |P(s, T )| = 3+3+2+2 = 10
which means the paths in P(s, T ) are the shortest paths
because |P(s, T )| = L(T ). In Figure5b, |P(s, T )| =
3 + 3 + 4 + 2 = 12.
The following section describes our routing algorithm

from the source node s to each of the four destination
nodes in T using NDP.

3. ONE-TO-MANY NODE DISJOINT
PATHS ROUTING

The basic idea of our routing algorithm is to design a
set of distinctive and comprehensive cases based on the
destination nodes’ locations in the network, and then
construct the one-to-many node disjoint paths (NDP)
P(s, T ) for each case. The algorithm (see Alg.1) consists
of two steps: case determination and NDP construction.

Alg.1 One-to-Many NDP Routing in Gaussian network
Gk

Input: Gk, T = {tj = (tjx , tjy )|1 ≤ j ≤ 4},
s = (sx, sy) /∈ T
Output: P(s, T )

1: procedure OneToMany NDP (Gk,T ,s)
2: |QN | = |QW | = |QS | = |QE| = 0;
3: for 1 ≤ j ≤ 4 do ⊲ Step 1
4: if (tjx ≥ sx) ∧ (tjy ≥ sy + 1) then
5: |QN | = |QN |+ 1;
6: else if (tjx ≤ sx − 1) ∧ (tjy ≥ sy) then
7: |QW | = |QW |+ 1;
8: else if (tjx ≤ sx) ∧ (tjy ≤ sy − 1) then
9: |QS| = |QS |+ 1;

10: else
11: |QE| = |QE |+ 1;
12: end if
13: end for
14: switch 〈|QN |, |QW |, |QS|, |QE |〉 ⊲ Step 2
15: 〈1, 1, 1, 1〉 : P(s, T ) = Case1(Gk, T, s);
16: 〈2, 0, 2, 0〉 ∨ 〈0, 2, 0, 2〉 : P(s, T ) =

Case2(Gk, T, s);
17: 〈2, 2, 0, 0〉∨〈0, 2, 2, 0〉∨〈0, 0, 2, 2〉∨〈2, 0, 0, 2〉 :

P(s, T ) = Case3(Gk, T, s);
18: 〈2, 1, 1, 0〉∨〈0, 2, 1, 1〉∨〈1, 0, 2, 1〉∨〈1, 1, 0, 2〉 :

P(s, T ) = Case4(Gk, T, s);
19: 〈2, 0, 1, 1〉∨〈1, 2, 0, 1〉∨〈1, 1, 2, 0〉∨〈0, 1, 1, 2〉 :

P(s, T ) = Case5(Gk, T, s);
20: 〈2, 1, 0, 1〉∨〈1, 2, 1, 0〉∨〈0, 1, 2, 1〉∨〈1, 0, 1, 2〉 :

P(s, T ) = Case6(Gk, T, s);
21: 〈3, 0, 0, 1〉∨〈1, 3, 0, 0〉∨〈0, 1, 3, 0〉∨〈0, 0, 1, 3〉 :

P(s, T ) = Case7(Gk, T, s);
22: 〈3, 1, 0, 0〉∨〈0, 3, 1, 0〉∨〈0, 0, 3, 1〉∨〈1, 0, 0, 3〉 :

P(s, T ) = Case8(Gk, T, s);
23: 〈3, 0, 1, 0〉∨〈0, 3, 0, 1〉∨〈1, 0, 3, 0〉∨〈0, 1, 0, 3〉 :

P(s, T ) = Case9(Gk, T, s);
24: 〈4, 0, 0, 0〉∨〈0, 4, 0, 0〉∨〈0, 0, 4, 0〉∨〈0, 0, 0, 4〉 :

P(s, T ) = Case10(Gk, T, s);
25: end switch
26: return P(s, T );
27: end procedure

3.1. Step 1: Case Determination

The Gaussian network Gk can be partitioned into four
non-overlapped quadrants based on the source node’s
address. For any source node s = (sx, sy), these
quadrants are:

1. QN = {(x, y) ∈ Gk | (x ≥ sx) ∧ (y ≥ sy + 1)}
(The north quadrant)

2. QW = {(x, y) ∈ Gk | (x ≤ sx − 1) ∧ (y ≥ sy)}
(The west quadrant)

3. QS = {(x, y) ∈ Gk | (x ≤ sx) ∧ (y ≤ sy − 1)}
(The south quadrant)

The Computer Journal, Vol. 56, No. 6, 2013
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FIGURE 6: The Quadrants (G5)

TABLE 1: All Cases

Case
No.

Chosen
Cases

Equivalent Cases

1 〈1, 1, 1, 1〉 no equivalent case

2 〈2, 0, 2, 0〉 〈0, 2, 0, 2〉

3 〈2, 2, 0, 0〉 〈0, 2, 2, 0〉, 〈0, 0, 2, 2〉, 〈2, 0, 0, 2〉

4 〈2, 1, 1, 0〉 〈0, 2, 1, 1〉, 〈1, 0, 2, 1〉, 〈1, 1, 0, 2〉

5 〈2, 0, 1, 1〉 〈1, 2, 0, 1〉, 〈1, 1, 2, 0〉, 〈0, 1, 1, 2〉

6 〈2, 1, 0, 1〉 〈1, 2, 1, 0〉, 〈0, 1, 2, 1〉, 〈1, 0, 1, 2〉

7 〈3, 0, 0, 1〉 〈1, 3, 0, 0〉, 〈0, 1, 3, 0〉, 〈0, 0, 1, 3〉

8 〈3, 1, 0, 0〉 〈0, 3, 1, 0〉, 〈0, 0, 3, 1〉, 〈1, 0, 0, 3〉

9 〈3, 0, 1, 0〉 〈0, 3, 0, 1〉, 〈1, 0, 3, 0〉, 〈0, 1, 0, 3〉

10 〈4, 0, 0, 0〉 〈0, 4, 0, 0〉, 〈0, 0, 4, 0〉, 〈0, 0, 0, 4〉

4. QE = {(x, y) ∈ Gk | (x ≥ sx + 1) ∧ (y ≤ sy)}
(The east quadrant)

Each quadrant has exactly k(k+ 1)/2 nodes where k is
the network diameter.
In case the source node s is (0, 0) as we have assumed

in this work, the quadrants are (see Figure6):

1. QN = {(x, y) ∈ Gk | (x ≥ 0) ∧ (y ≥ 1)}

2. QW = {(x, y) ∈ Gk | (x ≤ −1) ∧ (y ≥ 0)}

3. QS = {(x, y) ∈ Gk | (x ≤ 0) ∧ (y ≤ −1)}

4. QE = {(x, y) ∈ Gk | (x ≥ 1) ∧ (y ≤ 0)}

For the Gaussian network G5 as shown in Figure6,
the number of nodes in each quadrants is equal to
5(5 + 1)/2 = 15 where the diameter k = 5.
Based on this network partitioning, the algorithm

determines the current case. Let |Qi| ∈ {0, 1, 2, 3, 4}
be the number of destination nodes in the quad-
rant Qi for i = N,W, S,E. Let the ordered set
〈|QN |, |QW |, |QS |, |QE |〉 represent the number of desti-
nation nodes in all quadrants such that |QN |+ |QW |+
|QS |+ |QE | = 4. For example, 〈4, 0, 0, 0〉 means all des-
tination nodes are in the north quadrant.

