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Abstract—In this paper, we design, implement, and evaluate
a resource allocation protocol for distributed dynamic spectrum
access (DSA). This protocol, based on learning techniques, en-
ables users to locate and exploit unused spectrum opportunities
effectively. It relies on private objective functions in order to
allow users to maximize their achieved reward/throughput from
accessing the DSA system. This protocol, implemented and
tested using ns3, considers that users ending up selecting the
same spectrum band share the band equally among themselves
by means of a carrier sense multiple access (CSMA) scheme.
We use ns3 to implement our proposed protocol, thus allowing
us to evaluate its performance while taking into account various
practical implementation aspects and constraints, such as packet
collision due to medium access contention, traffic overhead
due to information sharing among users, and errors due to
estimation models. Using simulations, we show the impact
of several practical aspects on the performance of proposed
protocol.

Index Terms: Distributed dynamic spectrum access, proto-
col design, learning and adaptive techniques, private objective
functions, carrier sense multiple access.

I. INTRODUCTION

In recent years, the success and emergence of wireless
technology witnessed a rapid increase in the number of
wireless devices, networks and applications, resulting thus in
an increased demand for bandwidth resources. This increased
demand in bandwidth led to a shortage in the wireless spec-
trum. On the other hand, reports from FCC [1] show that parts
of the spectrum are still under-utilized. As a result, dynamic
spectrum access (DSA) emerges as a potential solution for
overcoming the spectrum shortage problem. During the past
few years, significant research work has focused on DSA to
prevent unbalanced spectrum utilization [2], [3], [4] and [5].
For instance, Akyildiz et al. [2] propose techniques that aim
to help spectrum users to find good spectrum opportunities
quickly, thereby improving spectrum utilization efficiency.
Developing decentralized algorithms to promote DSA has
been a challenge for researchers. Distributed algorithms are
of a great paramount importance to DSA networks because
they scale well and require less coordination among spectrum
users.

Learning-based techniques [6] are shown to be good can-
didates for enabling distributed DSA, as they can easily be
implemented in a decentralized manner. These techniques do
not require users to have prior knowledge of the dynamics
and characteristics of the environment, yet can still achieve

good performances. There have been some efforts that aim to
use learning techniques to promote effective DSA [7], [8], [9]
and [10]. The focus of some of these works is on the
derivation of objective functions that enable DSA users to
assess, locate, and exploit unused spectrum opportunities
effectively. By doing so, they maximize the total average
rewards that the spectrum users can achieve in the long run.

NoroozOliaee et al. have, in [7] and [8], proposed and
analyzed a complete framework for distributed DSA based
on learning. In this work, they have considered an elastic
traffic model where users’ level of satisfaction is essentially
proportional to the amount of reward (e.g., throughput) they
receive from accessing the DSA system. A learning algorithm
(e.g. Q-learner [6]) can be applied by each user independently
to identify the best spectrum opportunities. The focus of this
work was to propose and analyze the performance of efficient
objective functions that can be used to maximize spectrum
users’ received rewards on the long run. The authors show
that the proposed objective function achieves near-optimal
performance while keeping a scalable complexity.

In this paper, we design and simulate a resource allocation
protocol for DSA networks based on the distributed tech-
niques proposed in [7] and [8]. We implement the proposed
protocol in ns3 [11] and evaluate its performance while
varying and studying the impact of various practical aspects
that arise from the nature and characteristics of the DSA
environment. The design and implementation tasks are very
challenging because the protocol must be implementable by
considering and accounting for the practical aspects of the
DSA system while also incorporating the key theoretical
concepts of the proposed techniques. Examples of practical
aspects that our protocol considers are: traffic overhead due
to control message exchanges, data collision arising from
the contention nature of the wireless medium, and erroneous
received reward/throughput estimation due to the unequal
sharing of spectrum resources among users.

The rest of this paper is organized as follows. In Section 2,
we revisit the theoretical system model and briefly describe
the main results. In Section 3, we describe the protocol design
and implementation method while paying special attention
to the implementation and practical aspects. In Section 4, we
evaluate the performance of the proposed protocol using ns3.
Finally, concluding remarks are given in Section 5.



