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Abstract—Consolidating virtual machines (VMs) on as few
physical machines (PMs) as possible so as to turn into sleep
as many PMs as possible can make significant energy savings
in cloud centers. Although traditional online bin packing
heuristics, such as Best Fit (BF), have been used to reduce
the number of active PMs, they share one common limitation;
they do not account for VM release times, which can lead to an
inefficient usage of energy resources. In this paper, we propose
several extensions to the original BF heuristic by accounting
for VMs’ release times when making VM placement decisions.
Our comparative studies conducted on Google traces show that,
when compared to existing heuristics, the proposed heuristic
reduces energy consumption and enhances utilization of cloud
servers.

Index Terms—Resource allocation, cloud computing, energy
efficiency, VM Placement, Google traces.

I. INTRODUCTION

Energy efficiency is a problem of a primal concern in
cloud centers. Cloud providers are seeking every possible
opportunity to save energy as the electricity bills associated
with running cloud centers are in the order of billions of
dollars per year [1]. There are also increasing environmental
concerns about reducing energy in large data centers after
reporting that the information technology is responsible for
2% of the global carbon emissions [2]. These financial
and environmental concerns motivated researchers to find
efficient ways to save energy in cloud centers.

A cloud center is made up of a huge number of servers,
often referred to as physical machines (PMs). Cloud clients
may, at any time, submit a request to the cloud cluster
specifying the amount of resources they need. Upon receiving
a request, the cloud scheduler creates a virtual machine (VM)
for the requested resources and assigns it to a PM. The VM is
reserved for a certain period, called the execution time, after
which it is released. The virtualization technology allows
scheduling multiple VMs on the same PM. This multiplexing
capability brings a very effective way to save energy called
VM consolidation which is based on the idea of packing
the received VMs in as few active PMs as possible, thereby
saving energy by putting to sleep as many redundant PMs as
possible.

Previous work [3, 4] treated the problem of how to make
efficient VM consolidation decisions as an online Bin Pack-
ing optimization problem, which views VMs as objects and
PMs as bins and where the objective is to pack these objects
in as few bins as possible. The problem is known to be NP-
hard [3], and thus approximation heuristics were proposed [5]

instead. Experiments showed that the Best Fit (BF) heuristic
is one of the most effective approximation heuristics for this
problem [6]. Its main limitation, however, is that it does
not account for VMs’ execution times (and thus for their
release times) when making placement decisions, leading to
inefficient cloud resource usage.

Fig. 1 (a) shows an example of such an inefficient place-
ment made by the BF heuristic for four VMs where the
indices reflect the chronological order of the submission of
these VMs (i.e. V7 was submitted before V5 and so on). The
amount of requested resources for Vi, V5, V3 and Vj is:
55%, 50%, 40% and 45%, respectively, and the time after
which these VMs will be released is: 3, 15, 10 and 4 hours,
respectively. Both of the PMs (P, and P;) each has a unit
capacity. Observe that although V; and V; will be released
shortly, the two PMs P; and P, will still be kept ON to
accommodate the remaining VMs. In fact, they can be turned
to sleep only after their last hosted VM is released. The
placement shown in Fig. 1 (a) is clearly not energy efficient
over time as P} and P» will be left ON for long periods with
low utilization.

Researchers were alerted to the fact that termination of
VMs at varying times will lead to a large number of ON
PMs with sparse workload. Previous work [7] addressed this
by performing periodic VM-PM remapping where some VMs
are migrated to be consolidated on few PMs, allowing the rest
to be turned to sleep. The main problem with this approach
is that VM migration does not come for free in terms of
performance degradation and energy overhead [8].

Rather than using remapping techniques to address the
inefficient initial placements made by the traditional BF
heuristic, we propose enhancing this heuristic by considering
also the execution time of VMs (and thus their release times)
when making placement decisions. Our enhanced heuristic
produces a placement such as that in Fig. 1 (b) where VMs
with short execution times are assigned to P;, allowing it to
turn to sleep after 4 hours and thus leaving a single PM ON
with high utilization.

Very few works took the release time of VMs into ac-
count when making placement decisions. The authors in [9,
10] suggested a release-time aware heuristic that places a
submitted VM V; on a PM P; only if the difference in the
release time between V; and all the VMs hosted on P; is
less than a certain threshold. If multiple ON PMs meet this
condition, then the one with the least slack is selected. A
new PM is switched from sleep to accommodate V; if no



already ON PM satisfies this condition. The main problem
with this approach is that its performance is highly sensitive
to the selected threshold and there is no automatic way to
find an appropriate threshold. The main advantage of our
heuristic over prior release-time aware heuristics [9, 10] is
that it is parameter free. Throughout the paper, we refer to
the heuristic proposed in [9, 10] by threshold-based heuristic.

