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Abstract—This paper proposes energy and cross-layer aware
resource allocation techniques that allow dynamic spectrum ac-
cess users, by means of learning algorithms, to locate and exploit
unused spectrum opportunities effectively. Specifically, we design
private objective functions for spectrum users with multiple
channel access and adaptive power allocation capabilities. We
also propose a simple, two-phase heuristic for allocating spectrum
and power resources among users. The proposed heuristic splits
the spectrum and power allocation problem into two sub-optimal
problems, and solve each of them separately. The spectrum
allocation problem is solved, during the first phase, using learning
whereas, the power allocation is formulated as an optimization
problem and solved, during the second phase, by traditional
optimization solvers. Simulation results show that energy and
cross-layer awareness and multiple channel access capability
improve the performance of the system in terms of the per-user
average rewards received from accessing the dynamic spectrum
access system.

Index Terms—Cross-layer resource allocation, dynamic spec-
trum access, distributed resource sharing, private objectivefunc-
tions, cognitive radio networks.

I. I NTRODUCTION

Dynamic Spectrum Allocation (DSA) [1] has been one
of the hot topics in wireless communications in the last
decade due to its potential for improving spectrum utilization
efficiency, thus addressing the spectrum shortage problem.
DSA has been an important catalysis for numerous research
works, ranging from protocol design [2] to performance opti-
mization [3] and spectrum sensing techniques [4]. One of the
important factors in the design of efficient wireless systems
is power consumption. Power and energy awareness has been
generating continuous interest in the research community,as
the importance of reducing energy consumption is becoming
crucial not only in designing wireless systems, but also in any
engineering systems due to other factors such as environmen-
tal concerns (global warming, pollution, etc.) and increased
energy costs.

On the other hand, developing fully decentralized ap-
proaches is becoming more needed than ever due to the
complexity of these emerging wireless systems. Though it can
be very challenging to design them, decentralized approaches
scale well, as they typically incur little to no communication
and computational overhead while still performing relatively

well. Recently, an efficient distributed technique for spectrum
access and allocation based on learning was proposed [5].
The authors proposed a close-optimal, scalable, and highly
learnable objective functions that can be used for enabling
efficient DSA. Although the proposed technique is shown to
perform well in terms of throughput, it does not account for
power consumption.

In this work, we propose a joint dynamic multi-channel
spectrum access and adaptive power allocation techniques
that extend the technique proposed in [5] to account for
power consumption and cross-layer couplings. Specifically,
we develop learning-based, distributed energy and cross-layer
aware resource allocation techniques that allow DSA users,
by means of learning algorithms, to locate and exploit unused
spectrum opportunities effectively. A key challenge of this
work lies in how to propose an efficient algorithm that
exploits channel diversity to enhance performance, but without
suffering enormously from the added complexity of such an
exploitation. To tackle this challenge, we propose a two-phase
heuristic approach that combines learning and optimization in
a way that reduces the computational complexity while still
achieving good performances. The proposed heuristic splits the
spectrum and power allocation problem into two sub-optimal
problems, and solve each of them separately. The spectrum
allocation problem is solved using learning algorithms during
the first phase, whereas the power allocation is formulated as
an optimization problem and solved by traditional optimization
solvers during the second phase. Our simulation results show
that the proposed energy and cross-layer aware techniques
coupled with the multiple channel access capability improve
DSA performances by increasing the per-user average rewards
that users receive from accessing the DSA system.

The rest of this paper is organized as follows. We recall
in Section II the main results of [5]. Section III introduces
the proposed techniques. In Section IV, we present our for-
mulation to the DSA resource allocation problem, discuss
the complexity challenge of the proposed DSA technique,
and present the proposed suboptimal approach to be used to
overcome the complexity challenge. In Section V, we present
simulation results and discuss the performance of the proposed
approach under various different system parameters. Finally,



we conclude the paper in Section VI.

