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Abstract—In this paper, we introduce a new green resource
allocation problem using hybrid powering of the communication
system from renewable and non-renewable sources. The objective
is to efficiently allocate the power delivered from different micro-
grids to satisfy the users’ requirements. Minimizing a defined
power cost function instead of the net power consumption
aims to encourage the use of the available renewable power
through collaboration between base stations within and outside
the different micro-grids. The different degrees of freedom in
the system, ranging from assignment of users to base stations,
possibility of switching the unnecessary base stations to the
sleep mode, and dynamic allocation of the available bandwidth,
allow us to achieve important power cost savings. Although the
formulated optimization problem is a mixed integer-real problem
with a non-linear objective function, we propose an efficient
two-step algorithm to jointly assign users to base stationsand
the shared bandwidth among users. The users-to-base stations
assignment is inspired from the bin-packing approach while
the bandwidth allocation is performed through the bulb-search
approach. Simulation results confirm the important savings in
non-renewable power consumption when using the proposed
approach.

Index Terms—Green communications, smart grids, efficient
bandwidth allocation, power efficiency.

I. I NTRODUCTION

The dramatic increases in power generation costs coupled
with the increasing awareness about the negative impact of
carbon dioxide emission on the environment prompted re-
searchers to think of new, innovative ways that can make
substantial reduction in power consumption when designing
modern communication systems [1–4]. As a result, the de-
velopment of techniques that can still achieve high system
performances while minimizing energy consumption has been
the design focus of various networking systems, including sen-
sor networks [5–8], cognitive radio networks [9–11], femtocell
networks [12–15], cloud networks [16–18], and others.

Relying on renewable energy sources has recently emerged
as one of promising solution to address this energy consump-
tion issue [19, 20]. However, their limited energy efficiency
makes them unreliable for long-term use. With the technolog-
ical advances achieved in improving their energy efficiency,
renewable sources contributed about 19% of the global world
energy consumption in 2012 [21]. Communication systems are
one of the biggest power consumers andCO2 producers. In
2014, radio access networks contributed about84 TWh in the

total world energy consumption and about170 Mto CO2e
in the total carbon emissions [22]. Those numbers are ex-
pected to exponentially increase in the coming years with the
continuous growth of the telecommunications market driven
by the multiplication and variation of the telecommunication
services and the exponential increase of the required Quality
of Service (QoS). According to [23, 24], base stations (BSs)
are the highest components in terms of power consumption in
the mobile networks. It is responsible for about 60% of the
total power consumption. For that, many research attempts
have focused on reducing BSs’ energy consumption through
efficient resource allocation, increasing collaboration between
BSs to serve users, optimizing the geographical positions
taking into consideration the distribution of the served users,
and improving the use of renewable sources.

For instance, Holtkampet al. [25] proposed an optimized
radio resource allocation where the achieved gain ranges
between 20 to 40% depending on the load. Micallefet al. [26]
and Sakeret al. [27] proposed to switch BSs to sleep mode
when the traffic load decreases. They proposed different
switching scenarios to sleep mode that allow to obtain a
considerable gain of energy consumption. Other research
works focused on power sources; Chamola and Sikdar in [28]
proposed to power BSs using solar energy while Yu and
Qian studied wind-powered BSs’ performance in [29]. The
authors in [23, 30] considered user-BS associations in cellular
networks whose BSs are powered by both on-grid power and
green energy.

One of the limits of renewable sources is the discontinuity of
the power generation which affects reliability of the service.
Thus, hybrid powering is required. The emergence of smart
grids represents also an opportunity to enhance power us-
age in telecommunication systems by exploiting the dynamic
power pricing information. A recent survey, Erol-Kantarciand
Mouftah [31], showed that although green communications is
one of the hot topics in the last few years, only few research
groups have focused on optimizing the use of smart grids in
communication systems. Of these works, Buet al. [32] pre-
sented a study of the best scheme to power base stations
using smart grid with consideration of real-time power prices
provided by the smart grid and pollution level resulting from
the power generation while Ghazzaiet al. [33] presented a
complete framework for a smart-grid powered LTE system and



introduced a power allocation strategy based on evolutionary
algorithms.

In this work, we consider a communication system where
BSs connected to different micro-grids cooperate to minimize
the global power cost while ensuring a reliable service to the
requesting users. Each micro-grid is equipped with renewable
sources but has the ability to procure non-renewable power
from the main grid when needed. The main task is to optimize
resources allocation through collaboration between BSs to
satisfy the required QoS of the different users while mini-
mizing the non-renewable energy consumption by profiting
from the available renewable power. The challenge consists
in determining the users’ assignment to BSs depending on
their relative channel gains as well as the renewable power
availability at each micro-grid. The main contribution of this
paper is to propose efficient algorithms for dynamic power
and bandwidth allocation for a wireless communication system
using cooperation between BSs to efficiently use the renewable
power and minimize usage of exceeding non-renewable en-
ergy. Turning the unnecessary BSs to the sleep mode capability
is also exploited. Furthermore, we study the possibility of
allocating the available bandwidth dynamically to further
improve the power usage, although this step represents an
additional challenge.