II. SYSTEM MODEL

Consider a cognitive network with n secondary users
(SUs) sharing m data channels (DCs) obtained from an
equal division of the total available spectrum. Each DC is
associated with a number of primary users (PUs) that have
exclusive right to access it. So, upon the detection of any PU
activities, an SU must immediately vacate the DC. We refer
to any group of two or more SUs who want to communicate
together as an agent.

We assume a static and fully connected network. That
is, the SUs are assumed to enter and leave the system all
at the same time, and all each interferes with one another.
Each DC j offers an amount of service Vj (e.g., channel
bandwidth in Mbps). The SUs that select the same DC will
share it according to a carrier sense multiple access (CSMA)
scheme [12], and the amount of service/reward (e.g., received
throughput) is assumed to be shared equally among interfer-
ing users. An elastic traffic model is considered where the
SU reward increases proportionally to the amount of service
received from using the DC. But, it decreases exponentially
when the received service drops below a threshold R. The
instantaneous received reward for a user i that selected a DC
j is written as

ri(t) =


Vj

|Si(t)|+1 if|Si(t)|+ 1 ≤ Vj/R

R exp (−β
(|Si(t)|+1)R−Vj

Vj
) otherwise,

(1)
where Si(t) is the set of users interfering with user i and
β is a reward decaying factor. Each SU implements a Q-
learning algorithm [6] to find the best spectrum band for its
transmission. The objective is to design an efficient objective
function gi(t) that can be used by the learning algorithm to
maximize the users’ received reward.

Starting from observations made on the performance of
the two most obvious objective functions which are the
intrinsic reward (gi(t) = ri(t)) and the global reward
(gi(t) =

∑n
i=1 ri(t)), NoroozOliaee et al. in [7] proposed

an objective function representing the effect of only the user
itself on the global reward by taking out the effect of other
users. Explicitly, this objective function is written as

Di(t) =
∑

k:i∈Sk(t)

rk(Sk(t))−(
∑

k:i∈Sk(t)

rk(Sk(t)−{i}))+ri(Si(t))

(2)
In our context, this expression can be simplified profiting

from the fully connected network characteristics and the
equal share assumption as

Di(t) = (|Si(t)|+ 1)ri(Si(t))− |Si(t)|ri(Si(t)− {i}) (3)

In Fig. 1, it has been shown that this function achieves better
performance than the other two obvious reward functions.
In addition, this function can easily be implemented in a
decentralized manner as it depends only on the number of
interfering users.

III. PROTOCOL DESIGN AND IMPLEMENTATION

Our aim in this work is to design a DSA protocol, based
on the techniques described in Section 2 above, that enable
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Fig. 1. Per-agent average achieved reward under three objective functions:
R = 2, β = 2, Vj = 20 for j = 1, 2, ..., 10 and n = 300.

SUs to locate and use DSA opportunistically.

A. Protocol Description
The proposed protocol divides time into episodes. Each

time episode consists of three window durations: select
window (SelWin), data communication window (DCWin),
and update window (UpWin). Events occurring during each
of these phases are briefly described as follows:

• Select Phase:
Each SU stores a table Q (initialized to zero) containing
m elements which correspond to the available DCs. The
SUs use the epsilon-greedy strategy to pick their action
at each time step. It selects a random DC with probabil-
ity ϵ and chooses the best DC which corresponds to the
index of the highest value in the table Q with probability
1− ϵ. The SU uses the selected DC until the end of the
episode.

• Data Communication Phase:
All SUs turned to the same DC use CSMA as the access
method to share the DC for data communication. Each
SU has a random access time on the shared data channel
DC. It verifies the absence of other traffic (by other
users) before transmitting its packets using a feedback
from the receiver. If a carrier is sensed, the SU waits for
the transmission in progress to finish before initiating its
own transmission.

• Update Phase:
At the end of the DCwin, each SU i updates its Q-table
using the chosen objective function gi(t) as

Q(j) = (1− α)Q(j) + αgi(t), (4)

where j is the selected DC for user i. The challenge
consists of evaluating the objective function which, as
shown above, depends only on the number of interfering
users. Using the hypothesis of "equal share", the number
of interfering users can be estimated by dividing the total
amount of service offered by the band over the amount
of service received by the user (Vj/ ˆri(t)).