Since there are four destination nodes that are dis-
tributed over the four quadrants, there are exactly
(

4+4−1

4

)

= 35 possibilities of 〈|QN |, |QW |, |QS|, |QE |〉.
The one-to-many NDP routing algorithm must con-
struct all NDP P(s, T ) for each one of these 35 possibil-
ities. However, since Gk is vertex symmetric, the solu-
tion for 〈x1, x2, x3, x4〉 is equivalent to the solutions for
〈x4, x1, x2, x3〉,〈x3, x4, x1, x2〉, and 〈x2, x3, x4, x1〉 (by
rotation1 ) where x1, x2, x3, x4 ∈ {0, 1, 2, 3, 4} and
∑4

i=1
xi = 4. So in this work, we show the NDP P(s, T )

for 10 cases. The solutions for these 10 cases are equiv-
alent to the solutions for all 35 cases. Table 1 shows the
chosen 10 cases and the equivalent cases; the total is 35
cases.
Based on the destination nodes’ addresses, the

algorithm evaluates 〈|QN |, |QW |, |QS |, |QE |〉 in the first
step. In the second step, the algorithm constructs the
NDP P(s, T ).

3.2. Step 2: One-to-Many NDP Construction

In this step, the algorithm constructs four NDP from
the source node to the destination nodes based on the
case determined during the first step. In the following,
we describe the NDP construction for each case of the
10 cases. Before that, we need the following definitions.

Definition 3.1. In a Gaussian network Gk where k
is the diameter, let the source node be (0, 0). Then, the
north, west, south, and east node disjoint path starts
with (0, 0) → (0, 1), (0, 0) → (−1, 0), (0, 0) → (0,−1),
and (0, 0) → (1, 0), respectively.

Definition 3.2. In a Gaussian network Gk where k
is the diameter, let tj = (tjx , tjy ) ∈ Qi for j = 1, 2, 3, 4
and i = N,W, S,E be any destination node. Then, the
destination node tj is:

• the top destination node of Qi if tjy =
max{try |tr = (trx , try ) ∈ Qi},

• the bottom destination node of Qi if tjy =
min{try |tr = (trx , try) ∈ Qi},

• the left destination node of Qi if tjx = min{trx |tr =
(trx , try ) ∈ Qi},

• the right destination node of Qi if tjx =
max{trx |tr = (trx , try ) ∈ Qi},

• the max-weight destination node of Qi if W (tj) =
max{W (tr)|tr = (trx , try ) ∈ Qi}, and/or

• the min-weight destination node of Qi if W (tj) =
min{W (tr)|tr = (trx , try ) ∈ Qi}.

Note that the top, bottom, left, right, max-weight,
or min-weight destination node as defined in the
Definition 3.2 is not necessarily unique. So, we say, for
example, top/left ofQi to uniquely specify a destination

1multiplying all nodes
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FIGURE 7: Example of Case 1 (G5)

node in case the top destination node is not unique by
choosing the most left destination node among those
top destination nodes.
Now, we explain how to construct the NDP for each

case.

3.2.1. Case 1 〈1, 1, 1, 1〉

In this case, each quadrant has exactly one
destination node and this is the most simple case. The
node disjoint path to the destination node in the north,
west, south, and east quadrant is connected along the
north, west, south, and east path, respectively. These
NDP are formally given in the proof of the following
lemma and Figure7 shows an example.

Lemma 3.1. In the Gaussian network Gk where k
is the network diameter, let the source node be s =
(0, 0) and the set of destination nodes be T = {tj =
(tjx , tjy )|1 ≤ j ≤ 4} such that the case is 〈1, 1, 1, 1〉.
Then, there exist NDP P(s, T ) such that the sum of the
lengths of the paths in P(s, T ) is exactly equal to

|P(s, T )| = L(T )

Proof. Assume, without loss of generality, that t1 ∈
QN , t2 ∈ QW , t3 ∈ QS , t4 ∈ QE. Then, the NDP
P(s, T ) are:

1. P (s, t1) is (0, 0) → (0, 1) → (0, 2) → · · · →
(0, t1y ) → (1, t1y ) → (2, t1y ) → · · · → (t1x , t1y ).
Its length is equal to W (t1).

2. P (s, t2) is (0, 0) → (−1, 0) → (−2, 0) → · · · →
(t2x , 0) → (t2x , 1) → (t2x , 2) → · · · → (t2x , t2y ). Its
length is equal to W (t2).

3. P (s, t3) is (0, 0) → (0,−1) → (0,−2) → · · · →
(0, t3y ) → (−1, t3y) → (−2, t3y ) → · · · → (t3x , t3y ).
Its length is equal to W (t3).

4. P (s, t4) is (0, 0) → (1, 0) → (2, 0) → · · · →
(t4x , 0) → (t4x ,−1) → (t4x ,−2) → · · · → (t4x , t4y ).
Its length is equal to W (t4).

It follows that |P(s, T )| =
∑4

j=1
|P (s, tj)| =

∑4

j=1
W (tj) = L(T ).

QN
QW

QS QE

t1

t2

t3

t4

(a) Case 2.1

QN
QW

QS QE

t1 t2

t3

t4

(b) Case 2.2

FIGURE 8: Example of Case 2 (G5)

3.2.2. Case 2 〈2, 0, 2, 0〉

In this case, the north quadrant QN and the south
quadrant QS have two destination nodes each. The
NDP to the destination nodes in the north quadrantQN

are connected along the north and east paths; and the
NDP to the destination nodes in the south quadrant QS

are connected along the west and south paths. These
NDP are formally given in the proof of the following
lemma and Figure8 shows an example.

Lemma 3.2. In the Gaussian network Gk where k
is the network diameter, let the source node be s =
(0, 0) and the set of destination nodes be T = {tj =
(tjx , tjy )|1 ≤ j ≤ 4} such that the case is 〈2, 0, 2, 0〉.
Then, there exist NDP P(s, T ) such that the sum of the
lengths of the paths in P(s, T ) is

L(T ) ≤ |P(s, T )| ≤ L(T ) + (4k − 6)

Proof. Let t1, t2 ∈ QN and t3, t4 ∈ QS. Case 2 can be
divided into the following four subcases:

Case 2.1 t1x
= t2x

= t3x
= t4x

= 0:

In this case, the NDP to the bottom destination
node of QN and the top destination node of QS

are connected along the y-axis. The NDP to
the top destination node of QN and the bottom
destination node of QS are respectively connected
along the positive x-axis and negative x-axis with
wraparound links.

Assume, without loss of generality, that:

The Computer Journal, Vol. 56, No. 6, 2013
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1. t1 and t2 are respectively the bottom and top
destination nodes of QN , and

2. t3 and t4 are respectively the top and bottom
destination nodes of QS .