To sum everything up, the main contribution of our work is
in proposing extensions to the BF heuristic that consider also
the release time of requests in order to produce more energy
efficient placements over time. Our heuristic is parameter free
which makes it more practical to use compared to threshold-
based techniques whose performance is highly dependent on
the selected threshold.

Comparative studies conducted on real Google traces show
the effectiveness of our heuristic compared to the original BF
heuristic and to the prior release-time aware heuristics [9, 10]
in terms of reducing the number of active PMs and saving
energy. The assumption in this paper is that the time when
the VM will be released is know at the submission time. This
information can be directly specified by the client or can be
predicted based on the nature of submitted VM task as in
[11] or based on client’s historical behavior.

The remainder of the paper is organized as follows. Section
IT describes our extensions for the BF heuristic. Section III
presents our evaluation results conducted on Google traces.
Section IV concludes the work and provides directions for
future work.
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Fig. 1: Placement decisions for a) BF heuristic b) proposed
release-time aware BF heuristic.

II. RELEASE-TIME AWARE BF HEURISTIC

Let P be the set of all PMs in the cloud cluster where
each PM P; € P has a certain CPU capacity C';. Suppose
that client ¢ submits at time s; a VM request in the form of
(w;, d;), where w; is the amount of requested CPU resources
and d; is the duration for which these resources are needed.
Since the submitted request needs to be scheduled immedi-
ately, then the release time of this request is: r; = s; + d;.
Let N; denote the set of all VMs that are currently hosted
on P;. Then the aggregate used resources for any PM P; can
be calculated as: U; = 3,y wi.

The original BF heuristic attempts to reduce the number of
active PMs by switching a new PM ON to host the submitted
request only if the submitted request cannot be fitted in any
of the already ON PMs. If multiple already ON PMs have
enough slack to host the request, then the request is placed

on the one with the least slack, where the slack for P; is
defined as S; = C; — U;.

After describing how the BF heuristic works, it is clear

that the execution times of VMs (and thus their release times)
are completely ignored during the placement decisions. We
extend the classical BF heuristic by taking into account VMs’
release times in order to reduce the number of active PMs
over time. Our extension consists basically of introducing
and using a new metric (different from the slack) when
making preference among multiple ON PMs that can fit
the submitted request. Our proposed metric combines the
following components:
a)- Temporal Slack: Rather than merely calculating the slack
based on the current used resources, a natural extension of
the BF heuristic would be to add a time dimension and to
calculate the temporal slack throughout the whole execution
time of the new submitted VM. This will capture the amount
of left slack over time as some of the already hosted VMs
might be released within the execution time of the newly
submitted VM. Higher preference should be given to PMs
with lower temporal slack.

The following example illustrates the intuition behind the
temporal slack. Consider the case where there are only two
ON PMs (P; and P») each with a unit capacity. Assume that
P, already hosts V; and V5, where the reserved resources
for these VMs are 10% and 70%, respectively, and thus the
current used resources for P; is U; = 80%. Assume that
P, already hosts V3 and V; where the reserved resources for
these VMs are 25% and 50%, respectively, and thus U; =
75%. The time when all the hosted VMs will be released is
also known. Now Suppose that the scheduler received at time
s5 a request Vi to reserve ws = 15% and that this request
will be released at r5. The scheduler obviously has to choose
between P; and Ps.

The original BF heuristic places the received request on
P, as it has lower slack compared to P». The intuition here
is that by this placement, the newly used resources will be
Ui = 95% and Uy = 75% and thus we will be forced to
switch ON a new PM from sleep in the future only if a
request with w > 25% is received. Whereas if the request was
placed on P», the newly used resources would be Uy = 80%
and Us = 90% and in that case any request with w > 20%
would require turning a new PM ON. This shows the intuition
behind the original BF heuristic as it places newly submitted
requests on the PMs with the smallest slacks, leaving PMs
with the largest slacks for supporting future VM requests
with larger sizes.

However, we believe that the temporal slack would be a
better metric than merely the resource slack when choosing
PMs (e.g., choosing between P; and P»), especially when the
PM with the smallest slack (e.g., P;) has VMs that will be
released very soon. This can be explained by first showing the
temporal slack shaded in gray for P, and P, in Fig. 2 where
the vertical side represents the capacity of the considered
PM whereas the horizontal side represents a time window
that starts from s5 and goes until 5. The release time of the
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Fig. 2: The temporal slack shaded in gray for a) P; and b)
P

VMs is also indicated on the horizontal side if it falls within
s5 and r5. Observe that based on the indicated release times,
P5 has lower temporal slack than P; indicating that P is a
better place to host V5. The intuition behind this preference
is as follows. If V5 is scheduled on P, then a new PM will
be switched ON if we receive any request that has w > 25 in
the short period between s5 and 72 or if we receive a request
with w > 75 in the period between 75 and r5. Whereas if V3
is scheduled on Ps, then a new PM will be switched ON if
we receive a request with w > 20 in the short period between
s5 and ro or if a new request is submitted with w > 90 in
the remaining long period between r, and r5. So by placing
Vs on P, it is true that we cover smaller range of w at the
beginning short period but larger ranges can be supported
later for a longer period.

