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Abstract. This paper proposes a distributed and fair resource alloca-
tion scheme for large-scale wireless dynamic spectrum access networks
based on particle filtering theory. We introduce a proportionally fair
global objective function to maximize the total network throughput while
ensuring fairness among users. We rely on particle filtering theory to
enable distributed access and allocation of spectrum resources without
compromising the overall achievable throughput. Through intensive sim-
ulation, we show that our proposed approach performs well by achieving
high overall throughput while also improving fairness between users.
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1 Introduction

The increasingly growing number of wireless devices, along with the continually
rising demand for wireless bandwidth, has created a serious shortage problem in
the wireless spectrum supply. This foreseen spectrum shortage is shown to be due
to the lack of efficient spectrum allocation and regulation methods rather than
due to the scarcity of spectrum resources [1]. As a result, Dynamic Spectrum
Access (DSA) has been promoted as a potential candidate for addressing this
shortage problem, which essentially allows spectrum users to locate spectrum
opportunities and use them efficiently without harming legacy users [2]. Many
research attempts have been conducted to enable effective DSA. While many of
them have focused on spectrum sensing related challenges, others have focused on
developing resource allocation techniques that help access and utilize spectrum
resources efficiently [3].

Enabling DSA while maximizing the total throughput has been one of the
key challenges for resource allocation in DSA systems [3]. Many researchers have
proposed centralized approaches aiming to maximize the total throughput [4].
Although these methods achieve optimal or near-optimal performances, they
have limitations when it comes to scalability and computational complexity,
especially when applied to large-scale systems. Therefore, distributed approaches
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are more attractive, and can be more effective when applied to DSA. This is
because the decision will be taken locally by each user instead of being taken
centrally, making each user send its information to the central agent so as to
allow it to make such a decision.

There have been many resource allocation approaches proposed in the lit-
erature for enabling distributed DSA [3, 5, 6]. For example, the authors in [6]
proposed Q-learning for distributed multiband spectrum access and power allo-
cation. The authors in [7] proposed objective functions that rely on Q-learning
to allocate spectrum resources in a distributed manner, where the focus was on
the throughput maximization. In [8], particle filtering theory was used also for
promoting distributed resource allocation in DSA systems, where it was shown
that it can achieve higher throughput than what the technique proposed in [7]
achieves when using the same objective functions.

One common concern with most of these distributed approaches is that they
aim to increase throughput but without taking into account any fairness con-
sideration. Even though throughput maximization-based approaches maximize
the overall network throughput, they may lead to starvation of some Secondary
Users (SU)s, resulting thus, in not treating all users equally fairly. This means
that some users may get very limited amounts of throughput when compared to
others. It is therefore important that fairness should be taken into account when
designing these distributed allocation techniques. In the literature, fairness has
been proposed with centralized approaches [8–10]. The authors in [8] considered
the maximization of the minimum objective function to address user fairness.
Although, the proposed objective function achieves better fairness, proportion-
ally fair methods [11] are anticipated to achieve higher fairness. They target to
balance between two conflicting behaviors: the cooperative behavior using the
sum maximization and the minimum maximization which penalizes the users
with high throughput.

With all of this in mind, this paper proposes a distributed allocation tech-
nique that jointly combines proportional fairness with particle filtering to assign
spectrum in large-scale DSA networks. Since the global spectrum assignment op-
timization problem suffers from a high computational complexity and does not
scale well, our technique aims to achieve suboptimal allocation while ensuring
fairness among the different users. Using simulation, we compare the through-
put performance of the proposed technique with that of the minimum fairness
technique, proposed in [8].

The remainder of this article is organized as follows. In Section 2, we describe
our system and channel model. In Section 3, we formulate the resource alloca-
tion problem for large-scale DSA systems, and discuss the issues related to the
derivation of the optimal solution with respect to the used objective function.
We apply particle filtering for distributed spectrum allocation in Section 4. Eval-
uations are provided in Section 5. Finally, we conclude the paper in Section 6.
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2 Large-Scale DSA System Model

We consider a DSA system composed of n DSA agents competing to communi-
cate over m non-overlapping bands, where a DSA agent represents a transmitter-
receiver pair of SUs. The n agents are uniformly distributed within a cell where
a primary system is communicating as illustrated in Fig. 1. We assume that
the m bands have been perfectly sensed and declared as available using spec-
trum sensing technique (we will not discuss this technique as it is beyond the
scope of this paper). As we are considering a large-scale system, the number of
users is assumed to be very high compared to the number of the available bands
(n >> m).