II. L EARNING-BASED DISTRIBUTED DSA

In this section, we briefly overview and describe the objec-
tive function proposed in [5] for completeness. For this, we
first begin by describing the problem setup, and then present
and illustrate the technique.

A. DSA Problem: Assumptions and Objective

NoroozOliaee et al. [5] investigate distributed resource
allocation techniques for large-scale DSA networks. They
consider a large-scale spectrum allocation problem withn
users all competing to accessm spectrum bands (n ≫ m),
where each user selects and uses one spectrum band among
the m available bands to carry out its data communication.
The interfering users, those that end up selecting the same
band, are assumed to share the spectrum band using a carrier
sense multiple access (CSMA) scheme [7]. An elastic traffic
model is considered where the intrinsic reward received by
each user is proportional to the amount of received throughput
provided that it exceeds a certain threshold,Rth. When the
received throughput drops below this threshold, the reward
drops exponentially. Explicitly, the reward received by user i
can be written as

ri(t) =







Vj

|si(t)|+1 if |si(t)|+ 1 ≤
Vj

Rth

Rthe
−β

(

(|si(t)|+1)Rth−Vj
Vj

)

otherwise,
(1)

whereVj is the capacity of bandj andsi(t) is the set of users
interfering with useri at time t.

The goal in [5] is then to design private objective functions
that can be used, with any learning algorithm, to maximize the
rewards that users receive from accessing the DSA system. The
objective function is derived with four design goals in mind:
it should allow users to achieve high rewards (optimality),it
should be implementable in a distributed manner (distribu-
tivity), it should enable users to locate and find spectrum
resources quickly (learnability), and it should be performwell
for both small and large numbers of users (scalable).

B. The Difference Objective Function

To design an efficient objective functiongi for a useri that
meets the above four design requirements, the authors start
by analyzing the performance of two obvious and intuitive
objective functions. The first consists of simply taking the
intrinsic reward as the objective function (gi = ri for each user
i), whereas the second consists of using the global network
reward as the objective function (gi =

∑n

k=1 rk(t) for each
user i). The intrinsic reward function choice results in an
oscillating behavior of the performance with rapidly increasing
and decreasing slopes. This behavior is due to the selfish nature
of the intrinsic objective function, which does not take other
users’ actions into account when deciding on what actions a
user i should take. On the other hand, the global objective
function choice results in a much steadier behavior where the

performance increases but at very low rate. This is due to
the insensitivity of the function to the user’s action. Thus,
a good objective function should balance between the two
conflicting requirements:i) accounting for each other’s actions
when taking one’s own actions to ensure objective alignment
among users andii) being sensitive to one’s own actions to
increase users’ learnability. The authors proposed to use an
objective function that strikes a good balance between these
two requirements. The basic idea lies in that removing the
effects of all other users from the global objective gives us
an objective function with higher learnability than the global
objective function but while still ensuring objective alignment
among users. Essentially, this function, referred to asdifference
objective function, measures useri’s contribution to the total
system received rewards, making it more learnable without
compromising its alignedness quality. Formally, the difference
function can be written as

Di(t) =

n
∑

k=1

rk (sk(t))−

n
∑

k=1,k 6=i

rk (sk(t)− {i}) (2)

For the sake of illustration, we simulate, evaluate and
present in Fig. 1 the performance of the difference function
Di and compare it against those of the two other functions:
intrinsic ri and globalG(t) =

∑n

k=1 rk(t). Observe that the
Di function outperforms the other two significantly in terms
of both optimality (it achieves high rewards) and learnability
(it reaches up to high rewards very quickly). This objective
function allows users to achieve around 90% of the maximal
possible reward in less than 100 time episodes. In addition,it
can be computed in a distributed manner when the network
is fully connected. In the case of fully connected networks,
Di of useri (Eq. (2)) can be simplified to a function of only
the number of interferers to that useri. That is,Di can be
expressed as

Di(t) = (|si(t)|+ 1) ri (si(t))− |si(t)| ri (si(t)− {i}) (3)

III. T HE PROPOSEDREWARD FUNCTION: POWER AND

CROSS-LAYER AWARENESS

Unlike [5] where each user is only allowed to select and
communicate over one channel band, we assume in this work
that each user is allowed to select (for example by means of
a multicarrier scheme) and use more than one channel band
to communicate. In addition, this work also employs power
control to reduce energy consumption, a factor that has not
been taken into consideration in previous works. In this work,
we also use channel gains to compute the received throughput,
allowing us to evaluate and analyze the performance under
various channel conditions.

