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Abstract—We propose a credit-based resource allocation
technique for wireless systems with dynamic spectrum access
(DSA) capability, such as multichannel wireless sensor networks.
The proposed technique is robust against selfish and malicious
behaviors by achieving high performance independently of what
users choose to pursue as their objectives. It also improves
fairness by ensuring that different users are allocated equal
amounts of spectrum service. Using simulations, we show that
the proposed credit-based technique allows users to achieve high
rewards/service even in the presence of misbehaved users that
choose to pursue their greedy and selfish goals. We also show
that it reduces the standard deviation of users’ amounts of
received service drastically, and hence, improves fairness among
users substantially.

I. INTRODUCTION

Dynamic spectrum access (DSA) is a new paradigm that

allows spectrum users to seek and use spectrum bands

opportunistically. DSA has great potential for improving the

capacity of wireless mobile systems, such as wireless sensor

networks, mobile networks, and cellular networks. In DSA

systems, there are two types of users: licensed or primary

users (PUs) and unlicensed or secondary users (SUs). DSA

systems allow SUs to sense the licensed spectra, and to

occupy and use any spectrum band when it is not used by

its PUs. However, these SUs must be transparent to the PUs

in that they have to leave the spectrum band as soon as they

sense the presence of any PUs.

DSA has emerged as a potential solution for overcoming

spectrum shortage problems [1]. As a result, many solutions

have been proposed to address various aspects of DSA

systems [2–4]. One of the key challenges arising from the

complex and diverse nature of nowadays emerging wireless

systems is the design of efficient DSA techniques that can

be implemented in a distributed manner and can scale well

with the number of users.

Learning-based techniques have been considered as a

potential solution candidate for such a challenge due to

their inherent distributed nature [5–7]. These techniques

essentially propose distributed DSA methods that can per-

form without needing any control unit, thereby enabling

SUs to distribute themselves among available bands/channels

without any guidance or direction from any third party or

entity. Learning-based techniques allow SUs to do so by

using their knowledge to be acquired through their past and

present environment interaction to decide what to do best in

the future. For this, users often implement and go after some

objective functions that they try to maximize by means of

these learning algorithms.

It has been shown in literature that poorly designed

objective functions can lead to poor system performances

[8]. As a result, some research efforts have been put to

develop efficient objective functions that are suitable for DSA

systems [5, 9]. These previously proposed objective functions

such as those proposed for elastic [5] and inelastic [9] traffic

models are shown to have good performances in terms of

optimality, scalability, and distributivity. However, they also

have shortcomings: one, they are not robust against user mis-

behavior, in the sense that if some users choose (intentionally

or unintentionally) to pursue selfish and greedy objectives,

the overall system performance can degrade substantially.

Two, they may be unfair to users, in that users that employ

these proposed techniques may not receive equal amounts of

service.

In this paper, we propose a credit-based spectrum re-

source allocation technique for DSA systems that, unlike the

previous techniques, is robust against malicious and selfish

behaviors and improves fairness among users. The robust-

ness of our proposed technique against users’ misbehavior

(selfishness and maliciousness) lies in its ability to mask

the impact that the users’ pursued private objectives have

on the overall system performance. Fairness improvements,

on the other hand, are achieved by allocating service to users

adaptively while accounting for the amount of service each

user has received in the past. Our simulation results show

that the proposed technique allows users to receive high

service levels and ensures fairness among users even when

the system contains misbehaved users.

The rest of this paper goes as follows. In Section II,

we describe our system model. In Section III, we state our

motivation and objective by illustrating the shortcomings of

existing techniques. Section IV presents our proposed credit-

based technique. In Section V, we evaluate and show the

performance of our proposed technique. Section VI highlights

and discusses some implementation and practical aspects of

the proposed technique. Finally, we conclude the paper in

Section VII.
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II. SYSTEM MODEL

We consider a wireless system with m non-overlapping

spectrum bands (or channels). We assume that each band

j offers an amount of service denoted by Vj ; the service

that the band offers could, for example, be throughput,

reliability, data rate, etc. We also assume that there is an

access point (or a monitoring agent) deployed in the system

whose responsibility is to keep track of what and when users

join the spectrum bands.

