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Abstract—The virtual network embedding (VNE) problem
is known to be NP-hard, and as a result, several heuristic
approaches have been proposed to solve it. These heuristics find
sub-optimal solutions in polynomial time, but have practical
limitations, low acceptance rates, and high embedding costs.
In this paper, we first propose two heuristics that exploit the
constraint propagation properties of the VNE problem to ensure
both topological and capacity disjoint consistencies, thereby
avoiding backtracking while increasing acceptance rates. Then,
combining these two heuristics, we design a polynomial-time
VNE algorithm (we term it BIRD-VNE) that, in addition to
avoiding backtracking and increasing acceptance rates, incurs
a low embedding cost when compared to existing approaches.

I. INTRODUCTION

Network virtualization emerges as a key technology essen-
tial for the success of cloud computing [1]. In general, cloud
service providers that adopt the Infrastructure as a Service
(IaaS) model rely on virtualization to offer multiple virtual
network instances, all embedded into their underlying substrate
networks, to multiple different customers. Moreover, with the
emergence of the Internet of Things paradigm, cloud-based
sensing approaches are foreseen to evolve beyond conventional
sensing techniques [2], [3], thereby offering new forms of
services. Remote sensing is an example of such new services,
which is to be enabled by distributed sensory devices. Network
virtualization will play a vital role for promoting these new
services [4].

Virtual Network Embedding (VNE) is an important re-
source management technique in network virtualization. In this
context, a typical cloud service provider receives a number of
virtual network requests, where each request consists of a set
of virtual nodes, each demanding a certain CPU processing
capacity, and set of virtual links connecting these nodes, each
demanding a certain bandwidth capacity. One key challenge
associated with VNE is resource allocation; that is, embedding
as many virtual networks as possible while meeting resource
demands (both CPU and bandwidth) of all embedded networks.

The effectiveness of VNE can be seen from many per-
spectives, from meeting contracted SLAs, to maximizing eco-
nomical profit, to minimizing energy consumption, to ensuring
secrecy and quality of service. Another important metric for
measuring the effectiveness of a VNE technique is complexity.
The VNE problem is known to be NP-hard [5], and the need
for polynomial time algorithms is crucial for the success of
network virtualization technology.

The recent survey by Fischer et al. [6] presents ongoing
and future VNE research efforts and a detailed classification
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of VNE algorithms. In [7], the VNE problem is formulated as
an integer linear program with different objective functions,
and solved using backtracking. Lischka et. al. [8] also use
backtracking to solve the VNE problem but by formulating it
as a graph isomorphism. A major problem with backtracking
is that it has an exponential time complexity [9]. In an
effort to address complexity, [8] propose to terminate the
VNE algorithms when their execution times exceed a defined
threshold without bounding the incurred embedding cost.

Heuristic and stochastic algorithms [10] are also proposed,
which find sub-optimal solutions but with lesser complexity
(polynomial time). For example, in [11], the authors formulate
two stage coordinated node and link mapping problems as
two mixed integer programming problems, and use rounding
relaxation to find near-optimal solutions without rigid upper
bounds on the incurred cost. Moreover, in the worst-case
scenario, where the virtual network size is comparable to the
substrate network size, the time complexity of this algorithm
becomes O(n14 b2 ln b ln ln b) where n is the number of
substrate nodes, and b is the number of input bits to the linear
program [11].

In this paper, we propose an approximation, backtrack-
avoidance, and polynomial-time VNE algorithm (we name it
BIRD-VNE). By studying the constraint propagation proper-
ties of the VNE problem, we design a topological consistency
algorithm, and show that it achieves a backtrack-free search if
substrate paths are all capacity disjoint. Then, we relax the
capacity disjoint condition, and propose a capacity disjoint
paths consistency algorithm that improves the acceptance rate.
Finally, we combine these two proposed algorithms to design a
backtrack-avoidance and O(n7) VNE algorithm. Our proposed
algorithm achieves an embedding cost that, at most, is twice
the optimal cost obtained by branch and bound.

The rest of this paper is organized as follows. We for-
malize and state the VNE problem in Section II. Then, we
propose topological consistency (TOPOLOGY-CONSISTENCY)
and capacity disjoint paths consistency (CAPACITY-DISJOINT)
algorithms in Section III, and show how these algorithms lead
to almost backtrack-free search. In Section IV, we propose
our VNE algorithm (BIRD-VNE) and derive bounds on its
incurred cost. Additionally, we evaluate performance of our
BIRD-VNE algorithm empirically in Section V. Finally, we
conclude the paper in Section VI.