We consider a network topology that consists ofn users
(each user, also sometimes called agent, here refers to a
transmitter-receiver pair) sharingm non-overlapping spectrum
bands. We consider an Orthogonal Frequency-Division Multi-
ple Access (OFDMA) system; we then divide each spectrum
band into l equally distant sub-bands, wherel is selected
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Fig. 1. Performance of the single band allocation with different private
objective functions with the following system parameters:n = 500, m =

10,V = 20, R = 2, andβ = 2.

to guarantee orthogonality between sub-bands. We denote by
g
(j)
i (t) the power of the instantaneous channel gain between

useri’s transmitter and receiver in thejth channel sub-band.
One contribution of this work is to express the reward

function explicitly in terms of the channel gains and allocated
power. LetBj be the bandwidth of each channel sub-band.
Bjs are selected such that the channel gains are constant over
each channel sub-band. The throughput of useri at instantt
is expressed in terms of the allocated power per bandP

(j)
i (t)

as

Ri(t) =

ml
∑

j=1

Bja
(j)
i log2

(

1 +
g
(j)
i (t)P

(j)
i (t)

N0Bj

)

(4)

wherea
(j)
i is the user-band occupation mapping index (i.e.,

a
(j)
i = 1 if user i uses bandj and a

(j)
i = 0 otherwise), and

N0 is the noise power level.
Thus, similarly to Eq. (1), the reward of useri at instantt,

ri(t), can be expressed as

ri(t) =

{

Ri(t) if Ri(t) ≥ Rth

Rthe
−β

(

Rth
Ri(t)

−1
)

otherwise

As done in [5], three types of reward functions are studied in
this work to show the effectiveness of our proposed technique:

• Intrinsic reward (selfish behavior). The reward for each
user is equal to its own reward

gi(t) = ri(t)

• Global reward (cooperative behavior).The reward for
each user is equal to the sum of all users’ rewards.

gi(t) = G(t) ,

n
∑

k=1

rk(t)

• Difference function reward. In this reward type, each
user aims to maximize the difference function described
in Section II-B. That is,

gi(t) = Di(t)

whereDi(t) is given in Eq. (3).

It is worth iterating that the difference between the three
reward functions proposed in [5] and those proposed and
studied in this work is three-fold: One, our proposed objective
functions are cross-layer aware in that the reward a user
receives depends on power level and channel characteristics
(this is provided via Eq. (4)). Two, our proposed techniques
are energy-aware in that the channel selection method (to be
described later) accounts for power consumption of users via
adaptive power control. Three, each user is allowed to access
and use more than one spectrum band at the same time; that
is, users have multi-channel access capabilities. Therefore,
throughout the remaining of the paper, we will refer to our
proposed techniques asenergy and cross-layer aware objective
functions to distinguish them from those proposed in [5].