Communication 

between the SUs

Communication 

between the PS 

components
SU PUs

Fig. 1. Large scale DSA system.

At each time slot t, user (agent) i tries to communicate with its correspondent
receiver by selecting one band from the pool of the available bands. Each user
aims to achieve the maximum possible throughput Ri with respect to its allowed
power budget Pi. If we assume that user i selects band j, then the achieved
throughput can be expressed as
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Ri(t) = B(j) log2(1 + γ
(j)
i (t)), (1)

where B(j) is the jth channel bandwidth and γ
(j)
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Here h
(j)
ik (t) is the jth channel impulse response from the kth transmitter to the

ith receiver, N0 is the power spectral density of the noise which is assumed to be

constant and the same for all spectrum bands, and a
(j)
k is the band’s selection

mapping index. If band j was selected by user k, then a
(j)
k = 1, otherwise a

(j)
k = 0.

The channel is modeled as a first order Auto-Regressive (AR(1)) process [12].

Hence, at time slot t, the channel impulse response h
(j)
ik (t) is given by

h
(j)
ik (t) = α0h

(j)
ik (t− l) + (1− α0)w

(j)
i (t), (3)

where α0 is the AR parameter expressed as α0 = J0(2πfdTb) with J0 is the
0th order Bessel function of the first kind, fd is the maximum Doppler frequency,

Tb is the channel coherence time, and w
(j)
i is a complex Gaussian noise with zero

mean and unit variance.

3 Spectrum Assignment Problem Formulation

The main challenge that we address in this paper is how to assign the available
bands among the n users efficiently so as to maximize the per-user achievable
throughput while ensuring fairness. Achieving this requires, ideally, collabora-
tion among the different users to gather information at a central unit. It exploits
this collected information to make centralized spectrum assignment decisions.
Alternatively, and in order to avoid the need for collaboration between users,
which often results in an excessive communication overhead, one can rely on
users themselves to use local information to make their decisions in a distributed
manner. As mentioned earlier, examples of such distributed approaches are learn-
ing based approaches, in which users rely on an objective function to maximize
their achieved throughput. Authors in [7] showed that while the use of intrinsic
objective functions results in fluctuating behaviors, the use of global objective
functions, which take into account other users’ decisions, though improve the
overall system performance, are slow in doing so. The sum objective function is
then defined as

Osum
i (t) =

n∑
k=1

Rk(t). (4)
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A common problem with the above functions is that they do not ensure fairness
among users. In an attempt to address fairness, using a common global objective
function known as bottleneck optimality, max-min approach has been proposed
in [13] and is expressed as

Omin
i (t) = min

1≤k≤n
Rk(t). (5)

This objective function is more suitable for users having the same requirements,
which is generally not the case in wireless communications. Although max-min
solves the problem of starvation, users with high requirements will be penalized
while users with low requirements will get more service than what they need.
For a more efficient fair allocation, proportional fair [11], is shown to strike a
good balance between two conflicting objectives: the maximization of the to-
tal throughput and the max-min fairness which may penalize users with high
requirements. It is defined as

OPF
i (t) =

n∑
k=1

log2(Rk(t)). (6)

Using the proportional fair global objective function, we formulate our optimiza-
tion for each user i as follows

max OPF
i (t) ∀ t (7a)

s.t.

m∑
j=1

a
(j)
i (t) = 1 ∀ t. (7b)

This is a non-linear integer programming problem of the allocation index

a
(j)
i (t) = [a

(1)
i (t), a

(1)
i (t), ..., a

(m)
i (t)]. The constraint (7b) is used to control the

number of the bands that each user could select at each time. This is behind
the combinatorial nature of the problem where each user is allowed to select one
single band.