Then, the NDP P(s, T ) are (see Figure8a):

1. P (s, t1) is (0, 0) → (0, 1) → · · · → (0, t1y ). Its
length is equal W (t1).

2. P (s, t2) is (0, 0) → (1, 0) → · · · → (k, 0) →
(k, 0)E = (0, k) → (0, k − 1) → · · · → (0, t2y ).
Since the minimum and maximum length of
this path occur respectively when t2 = (0, k)
and t2 = (0, 2), the length of P (s, t2) is
greater than or equal R((0, k)) = W ((0, k)) +
2(k −W ((0, k))) + 1 = W ((0, k)) + 1 and less
than or equal R((0, 2)) = W ((0, 2)) + 2(k −
W ((0, 2))) + 1 = W ((0, 2)) + (2k − 3).

3. P (s, t3) is (0, 0) → (0,−1) → · · · → (0, t3y ).
Its length is equal to W (t3).

4. P (s, t4) is (0, 0) → (−1, 0) → · · · → (−k, 0) →
(−k, 0)W = (0,−k) → (0,−k + 1) → · · · →
(0, t4y ). Similar to P (s, t2), the path length
of P (s, t4) is W ((0,−k)) + 1 ≤ |P (s, t4)| ≤
W ((0,−2)) + (2k − 3).

It follows that
∑4

j=1
|P (s, tj)| = L(T ) + 2 ≤

|P(s, T )| ≤
∑4

j=1
|P (s, tj)| = L(T ) + (4k − 6).

Case 2.2 (t1x
6= 0 or t2x

6= 0)and(t3x
6=

0 or t4x
6= 0):

In this case, there exists at least one destination
node in each quadrant such that its x value is
not equal to zero. The node disjoint path to this
destination node in QN and QS is connected along
the east and west paths respectively. The other
destination node in QN and QS is reached using
the north and south paths respectively.

Assume, without loss of generality, that:

1. t1x = 0 or t1 is the top/left destination node
of QN ,

2. t2 is the bottom/right destination node ofQN ,

3. t3x = 0 or t3 is the bottom/right destination
node of QS , and

4. t4 is the top/left destination node of QS.

Then, the NDP P(s, T ) are (see Figure8b):

1. P (s, t1) is same as the north path in Case 1.

2. P (s, t2) is (0, 0) → (1, 0) → (2, 0) → · · · →
(t2x , 0) → (t2x , 1) → (t2x , 2) → · · · →
(t2x , t2y ). Its length is equal to W (t2).

3. P (s, t3) is same as the south path in Case 1.

4. P (s, t4) is (0, 0) → (−1, 0) → (−2, 0) → · · · →
(t4x , 0) → (t4x ,−1) → (t4x ,−2) → · · · →
(t4x , t4y ). Its length is equal to W (t4).

TABLE 2: All subcases of Case 2

Case
No.

Lower
Bound

Upper Bound

2.1 L(T ) + 2 L(T )+(4k−6)

2.2 L(T ) L(T )

2.3 L(T ) + 1 L(T )+(2k−3)

2.4 L(T ) + 1 L(T )+(2k−3)

It follows that |P(s, T )| =
∑4

j=1
|P (s, tj)| =

∑4

j=1
W (tj) = L(T ).

Case 2.3 (t1x
= t2x

= 0)and(t3x
6= 0 or t4x

6=
0):

In this case, the NDP to the destination nodes in
QN (i.e. t1 and t2) are exactly same as the the
north and east paths in Case 2.1. Moreover, the
NDP to the destination nodes in QS (i.e. t3 and t4)
are exactly same as the the west and south paths
in Case 2.2. Clearly, there exist NDP P(s, T ) such
that L(T ) + 1 ≤ |P(s, T )| ≤ L(T ) + (2k − 3).

Case 2.4 (t1x
6= 0 or t2x

6= 0)and(t3x
= t4x

=
0):

Similar to Case 2.3 except that the north and east
paths in this case are same as the the north and
east paths in Case 2.2; and the west and south
paths are same as the the west and south paths
in Case 2.1. Clearly, there exist NDP P(s, T ) such
that L(T ) + 1 ≤ |P(s, T )| ≤ L(T ) + (2k − 3).

Table 2 shows the upper and lower bounds of all
subcases of Case 2. Clearly, the minimum lower bound
and the maximum upper bound occur when the cases
are Case 2.2 and Case 2.1 respectively. It follows that
L(T ) ≤ |P(s, T )| ≤ L(T ) + (4k − 6).

In the upcoming cases, Case 2 is used to reach
two destination nodes in QN as long as none of the
following nodes is used: (1, 0), (2, 0), . . . , (k−1, 0), (k, 0).
Similarly, Case 2 is used to reach two destination nodes
in QS as long as none of the following nodes is used:
(−1, 0), (−2, 0), . . . , (−k + 1, 0), (−k, 0).

3.2.3. Case 3: 〈2, 2, 0, 0〉

In this case, the north and west quadrants have
two destination nodes each. The node disjoint path
to the min-weight/right destination node of QW is
connected along the west path; and the node disjoint
path to the max-weight/left destination node of QW

is connected along the south path. By the Gaussian
network connectivity, the south path does not use any
node of (1, 0), (2, 0), . . . , (k− 1, 0), (k, 0) (Figure9 shows
all border nodes (dashed) that can be used by the south
path). So, Case 2 is used to reach the destination nodes
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FIGURE 9: Example of Case 3 (G5)

in QN using the north and east paths. These NDP are
formally given in the proof of the following lemma and
Figure9 shows an example.

Lemma 3.3. In the Gaussian network Gk where k
is the network diameter, let the source node be s =
(0, 0) and the set of destination nodes be T = {tj =
(tjx , tjy )|1 ≤ j ≤ 4} such that the case is 〈2, 2, 0, 0〉.
Then, there exist NDP P(s, T ) such that the sum of the
lengths of the paths in P(s, T ) is

L(T ) + 1 ≤ |P(s, T )| ≤ L(T ) + (4k − 6)

Proof. Let t1, t2 ∈ QN and t3, t4 ∈ QW . Assume,
without loss of generality, that:

1. t3 is the min-weight/right destination node of QW ,
and

2. t4 is the max-weight/left destination node of QW .

Then, the NDP P(s, T ) are:

1. P (s, t1) and P (s, t2) are obtained by applying Case
2. It follows that (W (t1) +W (t2)) ≤ (|P (s, t1)| +
|P (s, t2)|) ≤ (W (t1) +W (t2) + 2k − 3).

2. P (s, t3) is same as the west path in Case 1. Its
length is equal to W (t3).

3. Let b = (bx, t4y ) ∈ QW be a border node and
a = (ax, ay) = bW ∈ QE be another border node.
Then, P (s, t4) is (0, 0) → (0,−1) → (0,−2) →
· · · → (0, ay) → (1, ay) → · · · → (ax, ay) →
(bx, t4y ) → (bx + 1, t4y ) → · · · → (t4x , t4y ). Its
length is at most equal to W (t4) + (2k − 3) which
occurs whenW (t4) = 2. Also, this length is at least
equal to W (t4) + 1 which occurs when W (t4) = k.

It follows that L(T ) + 1 ≤ |P(s, T )| ≤ L(T ) + (4k −
6).