IV. JOINT SPECTRUM AND POWER ALLOCATION

The joint spectrum and power resource allocation problem
can be formulated as

max
{a

(j)
i

,P
(j)
i

}

n
∑

i=1

ri(t)

S.t 0 ≤ P
(j)
i ≤ P

(j),max

i i ∈ {1...n}, j ∈ {1...ml}
ml
∑

j=1

a
(j)
i P

(j)
i ≤ Pmax

i i ∈ {1...n}

0 ≤

n
∑

i=1

a
(j)
i ≤ 1 j ∈ {1...ml}

1 ≤

ml
∑

j=1

a
(j)
i ≤ mmax

i i ∈ {1...n}

(5)
wherePmax

i is useri’s maximum transmit power,P (j),max

i

is the maximum allowed power per sub-bandj for useri, and
mmax

i is the maximum number of used sub-bands for useri.
In this problem, the objective is to maximize the total reward

obtained by all users while respecting some constraints. The
two first constraints concern energy consumption: the first is a
budget power per user and the second is a maximum power per
band which can serve to limit the generated interference. The
third constraint guarantees non-interference between users as
only one user is allowed to access each sub-band while the last
constraint can be used to reduce the multi-carrier complexity
by limiting the number of used sub-bands per user.

A. Complexity Challenge of the Learning Algorithm

Our proposed approach consists of extending the technique
proposed in [5] to account for power consumption when
allocating spectrum resources among users. We therefore eval-
uate our proposed technique while using the same learning
algorithm that has been used in [5] (i.e., Q-learner [6]).



Accounting for power resources when allocating spectrum
resources, though increases the spectrum efficiency as willbe
seen later, comes at a cost. The additional degree of freedom
with the possibility of allocating different power levels on
multiple channel sub-bands makes the resource allocation
optimization problem a mixed integer programming (MIP)
problem. Instead of searching in one allocated band per user
(m possibilities per user), the new unknown variable is a vector
of l×m scalars (power allocated per sub-band) which can take
mmax

i
∑

j=0

(

ml
j

)

Lj
i possibilities, whereLi is the number of non-

zero possible power levels for useri. This quantity is upper-

bounded by
ml
∑

j=0

(

ml
j

)

Lj
i = (Li+1)ml sincemmax

i ≤ ml.

Given that the complexity of the learning algorithm is pro-
portional to the search space of the unknown variables, this
complexity is exponential on the number of channels, making
it impractical for large systems. In addition, the discreteness
of the power levels affects considerably the performance of
the power allocation. For instance, increasing the number of
levelsLi gives more freedom in allocating the power among
used channel bands, which improves the performance, but on
the other hand, increases the computational complexity also.

Therefore, in what follows, we propose a less complex, but
sub-optimal approach for solving this problem.

B. Disjoint Channel and Power Allocation

To overcome the complexity issue of the learning algorithm,
we propose, instead, a two-phase algorithm that consists of
first using learning to determine channel-allocation mapping,
and then solving the optimization problem formulated above
to determine the best power allocation.

1) Learning-Based Channel Allocation: In this phase, we
apply the Q-learner to find the best set of channel bands.
Specifically, the best set of channel bands corresponds to
the available sub-bands with maximal values in the Q-table.
The available sub-bands are to be determined using a sensing
phase that allows users to determine distributively whether a
channel sub-band is used by other users or a primary user
in case of cognitive systems. Taking into consideration the
constraint on the maximal number of allowed bands per user,

the total number of possible sets is
∑mmax

i

j=0

(

ml
j

)

. This

quantity is bounded from above by2ml (sincemmax
i ≤ ml

and
∑ml

j=0

(

ml
j

)

= 2ml). The considerable decrease in the

search space during this first learning phase will result in
a notable reduction of the computational complexity of the
Learning algorithm .

2) Power Allocation Optimization: Having the channel sub-
bands to be allocated to each user after the first phase, the
problem of determining the allocated power per sub-band
for each user can be formulated as a constrained convex
optimization problem. In this sub-problem, the sub-bands
allocation indexes{a(j)i } are known and the objective for each

user is to determine the power to be allocated for each used
sub-bandP (j)

i . The optimization problem for each useri is
formulated as

max
{P

(j)
i

}
a
(j)
i

=1

ri(t)

S.t 0 ≤ P
(j)
i ≤ P

(j),max

i j ∈ {1...ml/a
(j)
i = 1}

ml
∑

j=1

a
(j)
i P

(j)
i ≤ Pmax

i

(6)
In ordinary resource allocation problems where the reward

ri(t) is exactly the throughputRi(t), the solution to this
problem can be found explicitly using a water-filling algorithm
[9]. While in this problem, due to the elastic reward function,
the optimization can not be solved analytically but it can be
solved numerically using an ordinary optimization tool.