II. PROBLEM FORMULATION

The substrate network is modeled as an undirected graph
Φ = (S,L) where S is the set of all substrate nodes and
L is the set of all substrate links; i.e., each link l ∈ L
corresponds to a connected pair of nodes s, s′ ∈ S. We



assume that each node s ∈ S offers a processing capacity
C (s), and each link l ∈ L offers a bandwidth capacity
C (l). In what follows, let n = |S| and m = |L|. Let R

be the set of all possible paths between all substrate node
pairs, where a path P (s0, sr) between two substrate nodes
s0 and sr is a sequence (s0, s1), (s1, s2), . . . , (sr−1, sr) of
distinct links (or pairs of nodes) in L in which each pair
(si, si+1), i = 1, ..., r − 1, maps to a link in S. Throughout,
P (s0, sr) (or sometimes P ) will also be used to refer to the
set {(s0, s1), (s1, s2), . . . , (sr−1, sr)}, and will be character-
ized by its length |P | and its bandwidth capacity C (P ) =
minl∈P C (l).

Recall that multiple different VNE requests are to be
received in real time, and up on receipt of each request, the
received virtual network is to be embedded into the substrate
network. Each VNE request can be modeled as an undirected
graph Υ = (V,E) where V is the set of virtual nodes and E is
the set of virtual links (i.e., connected pairs of virtual nodes).
We assume that each node v ∈ V has a requested processing
capacity (referred to as node stress) T (v), and each virtual
link e ∈ E has a requested bandwidth capacity (referred to as
link stress) T (e).

Suppose that, at a given point in time, a total of k−1 VNE
requests, Υ(1),Υ(2), . . . ,Υ(k−1), have already been received
and embedded successfully into the substrate network, and the
kth request, Υ(k), has just arrived. The problem of embedding
of the kth virtual network Υ(k) = (V (k), E(k)) into the
substrate network Φ consists of two mapping steps, node
mapping and link mapping, described as follows:

Node mapping, which consists of mapping each vir-
tual node v ∈ V (k) to a distinct substrate node s ∈ S
such that (i) s is within ∆ distance from v and (ii) the
sum of requested processing capacities of all virtual nodes
mapped to s (including those mapped from previous VNE
requests) does not exceed the offered processing capacity
of s. Formally, this consists of finding a node mapping
function, M

(

V (k)
)

: v ∈ V (k) 7→ M (v) ∈ S, such that
M (vi) = M (vj) iff vi = vj , Dist(M (v) , v) ≤ ∆ for

all v ∈ V (k), and
∑

v∈∪k
i=1V

(i):M(v)=s T (v) ≤ C (s) for all

s ∈ S. The parameter ∆ is specified by the VNE request
and represents a constraint that the embedded network needs
to meet. Dist(u, v) represents the Euclidian distance between
nodes u and v.

Link mapping, which consists of mapping each virtual
link e ∈ E(k) to a substrate path P ∈ R such that (i) the end
virtual nodes of e correspond to the end substrate nodes of
P and (ii) for every l ∈ L, the sum of requested bandwidth
capacities of all virtual links (including those belonging to
previous VNE requests) whose mapped paths go through
the substrate link l must not exceed the offered bandwidth
capacity of l. Formally, this consists of finding a link mapping
function, M

(

E(k)
)

: e = (v, v′) ∈ E(k) 7→ M (e) =
P (s, s′) ∈ R, such that M (v) = s, M (v′) = s′, and
∑

e∈∪k
i=1V

(i):l∈M(e) T (e) ≤ C (l) for all l ∈ L.

Definition 2.1: The embedding of Υ(k) is said to be fea-
sible when both the node mapping and link mapping tasks
defined above can be performed successfully.