3.2.4. Case 4: 〈2, 1, 1, 0〉

In this case, there exist two destination nodes in QN ,
one destination node in QW , and one destination node
in QS . Since the east quadrant QE has no destination
nodes, none of the nodes (1, 0), (2, 0), . . . , (k−1, 0), (k, 0)

QN
QW

QS QE

t1

t2

t3

t4

FIGURE 10: Example of Case 4 (G5)
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FIGURE 11: Example of Case 5 (G5)

is used. So, Case 2 can be used to reach the two
destination nodes in QN using the north and east paths.
These NDP are formally given in the proof of the
following lemma and Figure10 shows an example.

Lemma 3.4. In the Gaussian network Gk where k
is the network diameter, let the source node be s =
(0, 0) and the set of destination nodes be T = {tj =
(tjx , tjy )|1 ≤ j ≤ 4} such that the case is 〈2, 1, 1, 0〉.
Then, there exist NDP P(s, T ) such that the sum of the
lengths of the paths in P(s, T ) is

L(T ) ≤ |P(s, T )| ≤ L(T ) + (2k − 3)

Proof. Let t1, t2 ∈ QN , t3 ∈ QW , and t4 ∈ QS. The
NDP P(s, T ) are:

1. P (s, t1) and P (s, t2) are obtained by applying Case
2. It follows that (W (t1) +W (t2)) ≤ (|P (s, t1)| +
|P (s, t2)|) ≤ (W (t1) +W (t2) + 2k − 3).

2. P (s, t3) and P (s, t4) are same as the west and
south paths in Case 1 respectively. The sum of
their lengths is equal to |P (s, t3)| + |P (s, t4)| =
W (t3) +W (t4).

It follows that L(T ) ≤ |P(s, T )| ≤ L(T ) + (2k − 3).

3.2.5. Case 5: 〈2, 0, 1, 1〉

In this case, there exist two destination nodes in QN ,
one destination node in QS , and one destination node
in QE . Since the east quadrant QE has one destination
node, one of the nods in (1, 0), (2, 0), . . . , (k−1, 0), (k, 0)
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can be used by this destination node. So, Case 2 cannot
be used to reach the two destination nodes in QN using
the north and east paths. However in the west quadrant
QE , none of the nodes in (−1, 0), (−2, 0), . . . , (−(k −
1), 0), (−k, 0) is used because the west quadrant has
no destination nodes. Thus, Case 2 can be used to
reach two destination nodes in the south quadrant QS

using the west and south paths. Since there is only
one destination node in the south quadrant QS , the
algorithm connects one of the destination nodes in the
north quadrant QN with a border node in the south
quadrant QS and then uses Case 2. These NDP are
formally given in the proof of the following lemma and
Figure11 shows an example.

Lemma 3.5. In the Gaussian network Gk where k
is the network diameter, let the source node be s =
(0, 0) and the set of destination nodes be T = {tj =
(tjx , tjy )|1 ≤ j ≤ 4} such that the case is 〈2, 0, 1, 1〉.
Then, there exist NDP P(s, T ) such that the sum of the
lengths of the paths in P(s, T ) is

L(T ) + 1 ≤ |P(s, T )| ≤ L(T ) + (2k − 2)

Proof. Let t1, t2 ∈ QN , t3 ∈ QS , and t4 ∈ QE . The
algorithm performs the following steps to construct the
NDP:

1. Reach the destination node t4 in QE using the east
path.

2. Reach the min-weight/left destination node of QN ,
say t1, using the north path.

3. Connect the max-weight/right destination node of
QN , say t2, with the border node b = (bx, t2y ) ∈
QN virtically using the path P (b, t2) as (bx, t2y ) →
(bx − 1, t2y ) → · · · → (t2x , t2y ).

4. Let a = (ax, ay) be either the east (bE) or north
(bN ) neighbour of node b depending on the location
of the destination node t3 in QS as follows (the
dashed nodes in Figure11 are all possibilities of
node a):

a =

{

bN if bE = t3
bE if bE 6= t3

Note that node a can be either in the west quadrant
QW (if t2 = (0, k) and t3 = (−(k − 1),−1)) or the
south quadrant QS (otherwise).

5. If node a is in the west quadrant QW , reach node
a and the destination node t3 using the west and
south paths respectively.

6. If node a is in the south quadrant QS , use Case 2
to reach the node a and destination node t3 using
the west and south paths.

t1

t2

t3

t4

b

a

QN
QW

QS QE

FIGURE 12: Example of Case 6 (G5)

Step four is always possible because by the network
connectivity each border node b in QN is connected with
two nodes (bN and bE) using the wraparound links. One
of these two nodes must be available to use because
there exists only one destination node in QS. In case
a is in QW , step four is still valid because QW has no
destination node.
The NDP P(s, T ) are:

1. P (s, t1) and P (s, t4) are same as the north and
east path in Case 1 respectively. The sum of
their lengths is equal to |P (s, t1)| + |P (s, t4)| =
W (t1) +W (t4).

2. P (s, t2) is divided into P (s, a) and P (b, t2) where a
and b are neighbors as explained above. If a ∈ QW ,
P (s, a) is same as the west path in Case 1. If
a ∈ QS , P (s, a) is obtained by applying Case
2. P (b, t2) is (bx, t2y ) → (bx − 1, t2y ) → · · · →
(t2x , t2y ). The length of P (s, t2) is at most equal
to W (t2) + (2k − 2) which occurs when W (t2) = 2
and a = (0,−k). Moreover, the length of P (s, t2)
is at least equal to W (t2) + 1 which occurs when
W (t2) = k and the following is not true: ax =
t3x = 0.

3. If a ∈ QW , P (s, t3) is same as the south path in
Case 1. If a ∈ QS, P (s, t3) is obtained by applying
Case 2. In both cases, the length of P (s, t3) is equal
to W (t3).

It follows that L(T ) + 1 ≤ |P(s, T )| ≤ L(T ) + (2k −
2).

3.2.6. Case 6: 〈2, 1, 0, 1〉

In this case, there exist two destination nodes in QN ,
one destination node in QW , and one destination node
in QE . The NDP to the destination nodes in QW and
QE are respectively connected along the west and east
paths. The node disjoint path to the min-weight/left
destination node of QN is connected along the north
path while the other destination node in QN is reached
using the south path. These NDP are formally given in
the proof of the following lemma and Figure12 shows
an example.
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FIGURE 13: Example of Case 7 (G5)

Lemma 3.6. In the Gaussian network Gk where k
is the network diameter, let the source node be s =
(0, 0) and the set of destination nodes be T = {tj =
(tjx , tjy )|1 ≤ j ≤ 4} such that the case is 〈2, 1, 0, 1〉.
Then, there exist NDP P(s, T ) such that the sum of the
lengths of the paths in P(s, T ) is

L(T ) + 1 ≤ |P(s, T )| ≤ L(T ) + (2k − 3)

Proof. Let t1, t2 ∈ QN , t3 ∈ QW , and t4 ∈ QE .
Assume, without loss of generality, that:

1. t1 is the min-weight/left destination node of QN ,
and

2. t2 is the max-weight/right destination node of QN .

Formally, the NDP P(s, T ) are:

1. P (s, t1), P (s, t3), and P (s, t4) are same as the
north, west, and east paths in Case 1 respectively.
The sum of their lengths is equal to W (t1) +
W (t3) +W (t4).

