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Abstract—This paper proposes energy and cross-layer aware well. Recently, an efficient distributed technique for dpam
resource allocation techniques that allow dynamic spectrum ac- access and allocation based on learning was proposed [5].
cess users, by means of learning algorithms, to locate and explmtThe authors proposed a close-optimal, scalable, and highly

unused spectrum opportunities effectively. Specifically, we desig S . .
private objective functions for spectrum users with multiple learnable objective functions that can be used for enabling

channel access and adaptive power allocation capabilities. We €fficient DSA. Although the proposed technique is shown to
also propose a simple, two-phase heuristic for allocating spectrum perform well in terms of throughput, it does not account for
and power resources among users. The proposed heuristic splits power consumption.

the spectrum and power allocation problem into two sub-optimal In this work, we propose a joint dynamic multi-channel

problems, and solve each of them separately. The spectrum t d adaoti locati techni
allocation problem is solved, during the first phase, using learning SPECTUM aCCess and adaptve power allocation techniques

whereas, the power allocation is formulated as an optimization that extend the technique proposed in [5] to account for
problem and solved, during the second phase, by traditional power consumption and cross-layer couplings. Specifically
optimization solvers. Simulation results show that energy and we develop learning-based, distributed energy and ceyss-|
cross-layer awareness and multiple channel access capability yyare resource allocation techniques that allow DSA users,
improve the performance of the system in terms of the per-user . . -
average rewards received from accessing the dynamic spectrum by means of 'eaf”'r?g algorlthms, to locate and exploit udu;e
access system. spectrum opportunities effectively. A key challenge ofsthi
Index Terms—Cross-layer resource allocation, dynamic spec- work lies in how to propose an efficient algorithm that
trum access, distrib_uted resource sharing, private objectivéunc- exploits channel diversity to enhance performance, butawit
tions, cognitive radio networks. suffering enormously from the added complexity of such an
exploitation. To tackle this challenge, we propose a twaseh
heuristic approach that combines learning and optimimatio
Dynamic Spectrum Allocation (DSA) [1] has been ona way that reduces the computational complexity while still
of the hot topics in wireless communications in the lastchieving good performances. The proposed heuristicghkt
decade due to its potential for improving spectrum utilaat spectrum and power allocation problem into two sub-optimal
efficiency, thus addressing the spectrum shortage problgmoblems, and solve each of them separately. The spectrum
DSA has been an important catalysis for numerous reseastlocation problem is solved using learning algorithmsirmiyr
works, ranging from protocol design [2] to performance -optthe first phase, whereas the power allocation is formulased a
mization [3] and spectrum sensing techniques [4]. One of tha optimization problem and solved by traditional optintiza
important factors in the design of efficient wireless systensolvers during the second phase. Our simulation resuli sho
is power consumption. Power and energy awareness has biaih the proposed energy and cross-layer aware techniques
generating continuous interest in the research commuatsty, coupled with the multiple channel access capability improv
the importance of reducing energy consumption is becomim$5A performances by increasing the per-user average reward
crucial not only in designing wireless systems, but alsonyn athat users receive from accessing the DSA system.
engineering systems due to other factors such as envirenmeriThe rest of this paper is organized as follows. We recall
tal concerns (global warming, pollution, etc.) and incezhsin Section Il the main results of [5]. Section Il introduces
energy costs. the proposed techniques. In Section IV, we present our for-
On the other hand, developing fully decentralized apnulation to the DSA resource allocation problem, discuss
proaches is becoming more needed than ever due to the complexity challenge of the proposed DSA technique,
complexity of these emerging wireless systems. Thoughnit cand present the proposed suboptimal approach to be used to
be very challenging to design them, decentralized appesaclovercome the complexity challenge. In Section V, we present
scale well, as they typically incur little to no communiceati simulation results and discuss the performance of the gexpo
and computational overhead while still performing relalyy approach under various different system parameters. Ifinal