Formally, when considering a VM request V; whose CPU
demand is w; and whose start, release, and execution times
are s;, 73, and d; = r; — s;, PM P;’s temporal slack «a;; can
be calculated as:

a;; = Cjd; — Z wg (min{rg, r;} — $;)
keN;

Where the temporal slack «;; is measured in (CPUxTime)
unit.

b)- Uptime Extension: The uptime of PM FP;, termed 7;, rep-
resents the time after which P; becomes empty and hence can
be turned to sleep. That is, 7; is equal to the largest release
time of the VMs hosted on P; (7; = max{ry |k € N,}).
When selecting a PM for placing a VM request V; with
a release time r;, PMs whose 7 < r; should be avoided,
as doing so extends the PM’s uptime, thus prolonging the
duration after which the PM can be turned to sleep. If the
submitted request can only fit into one of these PMs, then
the one whose uptime will be extended the least should
be selected. Based on this discussion, we now introduce
and define the uptime extension metric of PM P; when
considering placing a VM request V; with a release time
r; as f;; = C; x max{0,r; — 7;}. The reason for including

the PM’s capacity C; in this term is to make the uptime
extension metric 3;; measured in (CPUxTime) unit similar
to the temporal slack metric. Now when selecting a PM for
placing the request V;, PMs with lower uptime extension
metric should be preferred over the rest of the PMs.

Now putting it all together, we introduce and use a
combined metric, referred to as +y;;, that combines both the
temporal slack metric, «;;, and the uptime extension metric,
Bij. The combined metric 7;; of PM P; when considering
placing a VM request V; is defined as v;; = oy + Gij.
The PM P; with the lowest v;; among those that can fit
the submitted VM V] is thus selected for placement.

Complexity Analysis: our enhanced heuristic has a com-
putation complexity similar to that of BF where the ON PMs
are first divided into those that can fit the request and those
that can’t and The PMs metrics are later compared in order
to find the PM with the least metric. The only difference
is in the calculated metric as for each ON PM that can
fit the request, our heuristic calculates the temporal slack
and the uptime extension rather than merely calculating the
current resource slack as in the BF heuristic. However, this
can be calculated directly by plugging the release times of the
VMs and the capacity of the PM in the previously presented
equations. There is also a storing overhead as our enhanced
heuristic requires storing the release time of all the currently
hosted VMs. However, this extra overhead is very small for
large cloud clusters and leads into great energy savings and
utilization gains as we will be seen in the following section.

III. COMPARATIVE EVALUATION

The comparative evaluations presented in this section are
based on real Google cluster data [12] that was released in
November 2011 and consists of a 29-day traces collected
from a cluster that contains more than 12K PMs. Three
types of PMs are distinguished in the cluster in terms of the
supported CPU capacity. Table I shows the number of PMs
for each one of these types along with their CPU capacities
normalized with respect to the PM with the largest capacity
in the cluster. Since the size of the Google traces is huge,
we only limit our analysis to a chunk of the traces that
spans 30 hours. We evaluate how efficient the placements
made by our heuristic are when considering all requests
submitted within this period. For each VM request, the traces
reveal the submission time, the release time and the requested
CPU resources reported as a percent of maximum supported
capacity in the cluster.

TABLE I: Configurations of the PMs within the Google
cluster

Number of PMs | CPU Capacity

798 1.00
11658 0.50
126 0.25

We compare the placements made by our heuristic with
those made by the following 3 heuristics: Any Fit (which
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Fig. 3: Number of ON PMs over time when different heuris-
tics are used to place the requests submitted to the Google
cluster.

picks an ON PM at random among those that can fit the
request), Best Fit, and the threshold-based heuristic proposed
in [9,10]. Since the performance of the threshold-based
heuristic is dependent on the selected threshold and since
there is no automatic way to tune that threshold, we evaluate
this heuristic on the whole 30-hour traces using different
threshold values. We report in our evaluation the results
of the threshold that used the least number of PMs during
the whole 30 hours. This represents the best-case scenario
and so we refer to it by the threshold-based heuristic (best
case). It is worth mentioning that during our evaluation, we
observed that the performance of this heuristic exhibits high
variation/sensitivity to threshold values, which is one its key
limitation.

For all of the evaluated placement heuristics, when the
request can’t be fitted in any already ON PMs, the PM in
the sleep state with the largest capacity is switched ON
to accommodate the received request. The intuition behind
selecting the PM with the largest capacity is that it allows to
fit a larger number of requests in the future. In our evaluation,
we adapt a power management scheme that turns a PM to
sleep once it becomes idle. More advanced predictive power
management schemes (e.g. [13]) can be also combined with
our placement heuristic where idle PMs that will be needed in
the near future are kept ON to avoid the switching overhead,
making greater energy savings.