2. Let b = (bx, t2y ) ∈ QN be a border node and
a = (ax, ay) = bE ∈ QS be another border node.
Then, P (s, t2) is (0, 0) → (0,−1) → (0,−2) →
· · · → (0, ay) → (−1, ay) → · · · → (ax, ay) →
(bx, t2y ) → (bx − 1, t2y) → · · · → (t2x , t2y ). This
path is valid because by the network connectivity
all possibilities of node a (the dashed nodes in
Figure12) are in QS which has no destination
nodes. The length of P (s, t2) is at most equal to
W (t2) + (2k − 3) which occurs when W (t2) = 2.
Also, this length is at least equal toW (t2)+1 which
occurs when W (t2) = k.

It follows that L(T ) + 1 ≤ |P(s, T )| ≤ L(T ) + (2k −
3).

3.2.7. Case 7: 〈3, 0, 0, 1〉

In this case, there exist three destination nodes in
QN and one destination node in QE . The node disjoint
path to the destination node in QE is connected along
the east path.

Since QW has no destination nodes, none of the nodes
in (−1, 0), (−2, 0), . . . , (−(k− 1), 0), (−k, 0) is used. So,
Case 5 can be used to reach two destination nodes in
QS (or one of them in QS and the other in QW ) using
the south and west paths. To use Case 5, the algorithm
connects two destination nodes from QN with QS (or
QS and QW ) using NDP. These NDP are formally given
in the proof of the following lemma and Figure13 shows
an example.

Lemma 3.7. In the Gaussian network Gk where k
is the network diameter, let the source node be s =
(0, 0) and the set of destination nodes be T = {tj =
(tjx , tjy )|1 ≤ j ≤ 4} such that the case is 〈3, 0, 0, 1〉.
Then, there exist NDP P(s, T ) such that the sum of the
lengths of the paths in P(s, T ) is

L(T ) + 2 ≤ |P(s, T )| ≤ L(T ) + (4k − 6)

Proof. Let t1, t2, t3 ∈ QN , and t4 ∈ QE . The algorithm
performs the following steps to construct the NDP:

1. Reach the destination node t4 using the east path.

2. Reach the the min-weight/left destination node of
QN , say t1, using the north path.

3. After the previous step, the remaining destination
nodes in QN are t2 and t3. Among these two
destination nodes, connect the top/left destination
node of QN , say t2, with the border node b1 =
(t2x , b1y) ∈ QN vertically using the path P (b1, t2)
as (t2x , b1y ) → (t2x , b1y − 1) → · · · → (t2x , t2y ).

4. Among t2 and t3, connect the bottom/right
destination node of QN , say t3, with the border
node b2 = (b2x , t3y ) ∈ QN horizontally using the
path P (b2, t3) as (b2x , t3y ) → (b2x −1, t3y) → · · · →
(t3x , t3y ).

5. Apply Case 5 to connect the source node with
the north neighbor of b1, denoted by a1 = bN1 ,
and the east neighbor of b2, denoted by a2 = bE2 ,
using the west and south paths. Figure13 shows all
possibilities of a1 and a2 (the dashed nodes).

Constructing the path P (b1, t2) vertically and the
path P (b2, t3) horizontally is important to maintain
the disjointness condition for two reasons: 1) in
QN , P (b1, t2) and P (b2, t3) are always node disjoint
regardless of the locations of t2 and t3, and 2) in QS

and QW , the north neighbor of b1 and the east neighbor
of b2 are always different nodes. The NDP P(s, T ) are:

1. P (s, t1) and P (s, t4) are same as the north and
east paths in Case 1 respectively. The sum of their
lengths is equal to W (t1) +W (t4).

2. P (s, t2) is divided into P (s, a1) and P (b1, t2)
where a1 and b1 are neighbors as explained above.
P (b1, t2) is (t2x , b1y ) → (t2x , b1y − 1) → · · · →
(t2x , t2y ). P (s, a1) is obtained by applying Case
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FIGURE 14: Example of Case 8 (G5)

5. The length of P (s, t2) is at most equal to
W (t2) + (2k − 3) which occurs when W (t2) = 2.
Also, this length is at least equal toW (t2)+1 which
occurs when W (t2) = k.

3. P (s, t3) is divided into P (s, a2) and P (b2, t3)
where a2 and b2 are neighbors as explained above.
P (b2, t3) is (b2x , t3y ) → (b2x − 1, t3y ) → · · · →
(t3x , t3y ). P (s, a2) is obtained by applying Case
5. The length of P (s, t3) is at most equal to
W (t3)+(2k−3) when W (t3) = 2. Also, this length
is at least equal to W (t3) + 1 which occurs when
W (t3) = k.

It follows that L(T ) + 2 ≤ |P(s, T )| ≤ L(T ) + (4k −
6).

3.2.8. Case 8: 〈3, 1, 0, 0〉

In this case, there exist three destination nodes in
QN and one destination node in QW . The node disjoint
path to the destination node in QW is connected along
the west path.
Since none of the nodes in (1, 0), (2, 0), . . . , (k −

1, 0), (k, 0) is used, the algorithm uses Case 2 to reach
two destination nodes in QN using the north and east
paths. The remaining destination node inQN is reached
using the south path with a wraparound link. These
NDP are formally given in the proof of the following
lemma and Figure14 shows an example.

Lemma 3.8. In the Gaussian network Gk where k
is the network diameter, let the source node be s =
(0, 0) and the set of destination nodes be T = {tj =
(tjx , tjy )|1 ≤ j ≤ 4} such that the case is 〈3, 1, 0, 0〉.
Then, there exist NDP P(s, T ) such that the sum of the
lengths of the paths in P(s, T ) is

L(T ) + 1 ≤ |P(s, T )| ≤ L(T ) + (4k − 6)

Proof. Let t1, t2, t3 ∈ QN , and t4 ∈ QW . The algorithm
performs the following steps to construct the NDP:

1. Reach the destination node t4 using the west path.

2. Let the destination node t2 be t1y < t2y < t3y if
t1x = t2x = t3x = 0. Otherwise, let the destination

QN
QW

QS QE

t1

t2

t3

t4

a

b

FIGURE 15: Example of Case 9 (G5)

node t2 be the max-weight/right destination node
of QN . Then, reach the destination node t2 using
the south path with a wraparound link such that
the portion of this path in QN is horizontal.

3. After the previous step, the remaining destination
nodes in QN are t1 and t3. Apply Case 2 to reach
them using the east and north paths.

In step 2, constructing the portion of the path to t2
horizontally in QN is important to construct a node
disjoint path because in this way all possibilities of the
border node in QS (that this path goes through) are
in QS which has no destination node. Figure14 shows
all possibilities of the border node in QS (the dashed
nodes) . The NDP P(s, T )are:

1. P (s, t1) and P (s, t3) are obtained by applying Case
2. The sum of their lengths is W (t1) + W (t3) ≤
|P (s, t1)|+ |P (s, t3)| ≤ W (t1) +W (t3) + (2k − 3).

2. P (s, t2) is same as the south path in Case 6. Its
length is W (t2)+1 ≤ |P (s, t2)| ≤ W (t2)+(2k−3).

3. P (s, t4) is same as the west path in Case 1. Its
length is equal to W (t4).

It follows that L(T ) + 1 ≤ |P(s, T )| ≤ L(T ) + (4k −
6).