This paper is organized as follows. Section II introduces
the system model and micro-grid powering architecture. Sec-
tion III gives the mathematical problem formulation of the
system and models that govern the power cost in the system. In
Section IV, we detail and analyze the proposed algorithms for
resource allocation while in Section V we present simulation
results and gains achieved with the proposed schemes. Finally,
the conclusion is drawn in Section VI.

II. SYSTEM MODEL

We consider a set ofL base stations aiming to serveK
users throughN sub-channels (N >> K). We assume that
the base stations are connected throughM power-grids where
each micro-gridm powers a group ofLm base stations. Each
micro-grid uses renewable power to generate electricity needed
to feed the connected base stations. In addition to that, it is
responsible for purchasing the back-up power from the main
grid when needed as shown in Fig. 1.

It is to be noted that BSs’ clustering into the micro-grids
is out of the scope of this paper. But, results of this work
could be exploited to optimize the clustering of the BSs as
we will show in the simulation results’ section. We consider
to focus on the instantaneous management of the available
power. Thus, we assume that BSs do not have the ability to
stock power. The available instantaneous renewable power at
a micro-gridm is denoted byP renew

m assumed to incur free
cost of usage while the non-renewable power has a unitary
cost denotedαm per power unit. Thus, the cost of the power
consumed by each micro-grid is equal to the cost of the power
consumed by all BSs belonging to the micro-grid exceeding
the available renewable power. Mathematically, the cost ofthe
power at the micro-gridm is written as
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Fig. 1. System model.

Cm = αm

[ L
∑

l=1

bm,lPl − P renew
m

]+

, (1)

with
[

x
]+

= max(x, 0) and wherePl represents the power
consumption of the base stationl, bm,l is an index of the
base stations connected to the micro-gridm (i.e., bm,l = 1
if base stationl is connected to micro-gridm and bm,l = 0,
otherwise), andP renew

m represents the generated renewable
power at this micro-grid.

We consider a simplified model for the base station power
Pl. According to Arnoldet al. [34], the power consumption
of a base station consists of basically two components. The
first term is function of the transmitted power which depends
on the served users while the second is independent from the
load and serves to ensure powering of the base station and
ensuring some functionalities such as cooling. Assuming the
possibility of switching the base station to a sleep mode when
not serving any user, this component is divided into two terms,
one represents the power needed to turn the base station ON
from sleep mode and one for the power consumed even if in
sleep mode. Thus, assuming a linear model function of the
transmitted power, the base station power can be written as
follows

Pl = ξl

K
∑

k=1

a
(k)
l P

(k)
l + P on

l

(

K
∑

k=1

a
(k)
l > 0

)

+ P idle
l , (2)

wherea(k)l is the assignment index for users to base stations
(i.e., a(k)l = 1 if the k-th user is served by the base station



l anda
(k)
l = 0, otherwise),P (k)

l is the power transmitted by
base stationl to thek-th user, andξl is the amplification factor
for the transmitted power by the base stationl while P on

l is
the power consumed when the base station is not at sleep
mode (i.e., at least one user is served) andP idle

l is the power
consumed by thel-th base station when idle.

III. PROBLEM FORMULATION

The aim of our work is to improve the usage of the
available renewable power in different micro-grids through
collaboration between the base stations in the same micro-
grid and in different micro-grids. Consider Eq. (1), the total
cost of the procured non-renewable power by all micro-grids
can be written as follows

C =

M
∑

m=1

αm

[ L
∑

l=1

bm,lPl − P renew
m

]+

. (3)

The Quality of Service (QoS) is ensured by a minimum
throughputrreqk that needs to be guaranteed for each userk for
its successful communication. The QoS may differ from one
user to another depending on the user’s running applications.
The minimum rate constraint for each user is expressed as

R(k) ≥ rreqk , (4)

whereR(k) is the achieved throughput by userk, given by

R(k) =

L
∑

l=1

a
(k)
l bc n
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l log2
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(k)
l g
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l

N0 bc n
(k)
l

)

, (5)

wheren
(k)
l is the number of sub-channels allocated to user

k, bc is the sub-channel bandwidth,g(k)l is the channel gain
between the base stationl and the userk supposed to be
the same for all channels (fast fading variations are not
considered as we aim relatively large time-slot transmissions),
andN0 is the noise power density. To avoid interference, we
assume channel re-use not allowed and all channels shared
orthogonally between all base-stations. Thus, an additional
constraint is considered for channels’ sharing