We present next our heuristic comparative analysis in terms
of the number of active PMs, utilization gains, and energy
savings.

A. Number of Active PMs

We analyze first the number of PMs that were left ON
to accommodate the received requests since it has a direct
impact on the amount of consumed energy. Fig. 3 shows
this number based on the submitted VM requests reported
in the 30-hour period of the Google traces when different
heuristics were used for placement. Observe that Any Fit
heuristic had the worst results as it used the largest number
of PMs to accommodate the received VM requests. This
shows that randomly selecting one of the ON PMs to host
the submitted request leads to inefficient VM placements.
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Fig. 4: Average Utilization over time when different heuris-
tics are used to place the requests submitted to the Google
cluster.

Observe that by selecting the ON PM with the least slack, the
Best Fit heuristic uses lesser number of PMs when compared
to Any Fit. However, the threshold-based heuristic under
a well-tuned threshold uses lesser number of PMs when
compared to Best Fit and Any Fit as it takes the release
time of VMs into account when making new placements.
Observe that our proposed heuristic used the least number
of PMs all the time when compared to all other heuristics
(including the threshold-based heuristic in its best case), as it
takes the release time into account in its placement decisions
by using a metric that combines both temporal slack and
uptime extension.

B. Utilization Gains

We analyze next the utilization gains that can be achieved
by our heuristic when compared to the other placement
heuristics. The utilization of a PM P; referred to as v; can
be calculated as v; = U;/C;, where U; is the aggregate
reserved resources for all VMs hosted on P; and Cj is P;’s
CPU capacity.

Let P,,, denote the set of ON PMs in the cluster. Then the
average CPU utilization v4,4 can be calculated as:

> jep,, Vi
|Pon|

where |P,,| represents the number of ON PMs.

Fig. 4 shows the average CPU utilization v,,, for the
different heuristics over time. Observe that our heuristic
achieves the highest average utilization among all the other
heuristics at all time. This shows that our heuristic packs
the submitted requests tightly, resulting in increasing the
utilization of the ON PMs, and thus, in reducing the need
for switching new PMs ON.

Vavg =

C. Energy Savings

We assess next the energy savings that our heuristic
achieves by relying on the energy costs reported in [14] in
our energy evaluations. As for the power consumption of
ON PMs, the power increases linearly as the PM’s CPU
utilization level increases. The power of an ON PM, P;’”,
as a function of v; can be calculated as P{"(v;) = P +
v;(PPeak — pidiey where Pl is the consumed power under
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Fig. 5: Total Energy Costs for running the Google cluster
under different placement heuristics (normalized w.r.t. Any
Fit costs).

zero utilization, which is set to be equal to 200 Watts. preak
is the consumed power at the peak load and is set to be equal
to 400 Watts. A sleeping PM, on the other hand, consumes
about P*'*P = 100 Watts. The transition energy consumed
when switching a PM from sleep to ON is E,_,, = 4260
Joules, and that when switching a PM from ON to sleep is
FE,_.s = 5510 Joules. These energy/power numbers are taken
from [14].

We calculate the total energy to run the cluster under the
different placement heuristics where the total energy is the
summation of the energy consumed by both ON and sleep
PMs in addition to the switching energy (from sleep to ON
and vice versa). Fig. 5 shows these total costs throughout the
whole 30-hour period normalized with respect to the total
energy cost of Any Fit heuristic. Observe that the release-
time aware heuristics (our approach and the threshold-based
heuristic) achieve great energy savings when compared to
the classical Bin packing heuristics (Any Fit and Best Fit).
Observe that our heuristic achieves the highest energy sav-
ings when compared to all other heuristics, including the
Threshold-Based heuristic in its best case scenario. It is worth
mentioning that when trying the threshold-based heuristic
using different threshold values, some of these threshold
values achieve no energy savings when compared to the Best
Fit and some even achieve worse results than the Best Fit.
We also show in our comparative studies that our heuristic
achieves better results when compared to the threshold-based
heuristic in its best case.

IV. CONCLUSION AND FUTURE WORK

We have extended the Best Fit heuristic to consider also
the release time of VMs when making placement decisions.
Comparative studies conducted on real Google cluster traces
show that our proposed heuristic reduces significantly the
number of active PMs, resulting in great energy savings
and utilization gains when compared to previously proposed
placement heuristics. For future work, we plan to general-
ize the proposed heuristic to handle requests with multiple
resources such as CPU, memory and bandwidth. Another
interesting direction would be to predict release times of
submitted requests based on historical traces in the case when
VMs’ release times are not specified by the client.
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