Every time a virtual network request is successfully em-

bedded, the substrate network updates its offered processing
and bandwidth resources. Hereafter, we denote the remaining
processing capacity of substrate node s, after successfully
embedding the kth virtual network request, by

R(k)(s) = C (s)−
∑

v∈∪k
i=1V

(i):M(v)=s

T (v)

Similarly, we denote the remaining bandwidth capacity of
substrate link l, after successfully embedding request k, by

R(k)(l) = C (l)−
∑

e∈∪k
i=1V

(i):l∈M(e)

T (e)

and the remaining path capacity of substrate path P by

R(k)(P ) = min
l∈P

R(k)(l)

Definition 2.2: For each v ∈ V (k), we define virtual node
v’s mapping domain Dv to be the set of all substrate nodes
whose Euclidean distances to v are each less than ∆ and
remaining processing capacities are each greater than T (v);
that is,

Dv = {s ∈ S : Dist(s, v) ≤ ∆, R(k)(s) ≥ T (v)}

Definition 2.3: For each e = (v, v′) ∈ E(k), we define
virtual link e’s mapping domainDe to be the set of all substrate
paths whose end nodes (s, s′) are in Dv ×Dv′ and remaining
capacities are each greater than T (e); that is,

De = {P ∈ R : (s, s′) ∈ Dv ×Dv′ , R(k)(P ) ≥ T (e)}

Fig.1 shows an illustrative VNE example, in which the
node mapping domains are Da = {A,C}, Db = {G,H},
and Dc = {B,E, F}. In the worst case the size of the node
mapping domain is O(n). In the figure, link mapping domains
are shown in dashed lines. For example,

D(a,c) = {{(A,B)}, {(A,E)}, {(A,E), (E,B)},

{(A,B), (B,E)}, {(A,C), (C,D), (D,E)},

{(A,C), (C,D), (D,E), (E,B)}}

In this same example, the node and link embedding are:
M (a) = C, M (b) = H, M (c) = B for the virtual
nodes and M ((a, b)) = {(C,B), (B,H)}, M ((a, c)) =
{(C,A), (A,B)}, M ((b, c)) = {(H,E), (E,B)} for the
virtual links.

Our objective in this work is to develop an efficient algo-
rithm that embeds virtual networks into the substrate network;
i.e., finds feasible embedding for each VNE request. We say
that a feasible embedding is optimal when its cost is minimal,
where the embedding cost is defined as the sum of all substrate
resources allocated to the virtual network Υ multiplied by a
resource unit cost. Formally,

Cost (Υ) =
∑

v∈V

α′T (v) +
∑

e∈E

β′T (e)× |M (e)| (1)

where α′ and β′ denote the cost of processing and bandwidth
resource units, respectively.

We also define the revenue to be generated from success-
fully embedding Υ(k) as the sum of all substrate resources
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Fig. 1: Virtual Network Embedding: node mapping domains are
shown in dashed circles (radius=∆) and link mapping domains are
shown in dashed lines parallel to substrate paths.

requested by the virtual network multiplied by the unit price
of each of these resources. Formally,

Revenue (Υ) =
∑

v∈V

αT (v) +
∑

e∈E

βT (e) (2)

where α and β denote the price to be charged for each
processing and bandwidth unit, respectively.

III. ENFORCING DOMAIN CONSISTENCY

Backtracking embedding algorithms involve consecutive
node and link mappings while searching for the minimum
cost embedding. If any node mapping or link mapping is not
successful, these algorithms backtrack to a previous step(s) and
attempt to proceed with different mappings.

Backtracking can be avoided (backtrack-free search) if the
mapping domains of all virtual nodes and links are consistent,
where consistent mapping domains implies that any mapping
of a virtual link shall not invalidate any subsequent virtual link
mappings. Enforcing domains consistency to ensure backtrack-
free search is hard, and general consistency propagation algo-
rithms for this purpose have complexity bounded exponentially
in the size of the substrate network (defined by n and m).
Instead, we use properties of the embedding problem to narrow
the mapping domains by removing mappings which cannot be
extended to a complete feasible embedding and show how this
leads to an almost backtrack-free search.

A. Topological consistency

1) Alldifferent virtual node mapping constraint: The con-
straint to map virtual nodes to distinct substrate nodes is known
as the alldifferent constraint in the constraint programming
context, and we next state a useful corollary following from
Régin’s theorem [12] on alldifferent constraint.

Corollary 3.1: A virtual node mapping v 7→ s does not
lead to a feasible embedding if it does not belong to a
maximum cardinality matching that covers all the virtual nodes
in the bipartite graph. In this graph, all virtual and substrate
nodes are represented by vertices, and a virtual node v is
connected to a substrate node s if s ∈ Dv.