We consider the elastic traffic model in which a user’s

received reward corresponds to the amount of service it

receives from using the spectrum when this received reward

exceeds a certain threshold, Q. On the other hand, when the

received amount of service is less than the threshold, the

user’s reward drops very quickly and becomes unacceptable.

We assume that users do not leave their spectrum band (and

try to find another band) unless their received level of service

goes below their required level. In addition, we adopt the

adaptive service model, proposed in [10], where the users’

required level of service changes depending on what they

have received so far. Mathematically, the reward, ri(t), of
user i at time t can be written as [10]:

ri(t) =

{

Si(t) if Si(t) ≥ Q(t)

Q(t)e
−β

Q(t)−Si(t)

Si(t) otherwise
(1)

where Si(t) is user i’s received level of service at time t,
Q(t) is the required level of service at time t, and β is the

decaying factor. At last, we assume a time-slotted resource

access and sharing scheme, where users are assumed to arrive

at the beginning and leave at the end of time steps.

III. FAIRNESS AND MISBEHAVIOR

In learning-based DSA techniques, after a user determines

its objective, it tries to maximize it using a learning algo-

rithm. Two intuitive objective functions can be considered.

The first one is the intrinsic reward function, ri, given in

Eq. (1), where here a user aims to maximize its own received

reward; this function reflects the users’ expected selfish

behaviors when going after maximizing their own received

rewards. The other one is the global/total reward function,

G, which aims to maximize the total rewards received by all

users. At time t, G(t) can formally be written as

G(t) =

n(t)
∑

i=1

ri(t) (2)

where n(t) is the total number of users accessing the system

at time t. The main drawback of using these two functions is

that they lead to poor system performance. This is because in

the intrinsic function case, users’ objectives are not aligned

with one another, and in the global function case, users’

objectives are not sensitive enough to their own actions to

lead to high rewards. Detailed and good explanations of such

performance behaviors can be found in [5].

To address this performance issue, the difference objective

function, Di, has instead been used in DSA networks for
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Fig. 1: Normalized global/total rewards achievable by all

users under the functions Di, ri and G.

supporting both elastic [5] and inelastic [9] traffic models,

and is shown to achieve near-optimal performances by out-

performing ri and G substantially. The reason behind the

high performance that Di achieves lies in the fact that when

the number of users in the system exceeds the channels’

capacities, Di leads to a near-optimal distribution of the

users among the different available spectrum bands. As

shown in [5], the optimal distribution occurs when (m − 1)
channels/bands each has exactly a number of users equaling

the channel’s capacity, and the mth band has all the other

remaining users1.

For illustration purposes, we consider in this section a DSA

system with 10 bands and 500 users. Also, for simplicity

and without loss of generality, we assume that all bands

offer the same amount of service; i.e., Vj=V =20 for all

j. In our figures, we normalize the global received reward

with respect to an approximation of the maximal global

achievable reward, given in [5]. We plot in Fig. 1 the

normalized achievable global/total reward under Di, ri and

G. As stated above, observe that ri and G result in very

poor performance, whereas Di results in high performance.

In addition to achieving high rewards, Di is shown to scale

well with the number of users, and can be implemented in

a fully distributed manner in fully connected networks, as

reported in [5].

Despite of its performance advantages,Di has some short-

comings. First, it is unfair. This is because, under Di, some

users may end up staying in the most crowded channel more

than others, thereby receiving smaller amounts of service. To

illustrate, we show in Fig. 2 the standard deviation of users’

received rewards under the Di function for different number

of users. As it can be seen from the figure, the standard

deviations can be relatively high, implying that users may

receive unequal amounts of service when Di is used.