B. Implementation Challenge

In the protocol described above, it is clear that the most
challenging task lies in the evaluation of the objective func-
tion. In fact, the reward function can be written as a function
of the number of interfering users only under the assumption
of an exactly equal share of the band service among all
interfering users. But, in practice, a CSMA scheme results
in a random access of the interfering users, enabling users
to receive equal share on average, but users’ instantaneous
(at each time episode) shares may deviate from one another.
Thus, the received reward of each user can not be estimated
correctly, impacting the objective function as well.

For the intrinsic objective function, each user needs to
evaluate only its reward function. Thus, the estimation prob-
lem can be solved by using directly the measured throughput
as the received reward for that user. For the other objective
functions, rewards of the other users are required to be able to
compute the objective functions. While the global objective
function can be evaluated using a centralized system where
all users are assumed to exchange information about their
received throughput, the difference reward cannot be exactly
evaluated even when using a centralized approach, as the
second term of the expression involves a virtual expression
(by assuming the actual user is absent) which needs to be
estimated.

IV. PERFORMANCE EVALUATION

The performance of the proposed protocol is evaluated
using ns3. We consider the per-agent average received reward
at each time episode as the performance metric to evaluate
the effectiveness of the proposed protocol by measuring the
throughput for each node as:

r(t) =

∑n
i=1 ri(t)

n
(5)

A. Estimation of the Reward Function Parameters

In the elastic traffic model, the SUs’ received rewards are
expressed following Equation 7 as a function of the amount
of service (throughput), threshold R, and decaying factor β.
In order to estimate R and β, we set a CSMA scheme with
n nodes exchanging packets with an UDP (user datagram
protocol) echo server (the clients will receive from the server
what they sent to it) via one DC. We show for the sake
of illustration the reward ri as a function of the number of
nodes n. We repeat this data communication for multiple time
episodes and vary the number of nodes. We fix the global
capacity (Uplink and Downlink) to V = 20 Mbps. At the end
of the episode, each node measures the throughput it receives
for using the DC. In Fig. 2, we plot first the instantaneous
rewards received by the first node over different number of
interfering nodes and the average rewards over time. From
this figure, we deduce that each node does not receive a
throughput exactly equal to V/n but on average it is. The
difference of the received rewards between users sharing the
CSMA DC is due to the random access of the channel using

CSMA as explained earlier. Also, it can be shown that only
80% of the total capacity V of the DC (V̂ = 80%V ) is
exploited due to the overhead and the back-off algorithm (i.e.,
the nodes exchange Address Resolution Protocol (ARP) and
Internet Control Message Protocol (ICMP) packets).

The curve showing the average received reward over the
SUs is to be used to estimate the parameters R and β.
Thus, we get the analytical function of the average received
reward function of the number of interfering users. An
iterative algorithm can be implemented at the beginning of
the learning algorithm with sample data to estimate these
parameters.
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Fig. 2. Elastic reward function: analytic and simulation, V̂ /R=6.

B. Result Analysis

We simulate an UDP echo client server protocol. Each
SU (client) generates random sessions, each of size Z bytes
selected from a uniform distribution with mean Z and co-
efficient of variation δZ . The server sends what it receives
from the clients back to the clients. The packet length is set
to L bytes. We assume that PUs may return anytime to the
DC, and have priority to use their own DC upon their return.
We let mp denote the average PU load. Finally, we have to
choose the duration of each phase "Selwin", "Upwin", and
"DCwin". The parameters used in the simulation are shown
in Table I.

Now, we evaluate and compare the performances using the
difference objective functions gi = Di in terms of the per-
agent average achievable rewards against those achievable
using the intrinsic reward functions gi = ri.

In Fig. 3, we compare the performance using ns3 sim-
ulations to the theoretical performance given in [7]. Theo-
retically, even though the performance achievable with the
proposed objective function Di reaches as low as 60% of
the optimal achievable reward when n = 100, it is still
much higher than the performance obtained with the intrinsic
function, ri.



TABLE I
SIMULATION PARAMETERS.

Symbol Description Value
n number of SUs 100
m number of DCs 5
V Capacity of each DC 20 Mbps
L Length of packet 1250 Bytes

mp average load due to PUs 0%
ϵ Coeff. probability 0.05

R threshold V̂ /6
β reward decaying factor 2.5
α learning rate 0.5

Using the ns3 implementation, we observe different behav-
iors of the performance obtained when using the proposed
objective function Di. Note that using the intrinsic reward
function ri, the performance is even better than the theoretical
performance, profiting from the update of the Q-table with
the exact received throughput. The lack of synchronization
among users results in a time diversity which enhances the
performance obtained when using this objective function.