The well-known ALLDIFFERENT algorithm [12] can be
used to remove mappings from node mapping domains ac-
cording to Corollary 3.1. For completeness, we next provide a
brief description of the ALLDIFFERENT algorithm:

1) Construct a bipartite graph B such that

B = (V ∪ S, {(v, s) : M (v) = s})

2) Find a maximum cardinality matching M in B using
Hopcroft-Karp algorithm [13].

3) If |M | < nv, then there is no feasible embedding for
the given mapping domains.

4) Construct a residual digraph B′ = (V ∪S∪{t},M ∪
E2∪E3∪E4). M is the set of edges in the matching
directed from virtual nodes to substrate nodes. E2 is
the set of edges that are not in the matching M and
are directed from substrate nodes to virtual nodes. E3

is the set of all directed edges from substrate nodes
in the matching M to a dummy node t. Finally, E4 is
the set of all directed edges from t to substrate nodes
that are not in the matching M .

5) Compute the strongly connected components in B′.
6) For any edge connecting two different strongly con-

nected components in B′ (i.e. corresponding to a
mapping from a virtual node v to a substrate node
s) and is not in the matching M , it is not possible to
extend a partial embedding that involves mapping v
to s. Then s is removed from Dv .

Worst-case complexity of ALLDIFFERENT is bounded by
O
(

n1.5
v n

)

[12].

2) Relational consistency of node and link mapping do-
mains: In the example of Fig.1, although mapping virtual node
c to F is feasible, doing so prevents us from finding a mapping
to virtual link (b, c), as there is no substrate path between F
and any substrate node in the node mapping domain Db.

From the definition of mapping domains, we can easily
observe that if two virtual nodes v, v′ are connected by a virtual
link e, then the end points of substrate paths in the virtual link
mapping domain De is a subset of the cross product of the
virtual node mapping domains Dv ×Dv′ . We can now rely on
this simple observation and the definition of the virtual link
mapping domains to conclude the following:

Lemma 3.2: A virtual node mapping v 7→ s does not lead
to a feasible embedding if for any link e ending at v, there
is no path P ∈ De ending also at s. Similarly, a virtual link
mapping e = (v, v′) 7→ P (s′, s) does not lead to a complete
feasible embedding if s 6∈ Dv or s′ 6∈ Dv′ .

Proof: Assume v 7→ s and a subsequent mapping of e =
(v, v′) such that there is no path P ∈ De ending at s. A
mapping of e to any substrate path in De results in mapping
multiple virtual nodes to the same substrate node. Also, e =
(v, v′) 7→ P (s, s′) violates the link mapping Definition 2.3 if
either s 6∈ Dv or s′ 6∈ Dv′ .

Using Lemma 3.2, we propose two procedures to narrow
down the node and link mapping domains: Procedures 1 and 2.
The functions u (De) and v (De) return respectively the first
and the second end nodes in the link mapping domain De.
When applied to a path P , u (P ) and v (P ) return the path’s
first and the second end nodes.

3) Consistency of virtual nodes and substrate nodes con-
nectivity: The relational consistency of node and link mapping
domains does not ensure connectivity of the virtual network,



Procedure 1 NODE-CONSISTENCY

Input: E, De∈E , Dv∈V

Ensure: Virtual node mapping domains are consistent with virtual
link mapping domains in O(mv n)

1: for all virtual link e = (v, v′) ∈ E do
2: Dv ← Dv ∩ u (De)
3: Dv′ ← Dv′ ∩ v (De)
4: end for
5: return Narrowed virtual node mapping domains

Procedure 2 LINK-CONSISTENCY

Input: E, De∈E , Dv∈V

Ensure: Virtual link mapping domains are consistent with virtual
node mapping domains in O(mv n

2)
1: for all virtual link e = (v, v′) ∈ E do
2: for all substrate path P ∈ De do
3: if u (P ) /∈ Dv ∨ v (P ) /∈ Dv′ then
4: De ← De \ {P}
5: end if
6: end for
7: end for
8: return Narrowed virtual link mapping domains

nor does it imply that the mapping domains can satisfy connec-
tivity requirements, especially when node mapping domains
overlap. To illustrate this, consider a new induced network of
substrate nodes that represents the connectivity of the virtual
link domains. In this induced network, substrate nodes are
connected by an edge if there exists a path belonging to any
link mapping domain that connects them.