L
∑

l=1

K
∑

k=1

a
(k)
l n

(k)
l ≤ N. (6)

Then, the problem consists of minimizing the cost function
under minimum rate per user constraint, total bandwidth
constraint and the assumption that each user must be served
only from one base station.
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{
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The last constraint is added to indicate that each user is served
by only one base station. In this case, the allocated power is
deduced from the rate constraint (7b) as follows
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IV. EFFICIENT USERS ANDCHANNELS ASSIGNMENT

The optimization problem (7) is a non-linear integer mini-
mization problem to determine the assignment of each user to
the best BS in addition to the number of sub-channels per user.
The objective is to ensure the required data rates for all users
while minimizing the consumption power cost by profiting
from the available renewable power in the different micro-
grids and variability of the channels’ gains between the differ-
ent users. In conventional power allocation problems, users-to-
BSs assignment depends mainly on the channel gains between
the users and the BSs (i.e., each user will be assigned to the BS
with the best channel gain). In our problem, the dependency
of the cost function on the available renewable power makes
the problem more challenging. In addition, further power cost
reductions are possible by keeping unneeded BSs in the sleep
mode and using adaptive bandwidth allocation. As the problem
is complex, we propose to firstly assume uniform bandwidth
assignment among all users and focus on assigning the users
to BSs. Then, we will present a two-step approach to jointly
optimize the users-to-BSs assignment and allocated bandwidth
to further optimize the cost of the power consumed by profiting
from dynamic spectrum assignment.

A. Uniform Bandwidth

In this part, we consider a uniform bandwidth sharing
between the users (i.e.,n(k)

l = N
K

). The optimal solution
to determine the best users-to-BS assignment is to perform
an exhaustive search of all the possible assignments and take
the combination that incur the least total cost. Obviously,this
is not a practical solution as its complexity is exponential.
Alternatively, we propose a polynomial approach based on
the bin-packing to determine the users that will be assigned
to each base station. In our case, the BSs represent the bins
while the users are the objects to be packed. The difference,is
that objects occupy different volumes depending on the pack



as the power consumed differs from a BS to another. Our
metric criterion for the decision is the resultant global power
cost in the whole network. Thus, each user will be assigned
to the base station incurring the lowest power cost according
to Eq. (3). As in usual bin-packing algorithms, the order of
packing objects influences the obtained performance. For that,
we propose two approaches:

• Random users assignment:In this approach, we simply
assign the users in random order. Although, this method
is limited in performance, it is suitable for online assign-
ment as we need to assign users in their order of request
of service without waiting for all users to search the best
order of assignment.

• Best users assignment:In this approach, as described
in Algorithm 1, we search for the user that will incur
the lowest power cost by checking with all users. Then,
assign it and repeat the procedure until assigning all
users. Although the complexity is multiplied by a factor
capped by the number of users (we need to parse, at each
step, all users and compute the resultant power cost), this
process enhances notably the performance as the order of
assignment of the users is very important to efficiently use
the renewable power in the micro-grids.

Algorithm 1 Users-to-base stations assignment.

INPUT : Number of sub-channels per user:{n
(k)
l } 1≤l≤L

1≤k≤K
.

OUTPUT: Users-to-BSs assignment:{a(k)l } 1≤l≤L

1≤k≤K
.

repeat
for all usersk = 1 : K do

Determine base stationlk to be assigned to userk
incurring lowest power cost:lk = argminl c

(k)
l

end for
Assign userk∗ such thatk∗ = argmink c

(k)
lk

until All users assigned

B. Bandwidth Allocation

Dynamic spectrum allocation has shown its importance for
power savings. Thus, we propose to assign the bandwidth
adaptively between the users in order to further reduce the
global power cost. As discussed earlier, solving the global
problem optimally is computationally complex, therefore we
propose to use an iterative two-step algorithm. In the first
step, we optimize the users-to-BSs assignment similarly to
the previous section. While in the second step, we propose
to optimize the bandwidth allocation. For the bandwidth allo-
cation, inspired by the bubble sort, we propose an algorithm
that consists of searching recursively the best possible sub-
channels changes until convergence. At each step, we parse
all users and search, for every user, the best channel swap
with another user that results in the largest reduction in power
cost. We apply that change and restart the search again until
no further power savings could be achieved.

Algorithm 2 Bandwidth allocation.

INPUT : Users-to-BSs assignment:{a(k)l } 1≤l≤L

1≤k≤K
.

OUTPUT: Number of sub-channels per user:{n
(k)
l } 1≤l≤L

1≤k≤K
.

repeat
for all usersk1 = 1 : K do

search for the best sub-channel swap with another user
k2 such that:

k2 = argmin
k2

C(n
(k1)
l ⇐ n

(k1)
l + 1, n

(k2)
l ⇐ n

(k2)
l − 1)

end for
until no possible cost decrease (k2 = k1, ∀k1).