3.2.9. Case 9: 〈3, 0, 1, 0〉

In this case, there exist three destination nodes in
QN and one destination node in QS . Since none of the
nodes in (1, 0), (2, 0), . . . , (k−1, 0), (k, 0) is used, Case 2
can be used to reach two destination nodes in QN using
the north and east paths. Moreover, none of the nodes
in (−1, 0), (−2, 0), . . . , (−(k− 1), 0), (−k, 0) is used. So,
Case 5 can be used to reach the destination node in QS

and a border node (in either QS or QW ) using the west
and south paths such that this border node is connected
to one of the destination nodes in QN . These NDP are
formally given in the proof of the following lemma and
Figure15 shows an example.

Lemma 3.9. In the Gaussian network Gk where k
is the network diameter, let the source node be s =
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(0, 0) and the set of destination nodes be T = {tj =
(tjx , tjy )|1 ≤ j ≤ 4} such that the case is 〈3, 0, 1, 0〉.
Then, there exist NDP P(s, T ) such that the sum of the
lengths of the paths in P(s, T ) is

L(T ) + 1 ≤ |P(s, T )| ≤ L(T ) + (4k − 5)

Proof. Let t1, t2, t3 ∈ QN , and t4 ∈ QS . The algorithm
preforms the following steps to construct the NDP
P(s, T ):

1. Let the destination node t2 be t1y < t2y < t3y if
t1x = t2x = t3x = 0. Otherwise, let the destination
node t2 be the max-weight/right destination node
of QN . Then, connect t2 with the border node
b = (bx, t2y ) horizontally using the path P (b, t2) as
(bx, t2y ) → (bx − 1, t2y) → · · · → (t2x , t2y ).

2. Let a = (ax, ay) be either the east (bE) or north
(bN ) neighbour of node b depending on the location
of the destination node t4 as follows:

a =

{

bN if bE = t4
bE if bE 6= t4

Figure15 shows all possibilities of node a (the
dashed nodes). Note that node a can be either
in the west quadrant QW (if t2 = (0, k) and
t4 = (−(k − 1),−1)) or the south quadrant QS

(otherwise). After specifying node a, apply Case 5
to reach a and t4 using the west and south paths.
The sum of the lengths of P (s, t2) and P (s, t4)
is W (t2) + W (t4) + 1 ≤ |P (s, t2)| + |P (s, t4)| ≤
W (t2) +W (t4) + (2k − 2).

3. Apply Case 2 to reach t1 and t3 using the north and
east paths. The sum of the lengths of P (s, t1) and
P (s, t3) is W (t1)+W (t3) ≤ |P (s, t1)|+ |P (s, t3)| ≤
W (t1) +W (t3) + (2k − 3).

It follows that L(T ) + 1 ≤ |P(s, T )| ≤ L(T ) + (4k −
5).

3.2.10. Case 10: 〈4, 0, 0, 0〉

In this case, all four destination nodes are in QN and
this is the most sophisticated case. The basic idea of
constructing the NDP for this case is as follows:

1. The NDP to two of the destination nodes in QN

are connected along the north and east paths.

2. The remaining two destination nodes (sometimes
one) are horizontally or vertically connected with
QS and these are connected along the west and
south paths.

These NDP are formally given in the proof of the
following lemma and Figure16 and Figure17 show some
examples.

QN
QW

QS QE

t1

t2

t3

t4

a1

b2

a2

b1

(a) Case 10.1

QN
QW

QS QE

t1

t2

t3

t4

b

a

(b) Case 10.2

QN
QW

QS QE

t1

t2

t3

t4

a1

b2

a2

b1

(c) Case 10.3

FIGURE 16: Examples of Case 10 (G5)

Lemma 3.10. In the Gaussian network Gk where k
is the network diameter, let the source node be s =
(0, 0) and the set of destination nodes be T = {tj =
(tjx , tjy )|1 ≤ j ≤ 4} such that the case is 〈4, 0, 0, 0〉.
Then, there exist NDP P(s, T ) such that the sum of the
lengths of the paths in P(s, T ) is

L(T ) + 2 ≤ |P(s, T )| ≤ L(T ) + (6k − 11)

Proof. Here, t1, t2, t3, t4 ∈ QN . To show the
construction of the NDP precisely, we divide this case
into the following five subcases:

1. The x values of all destination nodes are equal to
zero.

2. The x values of exactly three destination nodes are
equal to zero.

3. The x values of exactly two destination nodes are
equal to zero.

4. The x value of exactly one destination node is equal
to zero.
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FIGURE 17: Examples of Case 10 (G5)

5. The x value of none of the destination node is equal
to zero.

In the following, the algorithm constructs the NDP for
each subcases.

Case 10.1 Four destination nodes have x = 0:

In this case, t1x = t2x = t3x = t4x = 0.
Assume, without loss of generality, that t3y <
t2y < t1y < t4y . In other words, t1, t2, t3, and
t4 are the 2nd top, 2nd bottom, 1st bottom, and
1st top destination node of QN respectively (see
Figure16a). The algorithm preforms the following
steps to construct the NDP P(s, T ):

1. Connect t1 with the border node b1 =
(b1x , t1y ) ∈ QN horizontally using the path
P (b1, t1) as (b1x , t1y ) → (b1x , t1y −1) → · · · →
(t1x , t1y ).

2. Connect t2 with the border node b2 =
(b2x , t2y ) ∈ QN horizontally using the path
P (b2, t2) as (b2x , t2y ) → (b2x , t2y −1) → · · · →
(t2x , t2y ). P (b1, t1) and P (b2, t2) are NDP
because they are in parallel.

3. Apply Case 2 to connect the source node s
with the border nodes a1 = bE1 ∈ QS and
a2 = bE2 ∈ QS using the west and south paths.
Figure16a shows all possibilities of nodes a1
and a2 (the dashed nodes). The length of
P (s, t1) is at most equal to W (t1) + (2k − 5)
which occurs when t1y = 3. The length of
P (s, t2) is at most equal to W (t2) + (2k − 3)

which occurs when t2y = 2. Also by applying
Equation 3, the length of P (s, t1) is at lease
equal to W (t1) + 3 which occurs when t1y =
k − 1. The length of P (s, t2) is at least equal
to W (t2) + 5 which occurs when t2y = k − 2.

4. Apply Case 2 to construct P (s, t3) and
P (s, t4) using the north and east paths. The
sum of lengths of P (s, t3) and P (s, t4) is
W (t3) +W (t4) + 1 ≤ |P (s, t3)| + |P (s, t3)| ≤
W (t3) + W (t4) + (2k − 7). The upper and
lower bounds occur when t4y = 4 and t4y = k
respectively.

It follows that L(T )+9 ≤ |P(s, T )| ≤ L(T )+ (6k−
15).

Case 10.2 Three destination nodes have x =
0:

Let t1x = t3x = t4x = 0, t2x 6= 0, and t3y < t1y <
t4y (see Figure16b). The NDP P(s, T ) are:

1. P (s, t2) is same as the south path in Case
6. Figure16b shows all possibilities of the
border node a in QS (the dashed nodes). The
length of P (s, t2) is W (t2) + 1 ≤ P (s, t2) ≤
W (t2) + (2k − 3). The upper bound occurs
when W (t2) = 2.