0 50 100 150
0

0.064

0.128

0.192

0.256

0.32

Episode

P
er

-a
g
en

t
av

er
a
g
e

re
ce

iv
ed

re
w

a
rd

 

 

Intrinsic measured ri (simul)

Proposed Di (simul)

Intrinsic ri (theo)

Proposed Di (theo)

Fig. 3. Per-agent average achieved reward as a function of time episodes t
under the two objective functions ri and Di: analytic and simulation results.

In Fig. 4, we compare performance achieved under the
proposed distributed protocol, as described in Section 3,
to that achievable under a centralized protocol where the
correct number of interferers is assumed to be known to each
user through server feedback. Thus, each node computes the
objective functions ri and Di of this received value using
Equations 3 and 7, and uses it to update its Q-table. We
observe that the performance achievable under ri is worse
than that under the measured throughput which confirms
our expectations on the effect of the estimated error; the
computed ri returns the average reward, which is different
from the instantaneous one. On the other hand, the exchange
of information helps improve the performance when using
the proposed objective Di, due to having the correct value
of the number of interferers.
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Fig. 4. Per-agent average achieved reward as a function of time episode t
computed using fully distributed and non-distributed algorithms.

C. Impact of PUs’ Activities

We now study the impact of the presence of PUs on the
performance of the protocol under the proposed Di function.
We run simulations for different values of the average PU
load, mp. We consider the performance of the protocol for
three network scenarios:

• mp = 0% on each DC. PUs are not present.
• mp = 30% on each DC. PUs are present, provided that

they generate a total traffic load of 30%.
• mp = 60% on each DC. PUs are present, provided that

they generate a total traffic load of 60%.
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Fig. 5. Per-agent average achieved reward with and without the presence
of PUs.

In Fig. 5, we show that the achievable rewards reach
zero when primary users are present, but quickly go up to
higher values as soon as the PUs leave their bands. Also,
as expected, when the PU traffic load increases, the total
achievable average reward decreases, since rewards will also
be taken away by the PUs themselves.



D. Adaptive Service Model

Now, we study an adaptive service model [10] that can be
used by SUs to compute the rewards they receive from using
the DSA system. This proposed service model complements
the objective functions by enhancing the amount of service
that each SU receives in the long run. We consider that
each agent i has a total required Level of Service (LoS),
Qtotal, that should be received by a given target time period
T . We assume that the required LoS at time step t, Qi(t),
changes adaptively based on the required LoS that has not
been received yet and the target period T . Formally,

Qi(t) =
Qtotal −

∑t
t′=1 Ai(t

′)

T − t
(6)

The reward of agent i, ri(t), at time t can be written as

ri(t) =

{
Ai(t) ifAi(t) ≥ Qi(t)

Qi(t) exp (−βQi(t)−Ai(t)
Ai(t)

) otherwise,
(7)

where Ai(t) denotes agent i ’s received LoS at time t.

0 50 100 150
0

0.064

0.128

0.192

0.256

0.32

Episode

P
er

-a
g
en

t
av

er
a
g
e

re
ce

iv
ed

re
w

a
rd

 

 

Fixed Di (simul)

Adaptive Di (simul)

Fixed Di (theo)

Fixed Di (theo)

Fig. 6. Per-agent average achieved reward: adaptive and fixed model.

In Fig. 6, we depict the performance of the proposed
protocol in terms of the per-agent/SU average achieved
reward when using the adaptive and fixed models. The figure
shows, for each model, the theoretical and simulated results.
We observe that the simulated adaptive model outperforms
the fixed model under the objective function Di.

V. CONCLUSION

In this paper, we designed a protocol for distributed DSA
systems. The efficiency of the proposed protocol is evaluated
using ns3. The simulation results show that the theoretical
model does not consider some practical aspects of real net-
works since it does not assume the overhead of information
sharing among users, the duration of selection and update
phases, the collision between packets and especially the
inequality of the received throughput among interfering users.
All these factors impact the performance of the proposed
protocol and thus should be taken into consideration.
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