I. INTRODUCTION



we conclude the paper in Section VI. performance increases but at very low rate. This is due to
the insensitivity of the function to the user’'s action. Thus
a good objective function should balance between the two
In this section, we briefly overview and describe the objeconflicting requirements) accounting for each other’s actions
tive function proposed in [5] for completeness. For this, w&hen taking one’s own actions to ensure objective alignment
first begin by describing the problem setup, and then presemhong users and) being sensitive to one’s own actions to
and illustrate the technique. increase users’ learnability. The authors proposed to nse a
. I objective function that strikes a good balance betweenethes
A. DSA Problem: Assumptions and Objective two requirements. The basic idea lies in that removing the
NoroozOliaee et al. [5] investigate distributed resouragffects of all other users from the global objective gives us
allocation techniques for large-scale DSA networks. Thesh objective function with higher learnability than the lggb
consider a large-scale spectrum allocation problem with objective function but while still ensuring objective aligent
users all competing to access spectrum bandsn(>> m), among users. Essentially, this function, referred tditierence
where each user selects and uses one spectrum band angpfttive function, measures useis contribution to the total
the mm available bands to carry out its data communicatioBystem received rewards, making it more learnable without
The interfering users, those that end up selecting the sastgnpromising its alignedness quality. Formally, the défece
band, are assumed to share the spectrum band using a cafiii@ttion can be written as
sense multiple access (CSMA) scheme [7]. An elastic traffic
model is considered where the intrinsic reward received by n
each user is proportional to the amount of received throughp D;(t) = Zrk (sg(t)) — Z ri (sk(t) —{i}) (2)
provided that it exceeds a certain threshalt};,. When the k=1 k=1,k#i
received throughput drops below this threshold, the rewardgqr the sake of illustration, we simulate, evaluate and

drops exponentially. Explicitly, the reward received beus  present in Fig. 1 the performance of the difference function

Il. LEARNING-BASED DISTRIBUTED DSA

n

can be written as D; and compare it against those of the two other functions:
intrinsic r; and globalG(t) = >, _, rx(t). Observe that the
Vs - if s ()] +1 < 1;/71 D; function outperforms the other two significantly in terms
ri(t) = ‘Si(t)ljﬁ(<|b,/<t>\+1>at,ﬁvj) " of both optimality (it achieves high rewards) and learrigyil
Rine Vi otherwise (it reaches up to high rewards very quickly). This objective

(1) function allows users to achieve around 90% of the maximal
whereVj is the capacity of bangl ands;(t) is the set of users possible reward in less than 100 time episodes. In addition,
interfering with useri at timet. can be computed in a distributed manner when the network

The goal in [5] is then to design private objective functiong fully connected. In the case of fully connected networks,
that can be used, with any learning algorithm, to maximize ttD; of useri (Eq. (2)) can be simplified to a function of only
rewards that users receive from accessing the DSA systeen. Tife number of interferers to that userThat is, D; can be
objective function is derived with four design goals in mindexpressed as
it should allow users to achieve high rewards (optimality), )
should be implementable in a distributed manner (distribu-i(t) = (Isi(®)] + 1) i (s:(t)) = [si(®)] i (s4(t) —{i}) (3)
tivity), it should enable users to locate and find spectrum
resources quickly (learnability), and it should be perfomeil
for both small and large humbers of users (scalable).

IIl. THE PROPOSEDREWARD FUNCTION: POWER AND
CROSSLAYER AWARENESS

] o ) Unlike [5] where each user is only allowed to select and

B. The Difference Objective Function communicate over one channel band, we assume in this work

To design an efficient objective functign for a user; that that each user is allowed to select (for example by means of
meets the above four design requirements, the authors starulticarrier scheme) and use more than one channel band
by analyzing the performance of two obvious and intuitiveo communicate. In addition, this work also employs power
objective functions. The first consists of simply taking theontrol to reduce energy consumption, a factor that has not
intrinsic reward as the objective functioy, (= r; for each user been taken into consideration in previous works. In thiskyor
1), whereas the second consists of using the global netwavk also use channel gains to compute the received throughput
reward as the objective function;(= >_;_, rx(t) for each allowing us to evaluate and analyze the performance under
user i). The intrinsic reward function choice results in arvarious channel conditions.
oscillating behavior of the performance with rapidly iresang We consider a network topology that consistsrofusers
and decreasing slopes. This behavior is due to the selfishenafeach user, also sometimes called agent, here refers to a
of the intrinsic objective function, which does not take eath transmitter-receiver pair) sharing non-overlapping spectrum
users’ actions into account when deciding on what actionsbands. We consider an Orthogonal Frequency-Division Multi
useri should take. On the other hand, the global objectiyle Access (OFDMA) system; we then divide each spectrum
function choice results in a much steadier behavior whege thand into! equally distant sub-bands, wheteis selected



« Difference function reward. In this reward type, each

9or user aims to maximize the difference function described

ol in Section II-B. That is,
701 —¥— Intrinsic objective (g |_r|) gz(t) = Di (t)
- © - Global objective (g =G) . . .
6oy Difference objective (g i:Di) WhereDi(t) IS glven in Eq (3)
50F It is worth iterating that the difference between the three

reward functions proposed in [5] and those proposed and
studied in this work is three-fold: One, our proposed oldject

30} functions are cross-layer aware in that the reward a user
2ol receives depends on power level and channel characteristic
(this is provided via Eq. (4)). Two, our proposed techniques

are energy-aware in that the channel selection method (to be

a0+

Normalized per—agent average reward (%)