Definition 3.1: Given a virtual network Υ, we define the
induced network I of Υ as the undirected graph I =
(SI ⊂ S,LI) where SI = ∪v∈V Dv and LI = {(s, s′) ∈ S2

I :
∃ P (s, s′) ∈ De for e ∈ E}.

Definition 3.2: For every connected component CCI of I ,
the set Nv(CCI) = CCI ∩ Dv corresponding to the virtual
node v is called supernode of v. Let ζ(CCI) be the number
of distinct supernodes in CCI . For every s ∈ SI , we define
δ(s) as the number of supernodes connected to s.

Fig.2 illustrates the induced network of the example given
in Fig.1. This induced network is constructed by connecting
a pair of substrate nodes in Fig.2 when there is at least one
path connecting them in any virtual link domain. In general,
if the mapping v 7→ s is feasible, the function δ(s) reflects the
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C

Fig. 2: Induced network I from substrate network Φ in Fig.1. I
has one connected components CCI and three supernodes (dashed
circles). ζ(CCI) = 3, δ(F ) = 1 and equals 2 for all other nodes.

degree of the virtual node v, and if a connected component
CCΥ of Υ is mapped to a subset of substrate nodes in Φ, the
function ζ(CCI) reflects the number of virtual nodes in the
connected component CCΥ (size of CCΥ).

Lemma 3.3: Let DegΥ (v) denote the degree of virtual
node v. A virtual node mapping v 7→ s does not lead to a
feasible embedding if DegΥ (v) > δ(s) or the size of the
connected component of Υ (CCΥ) that contains v is greater
than the number of supernodes in CCI that contains s.

Proof: Assume v 7→ s and DegΥ (v) > δ(s), then there
exist at least one virtual link e such that there is no substrate
path P in De with one of its end substrate nodes equals s.
Then, v 7→ s does not lead to a feasible embedding from
Lemma 3.2. If DegΥ (v) ≤ δ(s) but |CCΥ| > ζ(CCI), then
there must exist an unmapped virtual node v′ ∈ CCΥ, while all
substrate nodes s ∈ CCI are already mapped to other virtual
nodes in CCΥ including v. Since v′ must be mapped to one
substrate node in CCI to maintain connectivity, then mapping
v 7→ s does not lead to a feasible embedding.

The DEGREE-CONSISTENCY procedure (Procedure 3) is
a direct application of Lemma 3.3. DEGREE-CONSISTENCY

complexity is bounded by computing δ(s) for all substrate
nodes in the virtual node mapping domains, which is O(n2).

Procedure 3 DEGREE-CONSISTENCY

Input: E, Dv∈V

Ensure: Degree Consistency in O(n2)
1: for all virtual nodes v′ ∈ V do
2: for all substrate nodes s′ ∈ Dv′ do
3: if DegΥ (v′) > δ(s′) then
4: Dv′ ← Dv′ \ {s′}
5: end if
6: end for
7: end for
8: for all connected component CCΥ ∈ Υ do
9: for all connected component CCI ∈ I do
10: if |CCΥ| > ζ(CCI) then
11: Dv′ ← Dv′ \ CCI , ∀v

′ ∈ CCΥ

12: end if
13: end for
14: end for
15: return Narrowed virtual nodes domains

Running ALLDIFFERENT, NODE-CONSISTENCY, LINK-
CONSISTENCY, and DEGREE-CONSISTENCY procedures for
one iteration removes some inconsistent mappings from the
node and link mapping domains, but may still leave the
mapping domains inconsistent. To ensure consistency, these
procedures must run repeatedly until no further removal is
possible from node and link mapping domains. Algorithm 1
performs this task, with the objective of ensuring topological
consistency of the node and link mapping domains, thereby
avoiding backtracking due to topological inconsistency.

The complexity of TOPOLOGY-CONSISTENCY is bounded
by the number of times we run the procedure LINK-
CONSISTENCY in step 4. This implies a complexity of
O(mv n

2) in each iteration. In the worst-case scenario,
TOPOLOGY-CONSISTENCY removes one substrate node from
one node mapping domain and this corresponds to at least one
removal of one substrate path from link mapping domains.