Second, the Di function is not robust against misbehaved

users. The issue is that even though Di can increase the

achievable performances, it can only do so when all users

1This is when all channels are assumed to offer the same service; i.e.,
Vj = V for all j. Refer to [10] when Vjs are not the same.
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Fig. 2: Standard deviation of users’ received rewards for

different numbers of users under the Di function.
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Fig. 3: Normalized global/total reward achievable by all users

whenDi is used for various percentages of misbehaved users.
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Fig. 4: Normalized global/total received reward when 20%

of the users misbehave.

pursue it as their objectives. In other words, when some

users choose (intentionally or unintentionally) not to pursue

this function, the function can no longer lead to good perfor-

mances. To illustrate this, we show in Fig. 3 the performance

of Di in the presence of misbehaved users. In the figure, "x%
Misbehaved users" refers to the case when x% of the users

choose to pursue their greedy objective function ri, while the
other (100−x)% users implement theDi function. The figure

shows that as the percentage (i.e., number) of misbehaved

users increases, the overall system received reward decreases,

and hence, so does the per-user average received reward. This

overall performance degradation gets even worse when the

percentage of misbehaved users becomes higher and higher.

What’s even worse, not only do these misbehaved users

lead to poor overall system performance, but also receive

most of the available service, thereby leaving those well

behaved users with no to little service. This is illustrated

in Fig. 4. Note that the misbehaved users (which represent

only 20% of all users) receive about 40% of the optimal/total

amount of achievable service, whereas the well behaved ones

(which represent 80% of all users) receive all together only

about 10% of the total possible amount of service. Also,

it is worth mentioning that because of the presence of these

misbehaved users, the overall global/total system reward goes

down from about 85% when all users behave well (as shown

in Fig. 1) to about 50% only.

It is therefore important to devise efficient strategies and

techniques that ensure fair allocation of resources among

users while also maximizing the achievable system per-

formance even in the presence of misbehaved users. Our

proposed strategy for doing so consists of developing new

resource allocation techniques that are immune from the

users’ objective function choices, in that even when users

choose to deploy and pursue greedy goals and objectives,

their collective selfish behavior does not lead to poor and

unfair system performance. In addition, with our developed

techniques, the amount of service a user receives depends

not only on which channel the user selects, but also on how

much service it has received so far so as to ensure fairness

among users. To sum up, our proposed credit-based resource

allocation technique possesses two characteristics:

• Robustness against user selfishness. It achieves high

performance regardless of what objective functions users

choose. In other words, it reduces the effect that objec-

tive functions have on the achievable performance.

• Fairness among users. It improves fairness among

users by allocating service to users adaptively based on

how much service each user has received in the past.

IV. CREDIT-BASED RESOURCE ALLOCATION

In this section, we present the proposed credit-based

resource allocation technique designed to overcome selfish

behaviors and ensure fairness among users. In this technique,

each user is assigned a credit value with an initial value of

one. This credit value determines the proportion of service
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that each user should receive; the greater the credit value, the

higher the service to be received.

Under the proposed credit-based resource allocation tech-

nique, users’ credit values get updated depending on the

amount of service they receive when compared to the system

fair-share. We define the system fair-share as the amount of

service that each user should receive in order to ensure fair

allocation of available service among all users. The maximum

amount of system service is achieved when the users are

distributed among the channels as follows [10]: each channel

j contains exactly bj = Vj/Q users except the channel with

the minimum capacity which should contain the remaining

number of users. When Vj = V for all channel j, this optimal

distribution leads to a maximal value of global received

reward that can be approximated to Ĝmax = (m − 1)V
(derived in [10]). When the spectrum resources are allocated

fairly among all users, each user i should then receive at time

t a system fair-share, Ri(t), that is equal to:

Ri(t) =

t
∑

t′=ti

(m− 1)V

n(t′)
(3)

where ti is the time step at which user i joins the DSA

system and n(t) is again the total number of users present

in the system at time t. When the number of users does not

change over time (say n(t) = n for all t) and all users enter

and leave the system at the same time, Ri(t) =
(m−1)V

n
t for

every user i.
At the end of each time step, if the user receives less than

the system fair-share, its credit value increases by one if it

does not exceed a certain threshold, otherwise it is set to that

threshold value. On the other hand, if the user receives more

than the system fair-share, its credit value gets decreased by

one when it is greater than the threshold, otherwise it is set to

that threshold value. Consequently, users’ credit values could

be positive, zero, or negative. Whenever a user credit value

reaches zero or a negative value, the user is no longer able to

receive service until its credit value becomes positive again.