2. P (s, t1) is (0, 0) → (−1, 0) → (−1, 1) →
(−1, 2) → · · · → (−1, t1y ) → (t1x , t1y ). This
path is valid because QW has no destination
nodes and the y value of t1 is at most equal
to k − 1. The length of P (s, t1) is equal to
W (t1) + 2.

3. P (s, t3) and P (s, t4) are same as the north
and east paths in Case 2 respectively. The
sum of lengths of P (s, t3) and P (s, t4) is
W (t3) +W (t4) + 1 ≤ |P (s, t3)| + |P (s, t3)| ≤
W (t3) + W (t4) + (2k − 5). The upper and
lower bounds occur when t4y = 3 and t4y = k
respectively.

It follows that L(T )+4 ≤ |P(s, T )| ≤ L(T )+ (4k−
8).

Case 10.3 Two destination nodes have x = 0:

Let t3x = t4x = 0 and t1x , t2x 6= 0 (see Figure16c).
The algorithm performs the following steps to
construct the NDP P(s, T ):

1. Apply Case 2 to reach t3 and t4 using the
north and east paths. The sum of lengths of
P (s, t3) and P (s, t4) is W (t3) +W (t4) + 1 ≤
|P (s, t3)|+ |P (s, t3)| ≤ W (t3)+W (t4)+(2k−
3). The upper and lower bounds occur when
t4y = 2 and t4y = k respectively.

2. Apply Case 7 to reach t1 and t2 using the
west and south paths. The sum of lengths of
P (s, t3) and P (s, t4) is W (t3) +W (t4) + 2 ≤
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TABLE 3: Specifying the 1st and 2nd Destination Nodes
in Case 10.5

No. 1st

min-
weight

No. 2nd

min-
weight

Choose

1 1 1st and 2nd min-weight

1 > 1 1st min-weight and right of
2nd min-weight

> 1 ≥ 0 1st and 2nd right of 1st

min-weight

|P (s, t3)|+ |P (s, t3)| ≤ W (t3)+W (t4)+(4k−
8). The upper bound occurs when one of these
destination nodes is node (1, 1) and the weight
value of the other is equal to three. The lower
bound occurs when W (t3) = W (t4) = k.

It follows that L(T )+3 ≤ |P(s, T )| ≤ L(T )+ (6k−
11).

Case 10.4: One destination node has x = 0:

Let t4x = 0 and t1x , t2x , t3x 6= 0 (see Figure17a).
Assume, without loss of generality, that:

1. t3 is the min-weight/left destination node
among t1,t2, and t3.

2. t1 and t2 are respectively the top/left and
bottom/right destination nodes only among
t1 and t2.

The algorithm performs the following steps to
construct the NDP P(s, T ):

1. Apply Case 2 to construct P (s, t3) and
P (s, t4) using the north and east paths. The
sum of lengths of P (s, t3) and P (s, t4) is equal
to W (t3) +W (t4).

2. Apply Case 7 to construct P (s, t1) and
P (s, t2) using the south and west paths. The
sum of lengths of P (s, t1) and P (s, t2) is
W (t1) +W (t2) + 2 ≤ |P (s, t1)| + |P (s, t2)| ≤
W (t1) + W (t2) + (4k − 10). The upper and
lower bounds occur when W (t1) = W (t2) = 3
and W (t1) = W (t2) = k respectively.

It follows that L(T )+2 ≤ |P(s, T )| ≤ L(T )+ (4k−
10).

Case 10.5 None of the destination nodes has
x = 0:

In this case, t1x , t2x , t3x , t4x 6= 0 (see Figure17b).
The algorithm performs the following steps to
construct the NDP P(s, T ):

1. Count the number of destination nodes that
their weight values are equal to the minimum

TABLE 4: Specifying the 3rd and 4th Destination Nodes
in Case 10.5

No. 1st

max-
weight

No. 2nd

max-
weight

Choose

1 1 1st and 2nd max-weight

1 > 1 1st max-weight and left of
2nd max-weight

> 1 ≥ 0 1st and 2nd left of 1st

max-weight

weight among all destination nodes (1st min-
weight). For example in Figure17b, the
number of destination nodes in the 1st min-
weight is one (t4).

2. Count the number of destination nodes in the
2nd min-weight among all destination nodes.
For example in Figure17b, the number of
destination nodes in the 2nd min-weight is two
(t2 and t3).

3. Use Table 3 to specify two destination nodes.
Note that this Table specifies exactly two
destination nodes. Let these destination
nodes be t3 and t4. For example in Figure17b,
Table 3 specifies the destination node in the
1st min-weight (t4) and the right destination
node among those in the 2nd min-weight (t3).

4. Apply Case 2 to construct P (s, t3) and
P (s, t4) using the north and east paths. The
sum of lengths of P (s, t3) and P (s, t4) is equal
to W (t3) +W (t4).

5. Count the number of destination nodes that
has the max-weight among all destination
nodes (1st max-weight). For example in
Figure17b, the number of destination nodes
in the 1st max-weight is one (t1).

6. Count the number of destination nodes in the
2nd max-weight among all destination nodes.
For example in Figure17b, the number of
destination nodes in the 2nd max-weight is two
(t2 and t3).

7. Use Table 4 to specify two destination nodes.
Note that these destination nodes are different
than the destination nodes specified before.
Let these destination nodes be t1 and t2. For
example in Figure17b, Table 4 specifies the
destination node in the 1st max-weight (t1)
and the left destination node among those in
the 2nd max-weight (t2).

8. Apply Case 7 to construct P (s, t1) and
P (s, t2) using the south and west paths with
wraparound links. The sum of lengths of
P (s, t1) and P (s, t2) is W (t1) +W (t2) + 2 ≤
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TABLE 5: All subcases of Case 10

Case
No.

Lower
Bound

Upper Bound

10.1 L(T ) + 9 L(T ) + (6k −
15)

10.2 L(T ) + 4 L(T )+(4k−8)

10.3 L(T ) + 3 L(T ) + (6k −
11)

10.4 L(T ) + 2 L(T ) + (4k −
10)

10.5 L(T ) + 2 L(T ) + (4k −
12)

|P (s, t1)|+ |P (s, t2)| ≤ W (t1)+W (t2)+(4k−
12). The upper bound occurs when the weight
value of one of these destination nodes is equal
to three and the weight value of the other
destination nodes is equal to four. The lower
bound occurs when W (t3) = W (t4) = k.

It follows that L(T )+2 ≤ |P(s, T )| ≤ L(T )+ (4k−
12).

Table 5 shows the upper and lower bounds of all
subcases of Case 10. Clearly, the minimum lower bound
and the maximum upper bound occur when the cases
are Case 10.4 (or 10.5) and Case 10.3 respectively. It
follows that L(T )+2 ≤ |P(s, T )| ≤ L(T )+(6k−11).

After showing how to construct the NDP for all
10 cases, the following theorem states that four NDP
always exist in the Gaussian network Gk and provides
the upper and lower bounds of the sum of the lengths
of all four paths |P(s, T )|.