Algorithm 1 TOPOLOGY-CONSISTENCY

Input: E, De∈E , Dv∈V

Ensure: Topology Consistency in O(mv n
3)

1: repeat
2: NODE-CONSISTENCY(E, De∈E , Dv∈V )
3: ALLDIFFERENT(V, Dv∈V )
4: LINK-CONSISTENCY(E, De∈E , Dv∈V )
5: DEGREE-CONSISTENCY(E, Dv∈V )
6: if ∃ Dv′ = ∅, ∀v′ ∈ V ∨ De = ∅, ∀e ∈ E then
7: return false
8: end if
9: until No node or link domain is changed
10: return true

Hence, it requires at most n iterations to remove all sub-
strate nodes from one node mapping domain, thus returning
false1. Thus, the complexity of TOPOLOGY-CONSISTENCY is
O(mv n

3). But since the maximum number of virtual nodes
is the number of substrate nodes; i.e., nv ≤ n, then the
complexity of TOPOLOGY-CONSISTENCY is O(n5).

B. Capacity disjoint paths consistency

Let us refer again to the example given in Fig.1 and
consider the link mapping sequence (a, b) 7→ P (C,H) =
{(C,D), (D,H)} and (a, c) 7→ P (C,E) = {(C,D), (D,E)}.
The remaining bandwidth of the substrate link (C,D),
R ((C,D)) = 15, is less than the sum of the links’ requested
bandwidth capacities, which is T ((a, b)) + T ((a, c)) = 24.
Hence, this mapping sequence is infeasible. Clearly, a search
will not be forced to be backtracked if all substrate paths in
the link mapping domains are disjoint. However, constructing
the link mapping domains from disjoint paths results in a
degradation of the VNE acceptance rate (such a rate reflects
the number of virtual networks that can be embedded into the
substrate network), as well as in an increase in the embedding
cost. Our proposed embedding algorithm does not force paths
to be disjoint so as to increase acceptance rate and decrease the
embedding cost. Instead, our technique relies on the concept
of capacity disjoint which will be introduced next.

Definition 3.3: For every substrate link l, let D̄e(l) =
{P ∈ De : P ∋ l} and Ē(l) = {e ∈ E : D̄e(l) 6= ∅}. We
say that the paths in R

′ =
⋃

e∈Ē(l) D̄e(l) are capacity disjoint
iff the remaining bandwidth capacity of l is greater than the
sum of the requested bandwidth capacities of all virtual links in
Ē(l). Formally, the paths in R

′ are said to be capacity disjoint

iff R(k)(l) ≥
∑

e∈Ē(l) T (e).

Lemma 3.4: A virtual link mapping e 7→ P does not lead
to a feasible embedding if all the substrate paths in every
unmapped virtual link’s mapping domain are not capacity
disjoint with P .

Proof: If a virtual link ei 7→ Pi and in a next mapping
step of virtual link ej , all paths in Dej are not capacity disjoint
with Pi, then any mapping ej 7→ Pj ∈ Dej will result in at
least one substrate link with negative remaining bandwidth.

Theorem 3.5: The proposed TOPOLOGY-CONSISTENCY

algorithm ensures a backtrack-free search if all substrate paths
in all link mapping domains are capacity disjoint.

1A more efficient implementation checks the condition in step 6 every time
any procedure removes a substrate node/link from a mapping domain.

Proof: It follows from Lemmas 3.2, 3.3, and 3.4 and from
Corollary 3.1.

An algorithm that aims to ensure a backtrack-free search
may remove substrate paths that are not capacity disjoint
from the virtual links mapping domains. Although such an
algorithm will have a complexity advantage because it is
backtrack-free, it degrades the acceptance rate and the cost
as it will remove substrate paths that can actually lead to
feasible or minimum cost embedding. Apparently, capacity
disjoint paths condition is required only for substrate paths that
are actually in a incurred embedding. In order to overcome
the complexity problem while still minimizing the cost and
maximizing the acceptance rate, we propose Algorithm 2
(CAPACITY-DISJOINT), which ensures that substrate paths in
link mapping domains are capacity disjoint if they are likely
to coexist in an incurred embedding.

The key idea of the CAPACITY-DISJOINT algorithm is to
determine the worst case scenario in which the intersecting
substrate paths in R

′ can become simultaneous mappings
of virtual links in Ē(l). These paths are found by applying
topological consistency procedures, discussed earlier, on the
subsets of link and node mapping domains D̄e ∈ Ē(l), D̄v ∈
V̄ (l) (Steps 1 to 6), where V̄ (l) ⊂ V is the set of end virtual
nodes of virtual edges in Ē(l) and D̄v(l) ⊂ Dv is the set of
substrate node mapping deduced from R

′.