‘ _o-9-- . : ;
O_._QSEQAEQ;Q:-L?;:;:& described later) accounts for power consumption of usexs vi
0 10 e episoden 0 500 adaptive power control. Three, each user is allowed to acces

and use more than one spectrum band at the same time; that
Fig. 1. Performance of the single band allocation with déferprivate 1S, USE€rs have multi-channel access capabilities. Thexefo
objective functions with the following system parametets= 500, m = throughout the remaining of the paper, we will refer to our
10V'=20, R=2, andf = 2. proposed techniques asergy and cross-layer aware objective

functions to distinguish them from those proposed in [5].

to guarantee orthogonality between sub-bands. We denote by |v. JoiNT SPECTRUM AND POWER ALLOCATION
gi(])(t) the power of the instantaneous channel gain betwee
useri’s transmitter and receiver in thg" channel sub-band.

One contribution of this work is to express the rewar

Mhe joint spectrum and power resource allocation problem
8an be formulated as

n

function explicitly in terms of the channel gains and allech ma ZT" (t)
power. LetB; be the bandwidth of each channel sub- band{a<1> Pm} p ’
Bjs are selected such that the channel gains are constant over g 0 < P(j) < P(j),mam ie{l.n}, je{l.mi}
each channel sub-band. The throughput of usar instantt
is expressed in terms of the allocated power per bﬁﬁél(t) Za(”P(J) < pmax i€ {l.n}
as j=1
(4) (4) n
t) P (t j
Ri( ZB ¥ logs (1 + M) @) 0<y a? <1 je{l.ml}
~ NoB; p
ml )
wherea!’ is the user-band occupation mapping index (i.e., I< Zagj) < mite i€{l..n}
al’) =1 if useri uses bang anda!’’ = 0 otherwise), and =1

(5)

,ymax

Ny is the noise power level.
Thus, similarly to Eq. (1), the reward of useat instantt,
r;(t), can be expressed as

where P"%* is useri's maximum transmit powerP
is the maximum allowed power per sub-bapntbr useri, and
m;*** is the maximum number of used sub-bands for user
) In this problem, the objective is to maximize the total redvar
ri(t) = Ri(t) - if Ri(t) > Ren obtai_ned by all users while respecting some _constrain_te. _Th
Rthefﬁ(ﬁmfl) otherwise two first constraints concern energy consumption: the frst i
budget power per user and the second is a maximum power per
As done in [3], three types of reward functions are studied ffand which can serve to limit the generated interference. Th
this work to show the effectiveness of our proposed tecteiqtthird constraint guarantees non-interference betweers e
« Intrinsic reward (selfish behavior). The reward for each only one user is allowed to access each sub-band while the las
user is equal to its own reward constraint can be used to reduce the multi-carrier comylexi
by limiting the number of used sub-bands per user.
gi(t) = ri(t)

« Global reward (cooperative behavior). The reward for
each user is equal to the sum of all users’ rewards.

A. Complexity Challenge of the Learning Algorithm

Our proposed approach consists of extending the technique
proposed in [5] to account for power consumption when
n allocating spectrum resources among users. We therefate ev

gi(t) =G(t) & Zm(t) uate our proposed technique while using the same learning
k=1 algorithm that has been used in [5] (i.e., Q-learner [6]).



Accounting for power resources when allocating spectruoser is to determine the power to be allocated for each used
resources, though increases the spectrum efficiency abevillsub-bandPi(j). The optimization problem for each uselis
seen later, comes at a cost. The additional degree of freedi@mmulated as

with the possibility of allocating different power levelsio max ri(t)

multiple channel sub-bands makes the resource allocation>”} ;) |

optimization problem a mixed integer programming (MIP ; j Nomaz . j

pfoblem. Instzad of searching in on?a aIIF(J)ca%ed bandg p(er uger St 0< Pi(j) < Pi(j% J€ {1...ml/a§]) =1

ml
(m possibilities per user), the new unknown variable is a vecto Z o9 pli) « pmax
of [ xm scalars (power allocated per sub-band) which can take = Lo T

X ml ; I : (6)
Z ( j ) Lj possibilities, wherd.; is the number of non- |5 grdinary resource allocation problems where the reward
j=0 . S W r;(t) is exactly the throughput?;(¢), the solution to this
Z€ro possmlglpower levels for userThis quantity is upper- problem can be found explicitly using a water-filling algbm
bounded byZ ( ml ) L{ = (L;+1)"™ sincem?** < mi. [9]. While in this problem, due to the elastic reward function
=\ the optimization can not be solved analytically but it can be
Given that the complexity of the learning algorithm is prosolved numerically using an ordinary optimization tool.
portional to the search space of the unknown variables, this
complexity is exponential on the number of channels, making
it impractical for large systems. In addition, the discnetes =~ We consider an uplink cellular network where = 100
of the power levels affects considerably the performance @$ers are generated randomly inside a circular cell of sadiu
the power allocation. For instance, increasing the number @= 1 Km. The base station (receiver for all users) is located
levels L; gives more freedom in allocating the power amontj the center of the cell. The channel gains are generated
used channel bands, which improves the performance, butas¢ording to a Rayleigh distribution [10] of mean power équa
the other hand, increases the computational complexity. alsto the distance-based pathlosg Y with a pathloss exponent
Therefore, in what follows, we propose a less complex, but= 3. m = 10 spectrum bands are considered dnet 50