Theorem 3.1. In the Gaussian network Gk where
k is the network diameter, let the source node be s =
(0, 0) and the set of destination nodes be T = {tj =
(tjx , tjy )|1 ≤ j ≤ 4}. Then, there exist NDP P(s, T )
such that the sum of the lengths of the paths in P(s, T )
is

L(T ) ≤ |P(s, T )| ≤ L(T ) + (6k − 11)

Proof. The Gaussian network Gk can be divided into
four non-overlapped quadrants based on the source
node’s address. These quadrants are QN , QW , QS, and
QE as defined in Section 3.1. The four destination
nodes can be distributed in exactly

(

4+4−1

4

)

= 35
ways represented as 〈|QN |, |QW |, |QS |, |QE |〉 where |Qi|
is the number of destination nodes in quadrant i for
i = N,W, S,E. To prove the theorem we need to
show that the NDP exist for each one of these 35 cases.
However, sinceGk is vertex symmetric, constructing the
NDP for only 10 cases is equivalent to constructing the
NDP for the 35 cases. Table 1 shows the chosen 10 cases
and the equivalent cases; the total is 35 cases. Now to

TABLE 6: All Cases

Case
No.

Chosen
Cases

Lower
Bound

Upper Bound

1 〈1, 1, 1, 1〉 L(T ) L(T )

2 〈2, 0, 2, 0〉 L(T ) L(T )+(4k−6)

3 〈2, 2, 0, 0〉 L(T ) + 1 L(T )+(4k−6)

4 〈2, 1, 1, 0〉 L(T ) L(T )+(2k−3)

5 〈2, 0, 1, 1〉 L(T ) + 1 L(T )+(2k−2)

6 〈2, 1, 0, 1〉 L(T ) + 1 L(T )+(2k−3)

7 〈3, 0, 0, 1〉 L(T ) + 2 L(T )+(4k−6)

8 〈3, 1, 0, 0〉 L(T ) + 1 L(T )+(4k−6)

9 〈3, 0, 1, 0〉 L(T ) + 1 L(T )+(4k−5)

10 〈4, 0, 0, 0〉 L(T ) + 2 L(T ) + (6k −
11)

prove the theorem we need to show that the NDP exist
for each one of these 10 cases. Lemmas 3.1 to 3.10 prove
that the NDP exist for the chosen 10 cases. Table 6
shows the upper and lower bounds of these 10 cases. It
follows that L(T ) ≤ |P(s, T )| ≤ L(T ) + (6k − 11).

3.3. Time Complexity

The overall time complexity of the proposed algorithm
equals the sum of time complexity of Step 1 and Step 2
(see Alg.1). In Step 1, the algorithm counts the number
of destination nodes in each quadrants based on the
addresses of the source and destination nodes. Clearly,
this step can be done in a constant time O(1).
In Step 2, the algorithm constructs the NDP by

executing the procedure of one case out of 10 cases
based on the number of destination nodes in each
quadrants. Thus, the time complexity of Step 2 equals
the time complexity of the most time consuming among
the 10 cases.
To construct the NDP, the algorithm needs to know

the left, right, top, bottom, max-weight, and min-
weight destination nodes of a specific quadrants as
defined in Definition 3.2. That requires sorting a
number of destination nodes based on three criteria:

1. the x-coordinate to know the left and right
destination nodes,

2. the y-coordinate to know the top and bottom
destination nodes, and

3. the weight as defined in Equation 2 to know the
max-weight, and min-weight destination nodes.

This sorting can be done using the bucket sort method.
The time complexity of the bucket sort method equals
the number of elements to be sorted multiplying by
the number of sorting criteria. In the worst case,
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FIGURE 18: Shortest non-NDP vs. acutal NDP
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FIGURE 20: Case-wise shortest non-NDP vs. acutal
NDP (k = 500, runs= 10, 000)

the number of elements to be sorted equals four (the
number of destination nodes) and that happens in Case
10. So, the time complexity of Step 2 equals O(3 ∗ 4) =
O(12) ≈ O(1). As a result, the overall time complexity
of our proposed algorithm is a constant time O(1).

4. SIMULATION RESULTS

In this section, we show the results of simulating the
proposed algorithm. We mainly measure the sum of
path lengths |P(s, T )| and compare it to the sum of
destination nodes’ weights L(T ) and the lower and
upper bounds. The sum of destination nodes’ weights
L(T ) is equal to the sum of the shortest paths lengths
where these paths are not necessarily node disjoint

paths (NDP). Our simulation results show that all of
the time the proposed algorithm gives NDP. The results
also show that we need on the average about 10% more
hops than the sum of destination nodes’ weights L(T )
to construct the NDP in Gaussian networks.
We ran a simulator of the proposed algorithm

10,000 times for each one of the following networks:
G200, G300, G400, and G500. In each run, the simulator
randomly generated the four destination nodes T and
the source node s. It returned the NDP P(s, T ) for each
run. After taking the averages, the results are shown
in Figure18. In this figure, we compare the average
number of hops of the sum of destination nodes’ weights
L(T ) and the sum of the actual NDP lengths |P(s, T )|
along with the average of the lower and upper bounds.
Clearly, the sum of the actual NDP lengths constructed
by the proposed algorithm is very close to the sum of
destination nodes’ weights. In fact, the algorithm can
construct the NDP with 10% more hops on the average
than the sum of destination nodes’ weights. This result
is true regardless of the size of the network because
the number of nodes in the network is irrelevant to the
NDP construction process in the proposed algorithm.
The 10% more hops is a small price to pay for earning
the advantages of having the NDP.
For more clarification on why the difference between

the actual NDP lengths and shortest distances is small,
Figure19 shows the distribution of occurrence of each
case for G500 over 10,000 runs. As shown in this figure,
cases 4,5, and 6 are the most occurred cases with about
18% each. As shown in Table 6, the upper bounds
of these cases are less than the other cases’ upper
bounds (except Case 1). Moreover, Case 10 which has
the maximum upper bound occurs the least with 2%
occurrence.
For more insights on the results, Figure20 compares

for each case between the actual NDP lengths and
shortest distances along with the lower and upper
bounds for G500 over 10,000 runs. First, notice that the
sum of the NDP lengths of cases 1, 2, and 4 is equal to
the sum of the shortest path which is the lower bounds
for these cases. That means the probability of the lower
bound occurrence is almost 100% for these case which is
expected especially for Case 1. Second, notice that the
sum of the NDP lengths is far closer to the lower bound
than the upper bound. That means the probability of
the upper bound occurrence is very low for all cases.

5. CONCLUSION

Achieving high computing performance in parallel
computing systems critically depends on constructing
mutually node disjoint paths (NDP). In this work
we provide and prove a novel algorithm to construct
all possible NDP from a single source node to a set
of destination nodes in the Gaussian interconnection
networks. This algorithm construct four NDP which
is equal to the maximum number of destination nodes.
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We show that the sum of the NDP lengths constructed
by the algorithm is bounded between the sum of the
shortest paths and the this sum plus (6k−11) where k is
the diameter. We also show that the time complexity of
the algorithm is constant O(1). Finally, the simulation
results show that on the average the sum of NDP
lengths is 10% more than the sum of the shortest paths.
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