The CAPACITY-DISJOINT algorithm checks if all paths that
are common to every substrate link l are capacity disjoint. If
not, the algorithm removes first the substrate paths D̄e ∈ Ē(l)
from the domain of the virtual link(s) e that has the largest
link mapping domain size |De| (Step 7 to 16). This is to
minimize the chances of ending up with an empty link mapping
domain, thus maximizing the acceptance rate. Although it is
clear that CAPACITY-DISJOINT algorithm does not eliminate
backtracking entirely, it substantially reduces its likelihood
of occurrence. We evaluate the likelihood of backtracking
empirically in Section V.

Algorithm 2 CAPACITY-DISJOINT

Input: E, L, De∈E , Dv∈V

Ensure: Substrate paths are capacity disjoint if they are likely to
coexist in an incurred embedding in O(mmv n

3).
1: for all l ∈ L : ∃ P ∈ De∈E , l ∈ P do
2: repeat
3: NODE-CONSISTENCY(Ē(l), D̄e ∈ Ē(l), D̄v ∈ V̄ (l))
4: ALLDIFFERENT(V̄ (l), D̄v ∈ V̄ (l))
5: LINK-CONSISTENCY(Ē(l), D̄e ∈ Ē(l), D̄v ∈ V̄ (l))
6: until No node or link sub-domain is changed
7: R′ (l)← R (l)
8: for all e ∈ Ē(l) ordered ascendingly by |De| do
9: if D̄e(l) 6= ∅ then
10: R′ (l)← R′ (l)− T (e)
11: if R′ (l) < 0 then
12: De ← De \ D̄e(l)
13: end if
14: end if
15: end for
16: end for
17: if ∃ De = ∅, ∀e ∈ E then
18: return false
19: end if
20: return true



The CAPACITY-DISJOINT algorithm uses similar steps to
determine possible simultaneous intersecting paths (Steps 2
to 6) for each substrate link l that intersects with some paths.
Although these steps are performed on a subset of the mapping
domains and it is unlikely to encounter the situation that every
substrate link is a common link for all paths (as the substrate
network will almost look like a path), the complexity of
CAPACITY-DISJOINT is bounded by O(mmv n

3). This can be
expressed as O(n7) if both the substrate and virtual networks
are complete graphs and have the same number of nodes n.

IV. APPROXIMATE COST MINIMIZATION

TOPOLOGY-CONSISTENCY and CAPACITY-DISJOINT al-
gorithms reduce the search space and improve the running
time of backtracking search. However, even in the case of
backtrack-free search, an optimal optimization algorithm, like
branch and bound, may still traverse the whole search space
through brute-force [9].

If we assume that VNE does not involve constraint prop-
agation, it can be solved as the minimum weight matching
problem in a bipartite graph. A bipartite graph in this case
is the set of virtual links connected by edges to the set of
substrate paths. We use this observation to propose Algorithm
3, which finds a VNE such that the incurred embedding cost
is at most as twice as the optimal cost.

Our proposed BIRD-VNE algorithm starts by en-
forcing mapping domain consistency using TOPOLOGY-
CONSISTENCY and CAPACITY-DISJOINT. It then searches for
an embedding by mapping the virtual links with the greatest
demands first to the shortest substrate paths in their domains
while ensuring feasible embedding according to Definition
2.1. If any mapping step results in infeasible embedding, the
algorithm starts the mapping process over from the first virtual
link by assigning it to an unattempted mapping in its domain
until a feasible embedding is found or all mappings of the
first link are tried out. In Section V, we show empirically how
likely a backtrack-free search occurs.

The main loop (Step 10 to 25) has mv iterations. In
the worst-case scenario, for every virtual link, it checks fea-
sible mapping of n2 paths. The complexity of BIRD-VNE
algorithm is bounded by the CAPACITY-DISJOINT complexity
O(mmv n

3) and can be written as O(n7) as shown earlier.

V. NUMERICAL RESULTS

The effectiveness of BIRD-VNE is assessed in terms of
the metrics suggested in [14]: (i) Acceptance rate, defined as
the ratio of the total accepted virtual networks to the total re-
quested virtual networks; (ii) Revenue to Cost ratio (R/C), de-
fined as R/C =

∑

Υ Revenue (Υ)/
∑

Υ Cost (Υ); and (iii)

Average node and link utilization, defined as
∑

s∈S

R(s)−C(s)
nC(s)

and
∑

l∈L

R(l)−C(l)
mC(l) , respectively.