V. SIMULATION RESULTS

We consider a circular area of diameter6 Km where
K users andL = 8 base stations are placed randomly.
The channel gains are derived based on the pathloss model

g
(k)
l = c0

(

d0

dl,k

)η

, where c0 is the channel gain for the

reference distanced0, dl,k is the distance between the base-
station l and the userk, and η is the path-loss set to3.
We consider a total bandwidthB = 20 MHz divided into
sub-channels of per sub-channel widthbc = 15 KHz. The
noise power is taken−120 dBm/Hz. The minimum required
throughput rate per user is set torreqk = 50 Mbps.

We consider that for an average load, the dependent trans-
mission power term represents2/3 of the base-station total
power. The remaining 1/3 is divided equally between the idle
power and the sleep-mode power. Thus, when in sleep mode,
base stations can save 1/6 of the consumed power and the
consumed power when idle is equal to 1/6 of the average
consumed power. The efficiency of the base station amplifiers
is set to 1

ξ
= 33.33%. We consider that the base stations are

grouped intoM = 4 micro-grids so each micro-grid supplies
two base stations. We assume that the non-renewable power
cost,αm, is equal for all micro-grids to focus on the effect of
the renewable power availability.

To illustrate the results, we consider the scenario where re-
newable power is not considered in optimization and compute
the incurred power cost and consider that as a reference. We
represent the obtained performance as the relative cost gain
with comparison to this reference cost.

Fig. 2 illustrates the normalized power cost gain as a
function of the number of users in the network with different
algorithms. First, we note the net cost gain achieved by
incorporating additional features in the optimization algorithm.
In particular, the best user selection method for the users-to-
BSs assignment outperforms the random selection. In addition,
optimizing the allocated bandwidth for each user allows further
cost savings. Second, as the number of users requesting to be
served increases, the cost gain decreases due to the increase of
the consumed power which, at a certain step, harvests all the
available renewable power. In this case, the problem reduces to
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Fig. 2. Relative power cost gain as function of the number of served users
with constant renewable power for all micro-grids.
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Fig. 3. Algorithms optimality: Relative power cost gain when renewable
power is not available.

a total power minimization problem and our approach becomes
limited in performance compared to the optimal approach.

In order to show the optimality of the proposed algorithms,
we consider the case where the renewable power is not avail-
able at all (i.e.,P renew

m = 0, ∀m). In this case, the problem
is exactly the same as the total power minimization which we
take as a reference for computing the cost gains. We present
the results in Fig. 3 which shows that without bandwidth
optimization the best user selection algorithm incurs a loss of
around 10% while adding the bandwidth optimization allows
a gain between 30 to 45% which represents the net gain of
the dynamic allocation of the bandwidth.

In the previous figures, we studied configurations where the
same renewable power amount is available in each micro-grid.
In the following, we propose to study a more practical scenario
where the available renewable power is variable across the
different micro-grids. We present in Fig. 4 the cost gain with
increasing variability of the renewable power level across
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1 2 3 4 5 6 7 8
−100

−80

−60

−40

−20

0

20

40

60

80

100

Number of micro−grids

N
or

m
al

iz
ed

 c
os

t g
ai

n 
(%

)

 

 

Random user − uniform bandwidth
Best user − uniform bandwidth
Random user − optimized bandwidth
Best user − optimized bandwidth
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the micro-grids. We note that with the best user assignment
algorithm, the cost gain increases when the variance increases.
This is explained by the fact that order of assignment of users-
to-BSs becomes more important in this case than in the equal
renewable case for which, due to the random distribution of
users, optimal assignment will be most likely based on channel
gains rather than renewable power availability.

In Fig. 5, we vary the number of micro-grids while keeping
the same number of base stations and the same total renewable
power over all micro-grids to observe the effect of collabo-
ration between the base stations. As the number of micro-
grids increases, the cost gain is expected to decrease as in the
random users assignment due to non-possibility of exchanging
energy between BSs. But, with the best user assignment, the
gain remains approximately constant. The algorithm succeeds
to compensate the loss incurred by the absence of collaboration
between BSs by classifying the users before assigning them.



VI. CONCLUSION

We have introduced in this paper a new model for power-
ing base stations using hybrid renewable and non-renewable
power sources. While base-stations are clustered in groupsof
micro-grids, we proposed efficient assignment algorithms and
bandwidth allocation that minimize the global power cost and
satisfy users requirements through cooperation between BSs
in the same micro-grids and between the different micro-grids.
Important power cost gains are achieved through the proposed
approach. Although we consider in this paper a simple cost
function, the work can be applied also for more complex power
cost functions.
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