V. SIMULATION RESULTS

Sub-optima| approach for So|ving this prob|em_ sub-bands for each band (i.e., a total of 500 Sub'bandS). The
budget power per user is taken B§*** = 20 dBm while no
B. Digoint Channel and Power Allocation maximum power per band is forced.

To overcome the complexity issue of the learning algorithm, N Fig- 2, we show the performance (in terms of the per-
we propose, instead, a two-phase algorithm that consists'Sf"/agent average received rewards) of our proposedyenerg
first using learning to determine channel-allocation magpi and cross-layer aware objective functions with multiplarch

and then solving the optimization problem formulated aboWt¥! access and adaptive power allocation capabilities, and
to determine the best power allocation. compare it with that ach|9ved under the_dn‘ferencg rewgrd
1) Learning-Based Channel Allocation: In this phase, we function D; as proposed in [5]. For a fair comparison in
apply the Q-learner to find the best set of channel bandgrms of the avallaple amount of service, we consider that
Specifically, the best set of channel bands correspondsﬂ?g amoupt of service offe(rSd by a band depends on V,Vh'Ch
the available sub-bands with maximal values in the Q-tabéSer iS using the band. L& denote the amount of service
The available sub-bands are to be determined using a sendlff§red by a bandj to user:; V% can be computed using
phase that allows users to determine distributively whrethe Ed. (4) with P;(j) = P"** for a fair comparison in terms of
channel sub-band is used by other users or a primary ulee power consumption. We observe that the multiple channel
in case of cognitive systems. Taking into consideration ttlocation/access capability enhances the performancenwh

constraint on the maximal number of allowed bands per us€Pmpared with the single channel access by increasing the
ml obtained average reward. This increased reward is a direct

the total number of possible sets s, < j ) This  vesult of the benefit from the exploitation of channel diitgrs
quantity is bounded from above /" (sincem["* < ml using this multiple channel access. In the proposed model,
and Zml ml _ 9ml). The considerable decrease in th users are free to aIIoc_::?lte more than one channel to maximize
J=0 j ' fheir reward. In addition, the proposed model allows the
search space during this first learning phase will result gontrol of the energy consumption through the added power
a notable reduction of the computational complexity of theonstraints.
Learning algorithm . Fig. 3 shows the performance obtained under each of the
2) Power Allocation Optimization: Having the channel sub- three studied functions when enabled with multiple bands
bands to be allocated to each user after the first phase, #iteess and adaptive power allocation capabilities. Thigdig
problem of determining the allocated power per sub-bam@nfirms the conclusions drawn in [5] on the efficiency of the
for each user can be formulated as a constrained conwiifference objective function in achieving better perfarme
optimization problem. In this sub-problem, the sub-bandkan the intrinsic and global objective functions when éeab
allocation indexes{aﬁj )} are known and the objective for eachwith our proposed cross-layer and energy aware features.
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functions:g;, G, and D;.

a user is allowed to use.

In Fig. 4, we plot the performance of the proposed energy
and cross-layer aware techniques with multiple channedszcc VI. CONCLUSION
and adaptive power allocation capabilities for two diffdre  This paper proposes learning-based, cross-layer and en-
network topologies by varying the cell radius. First, wergy aware resource allocation techniques with multi-clehn
observe that the difference objective functions outpenftine spectrum access and adaptive power allocation capadilltie
other two regardless of the network topology. Also, notd thalso proposes a heuristic for allocating spectrum and power
this performance amelioration increases as the cell radigsources among users. The proposed heuristic overcomes
decreases. This is simply because the reward is asympipticthe complexity issues by splitting this resource allogatio
inversely proportional to the distance. problem into two sub-optimal problems, spectrum allocatio

In Fig. 5, we study the scalability of the proposed technsqu@roblem and power allocation problem, and solves each of
by plotting the average achieved reward as a function of ttieem separately. The spectrum allocation problem is solved
number of users in the network. The figure shows that asing learning methods whereas, the power allocation one
the number of users increases, the per-user average reéceigeformulated as an optimization problem and solved by
rewards go down rapidly. This is regardless of the usddhditional numerical methods. Our simulation resultswsho
objective functions and regardless of the number of channéhat proposed techniques perform well in terms of the per-us



average achieved rewards because of their energy and cross-
layer awareness and their multiple channel access capabili
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