The likelihood of BIRD-VNE to avoid backtracking is
shown empirically by the Backtrack-free ratio metric, defined
as the total number of times in which BIRD-VNE finds a
feasible embedding by attempting the first mapping of the first
virtual link to the total accepted requests.

Algorithm 3 BIRD-VNE

Input: Υ = (V,E), Φ = (S, L)
Require: D∀e∈E , D∀v∈V

Ensure: Embedding Υ 7→ Φ in O(mmv n
3)

1: SolutionExist ← TOPOLOGY-CONSISTENCY

2: SolutionExist ← SolutionExist and CAPACITY-DISJOINT

3: SolutionExist ← SolutionExist and TOPOLOGY-CONSISTENCY

4: if not SolutionExist then
5: return ”No feasible embedding”
6: end if
7: repeat
8: M (e)← ∅, ∀e ∈ E
9: for all e = (v, v′) ∈ E ordered ascendingly by |De|, and by

T (e) do
10: for all P ∈ De ordered ascendingly by |P | do
11: if e is the first virtual link in the order of E then
12: De ← De \ P
13: end if
14: if e 7→ P result in a feasible embedding then
15: M (e)← P ,M (v)← u (P ),M (v′)← v (P )
16: break
17: end if
18: end for
19: end for
20: until Feasible embedding is found or all first virtual link mapping

domain are attempted.
21: if No feasible embedding is found then
22: return ”No feasible embedding”
23: end if
24: return M (e) , ∀e ∈ E andM (v) , ∀v ∈ V

We compare the performance of BIRD-VNE with those
of the algorithms proposed in [11], referred to as RVINE-SP
(without path splitting) and RVINE-MCF (with path splitting),
and with that of the basic Greedy algorithm proposed in [5],
referred to as BASELINE. We developed our own event-driven
simulator in Python, Simpy and NetworkX. Our simulator also
integrates the implementation of RVINE-SP and RVINE-MCF,
which are publicly available online2.

The simulator generates Φ and Υ according to
Erdös−Rènyi model. Similar to [11], Φ has 0.5 probability
of connecting any two substrate nodes, n = 50,
C (s) ∼ U(0, 50), ∀s ∈ S and C (l) ∼ U(0, 50), ∀l ∈ L.
Substrate nodes are placed randomly on a (25× 25) grid. The
mean inter-arrival time of virtual networks ranges from 5 to
25 networks per time unit, and the average service time is
of 1000 networks per time unit. Every Υ has 0.5 probability
to connect two virtual nodes, nv ∼ U(1, 10), ∆ = 15,
T (v) ∼ U(0, 20), ∀v ∈ V and T (e) ∼ U(1, 50), ∀e ∈ E. The
routing R is computed during initialization phase.

Fig.3 shows that BIRD-VNE has a higher acceptance rate
when compared to the other algorithms. The improvement
in acceptance rate is a direct result of Theorem 3.5. Fig.4
shows that the backtrack-free ratio achieved by BIRD-VNE
is better than 80% for different arrival rates. BIRD-VNE is
likely to find a feasible embedding if it passes the consistency
enforcement steps 1 to 6. Any optimization algorithm (even
brute-force) cannot find a feasible embedding if TOPOLOGY-
CONSISTENCY or CAPACITY-DISJOINT do not succeed.

The revenue to cost ratio of BIRD-VNE algorithm is 20%

2http://www.mosharaf.com/ViNE-Yard.tar.gz
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better than RVINE-MCF as shown in Fig.5. This is expected as
the algorithm is evaluated empirically as a 2-approximation of
the optimal cost, and has better acceptance rate. The average
link utilization of BIRD-VNE is comparable to RVINE-MCF
with slightly greater node utilization due to better acceptance
rate as shown in Fig. 6.

VI. CONCLUSION

We propose a polynomial-time, approximation virtual net-
work embedding algorithm, and show empirically that the
algorithm outperforms MIP-based algorithm in terms of rev-
enue to cost ratios as well as acceptance rates. We also show
that the likelihood of encountering a backtrack-free search is
greater than 80%. This work can be extended to incorporate
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Fig. 6: Average substrate node and link utilization.

migration and path splitting to re-optimize embedding cost and
utilization, and improve acceptance rate at higher arrival rates.
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