V. SIMULATION RESULTS

We consider an uplink cellular network wheren = 100
users are generated randomly inside a circular cell of radius
d = 1 Km. The base station (receiver for all users) is located
in the center of the cell. The channel gains are generated
according to a Rayleigh distribution [10] of mean power equal
to the distance-based pathloss (1

dη ) with a pathloss exponent
η = 3. m = 10 spectrum bands are considered andl = 50
sub-bands for each band (i.e., a total of 500 sub-bands). The
budget power per user is taken asPmax

i = 20 dBm while no
maximum power per band is forced.

In Fig. 2, we show the performance (in terms of the per-
user/agent average received rewards) of our proposed energy
and cross-layer aware objective functions with multiple chan-
nel access and adaptive power allocation capabilities, and
compare it with that achieved under the difference reward
function Di as proposed in [5]. For a fair comparison in
terms of the available amount of service, we consider that
the amount of service offered by a band depends on which
user is using the band. LetV (j)

i denote the amount of service
offered by a bandj to useri; V

(j)
i can be computed using

Eq. (4) withPi(j) = Pmax
i for a fair comparison in terms of

the power consumption. We observe that the multiple channel
allocation/access capability enhances the performance when
compared with the single channel access by increasing the
obtained average reward. This increased reward is a direct
result of the benefit from the exploitation of channel diversity
using this multiple channel access. In the proposed model,
users are free to allocate more than one channel to maximize
their reward. In addition, the proposed model allows the
control of the energy consumption through the added power
constraints.

Fig. 3 shows the performance obtained under each of the
three studied functions when enabled with multiple bands
access and adaptive power allocation capabilities. This figure
confirms the conclusions drawn in [5] on the efficiency of the
difference objective function in achieving better performance
than the intrinsic and global objective functions when enabled
with our proposed cross-layer and energy aware features.
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Fig. 2. Impact of multi-band spectrum access and adaptive power allocation
capabilities on the achievable performance under the difference objective
function.
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Fig. 3. Impact of multi-band spectrum access and adaptive power allocation
capabilities on the achievable performance under the three studied objective
functions:gi, G, andDi.

In Fig. 4, we plot the performance of the proposed energy
and cross-layer aware techniques with multiple channel access
and adaptive power allocation capabilities for two different
network topologies by varying the cell radius. First, we
observe that the difference objective functions outperform the
other two regardless of the network topology. Also, note that
this performance amelioration increases as the cell radius
decreases. This is simply because the reward is asymptotically
inversely proportional to the distance.

In Fig. 5, we study the scalability of the proposed techniques
by plotting the average achieved reward as a function of the
number of users in the network. The figure shows that as
the number of users increases, the per-user average received
rewards go down rapidly. This is regardless of the used
objective functions and regardless of the number of channels
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Fig. 5. Scalability study of the protocol: effect of increasing the number of
users on the protocol performance.

a user is allowed to use.

VI. CONCLUSION

This paper proposes learning-based, cross-layer and en-
ergy aware resource allocation techniques with multi-channel
spectrum access and adaptive power allocation capabilities. It
also proposes a heuristic for allocating spectrum and power
resources among users. The proposed heuristic overcomes
the complexity issues by splitting this resource allocation
problem into two sub-optimal problems, spectrum allocation
problem and power allocation problem, and solves each of
them separately. The spectrum allocation problem is solved
using learning methods whereas, the power allocation one
is formulated as an optimization problem and solved by
traditional numerical methods. Our simulation results show
that proposed techniques perform well in terms of the per-user



average achieved rewards because of their energy and cross-
layer awareness and their multiple channel access capability.
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