Indeed, when the user receives less than the system fair-

share, our approach requires that its credit value does not

exceed a certain threshold so as to prevent it from becoming

very large. Otherwise, once the user receives its fair-share

of the spectrum, it will take a relatively long time for its

received service to be reduced so as to not exceed its fair-

share. Likewise, in the case of receiving more than the

system fair-share, a user credit value must not go below a

certain threshold because otherwise its credit value would

keep decreasing, and can reach a small value. When this

happens, if this user, after sometime, wants to ramp up its

share again, it will take it a long time before it can actually

start receiving service.

Mathematically, a user i’s credit value at time t, Cri(t),
is calculated as:

Cri(t) =







max{Cri(t−1)−1, Crthi (t)} ifRi(t)<
t
∑

t′=ti

Si(t
′)

min{Cri(t−1)+1, Crthi (t)} otherwise
(4)

where the credit threshold bound is defined as:

Crthi (t) = (Ri(t)−
t

∑

t′=ti

Si(t
′))/Q(t)

The numerator in the above equation represents either the

missing service in case the user did not receive its whole

fair-share or the extra service in case the user received

more than its fair-share. In this equation, the amount of

missing/extra service is represented as a multiple/fraction of

user’s required service at time t. This means that the user’s

credit value threshold represents how many Qs the user has

to receive/miss in order to receive its fair-share.

For more clarification, let us consider the following exam-

ple where we assume that at time t, user A is missing 4 units

of service. If we further assume that user A’s Q(t) is equal

to 2, then its credit threshold is 2. This means that user A

needs 2Q’s to compensate the missing service. Let us also

assume, for illustration, that at the same time t, its credit

value reaches that threshold, i.e. Cr(t) = 2. Since its credit

value is positive, this user is able to receive service. At time

t + 1, this user receives an amount of service that is equal

to Q plus the fair-share amount for this time step. Thus, its

threshold at time t + 1 gets updated, and becomes equal to

1. This implies that user A needs now just one Q to cover

the missing service. Since its previous credit value is greater

than its current threshold, its current credit becomes equal

to the threshold, i.e. Cr(t + 1) = 1. In the same manner,

if this user at time t+ 2 receives 2Q plus the fair-share for

one time step, its threshold value gets updated and becomes

equal to −1. This means that this user is no longer missing

any service, and has actually received one extra Q. The same

credit updating process continues with reversing the condition

for the credit value. That is, the user credit value must not

go below the new threshold.

Using user i’s credit at time t− 1, the amount of service

that user i receives from accessing band j at time t is:

Si(t) =

{

Cri(t−1)∑
k∈Bj(t):Crk(t−1)>0 Crk(t−1)Vj ifCri(t−1) > 0

0 otherwise

where Bj(t) is the set of all users belonging to band j at

time t.

It is worth mentioning that we here assume that our system

is associated with an access point whose task is to monitor

and keep track of users (their ID, their activities, their check-

in and check-out times). One cannot rely on users to report

their credit values as they might cheat in order to receive

more service. Thus, we consider that both users and the

access point are calculating and updating users’ credit values.

This way when a user lies about its credit value, the access

point will know about the mismatch between the value it

calculated and the value the user reported. As a result of

this user behavior, the access point will block this user from

accessing and using the DSA system.
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V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the pro-

posed resource allocation technique in terms of the achievable

global/total reward, the standard deviation of users’ received

rewards, and its robustness against user misbehavior. For

simulation purposes, we use the ǫ-greedy Q-learning algo-

rithm [11]. In this algorithm, at the end of each time step,

the user selects the channel whose Q-value is the highest

with probability 1-ǫ, and selects a random channel with

probability ǫ. Whenever a user is tuned to a channel, it

measures the service it receives2, and then uses it to update

the Q-value entry corresponding to that channel. Throughout

this evaluation section, we assume that all users enter and

leave the system at the same time; that is, the number of

users is considered to be the same all time, and is equal to

n = 500 unless stated otherwise. We also set m=10 and

Vj=V =20 for all j.

A. Achievable Rewards

We show in Figs. 5 and 6 the normalized global/total

reward achievable under each of the functions, ri, G, and

Di, without and with the proposed credit-based resource

allocation technique. Again, the results for the achievable

rewards presented in this section are all normalized with

respect to the maximal/total rewards that the system can

achieve in the ideal scenario [5]. Fig. 5 shows that the

proposed credit-based technique allows users to achieve high

rewards/service even when they choose to pursue their greedy

objective, ri, or the global objective, G. The function Di,

on the other hand, already performs well in terms of the

amount of achievable rewards, and adding the credit-based

feature does only improve a little; this is illustrated in Fig. 6.

But recall that, as mentioned in our early sections, the

improvements of the proposed credit-based technique lies in

its ability to combat selfishness/maliciousness by allowing

users to achieve high amounts of service independently of

what users pursue as objectives, and to ensure fairness among

users also regardless of the objective function choice, as will

be shown in next sections.

B. Robustness against objective function choice

We now show that the proposed credit-based technique

reduces the impact of objective function choice on the system

performance. Fig. 7 shows the system performance achiev-

able in the presence of misbehaved users (users that choose

not to use theDi function as their objective) with and without

the credit-based resource allocation technique. In the figure,

"x% ri, (100 − x)% Di" refers to the case when x% of

the users choose to pursue their greedy objective function ri,
while the other (100−x)% users implement the Di function.

Consider, for e.g., the case when 25% of the users use the ri
function instead of the Di function. Observe that when the

proposed credit-based technique is not used, the normalized

2The methods used to calculate the received service are beyond the scope
of this work
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Fig. 5: Normalized global reward of ri and G without and

with the credit-based resource allocation technique.
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Fig. 8: Standard deviation of users’ received rewards under

different objective functions.

overall system performance is about 40% only, whereas when

our technique is used, the system performance reaches about

80%. In this specific scenario, the adoption of our technique

doubles the overall achievable performance. As you can see

from the figure, this performance improvement can be even

greater when the percentage of misbehaved users is higher.

This is illustrated in the figure via the case corresponding to

when 75% of the users use ri.

C. Fairness

Fig. 8 shows the standard deviation of users’ received

rewards under the ri, G, and Di functions when using

our proposed credit-based resource allocation technique for

various numbers of users. The figure also shows the standard

deviation of users’ received rewards under Di but without

using the proposed technique. It can be seen from the figure

that our proposed credit-based technique reduces the standard

deviation drastically, and hence, it improves fairness among

users substantially.

VI. DISCUSSION

We have seen that the use of the proposed credit-based

technique makes learning techniques robust against objective

function choice and improves system fairness while still

achieving high system rewards. Without this technique, the

Di function, on the other hand, does achieve good rewards

as well, but only when all users use it as their objectives. In

other words, if some (or all) users pursue other objectives,

the overall system performance can degrade substantially.

In addition, ensuring fairness can be very challenging due

to the way users end up distributing themselves among the

channels. One key advantage of the Di function, however,

lies in its fully distributed capability; it can be implemented

and fully realized without needing any cooperation or cen-

tralized entity2. Ours can still be viewed as a distributed

technique in the sense that users still choose and switch to

their bands on their own will and without having any third

2This depends, to a great extent, on the network topology and on other
factors as well [5].

entity tell them to do so. However, since our approach relies

on and accounts for what users have received in the past

to be able to decide what should be allocated in the future

so that misbehavior is prevented and fairness is ensured, it

requires the deployment of an access point to keep track of

and monitor users’ activities. This, however, is not unrealistic

and can be done with minimum overhead.

VII. CONCLUSION

This paper proposes a credit-based resource allocation

technique that improves fairness and combats misbehavior in

DSA systems. The proposed technique is robust against self-

ish behavior and achieves good performance independently

of what users choose to pursue as their objectives. It also

improves fairness by ensuring that users are allocated equal

amounts of available spectrum service.
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