Optimally allocating the m bands among the n users requires relaying all the
network information such as the channels’ fading and the users’ power budgets
to a central processing unit. By doing so, not only the system suffers from a huge
network overhead, but it also incurs high computational processing time. The
computational complexity is mn and thus, it increases exponentially with the
network scale. Hence, the allocation problem is NP-hard. Therefore, applying a
distributed approach is more appealing to reduce the exchange overhead. In this
case, each user has to take its own decision, ai(t), and exchange its measured
throughput and allocated channel to other users such that the global system
evolves towards an optimum spectrum allocation a(t).

One of our main contribution in this paper is to consider fair distributed
resource allocation. To the best of our knowledge, fairness has been addressed
with centralized spectrum allocation so far and without any focus on the system
scalability [3].
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4 Fair Distributed Spectrum Assignment for Large-scale
DSA

One key merit that distributed resource allocation schemes possess is low sig-
naling overhead. Local decisions are made following the exchange of some infor-
mation (e.g. the achieved throughput and the selected band) among users and
tracking the system evolution over time. In this context, particle filter based
approaches are known to have strong tracking capabilities and can be adapted
to non-linear and non-Gaussian estimation problems [14]. However, since the
problem of spectrum assignment comes down to an estimation problem, we pro-
pose distributed particle filtering to estimate at each time slot the best spectrum
allocation that achieves the fairness goal.

The concept of distributed particle filtering is derived from the sequential
estimation and importance sampling techniques. Each user needs to interact
with some or all other users in order to get the best estimation of the unknown.
We model the evolution of the estimation of the best spectrum allocation as a
discrete-time state-space model given by

a(t) = X (a(t− 1)) + u(t), (8a)

Ri(t) = Ψi(a(t)) + vi(t), (8b)

where X (.) is a known function that describes the state’s change. Ψi(.) is the
function that links the global state a(t) to the local observation Ri(t). It is a
non-linear function of the state a(t). u and vi(t) are two stochastic noises of
the state and the observation models, respectively. The noises are assumed to
be white and independent of the past and the present states. Equation (8a)
describes the relation between the state at instants t and t− 1. Note that Ri(t)
is seen as the measurement to be observed locally by user i.

The two equations (8a) and (8b) provide a probabilistic model of our prob-
lem formulation. The goal of distributed particle filtering is to get the channel
assignment matrix a(t) sequentially using all the local measurements Ri(t) of all
the users i up until the current time t.

Since the channels’ fading changes over time for the whole system, this affects
the spectrum selection for each user at each time slot. Fortunately, with the
presence of an inherent correlation between the channel realizations, the channel
state at time t could be estimated from the previous spectrum assignment; i.e.,
at time t − 1. We assume that each user relays its band selection, denoted as
ai(t) = (a1i , ..., a

m
i ), along with its measured observation, Ri(t), to the other

users. This information allows the other users to estimate their best selections
during the next time slot. Denoting the other users’ band selections by a−i(t−1),
the global function that governs the state change and executed by each user could
be expressed as

X (t) = arg max
ai(t)

OPF
i (t)|{a−i(t) = a−i(t− 1), h̃(t)}, (9)

where h̃ is the estimate of the channel according to (3).
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With conventional Bayesian approaches, to estimate a(t), we should compute
the posterior f(a(t)|R1:n(0 : t)), where f denotes a probability density function
and R1:n(0 : t) is the vector that contains the observed throughput from t′ = 0
until t′ = t. The state can be sequentially estimated in two steps: a prediction
phase given by Equation (10a) and an update phase using Equation (10b) [14].

f(a(t)|R1:n(0 : t− 1)) =

∫
f(a(t)|a(t− 1))f(a(t− 1)|R1:n(0 : t− 1)), (10a)

f(a(t)|R1:n(0 : t)) =
f(R1:n(t)|a(t))f(a(t)|R1:n(0 : t− 1))

f(R1:n(t))|R1:n(0 : t− 1))
. (10b)

Although the recursion can simplify the derivation of f(a(t)|R1:n(0 : t)),
it could not be straightforwardly computed due to the non-linearity and the
involvement of an integral quantity.

Particle filtering theory provides an interesting tool to overcome this issue.
Instead of computing the posterior f(a(t)|R1:n(0 : t)), it is sufficient to consider a
large number of samples from this distribution. These samples should be carefully
drawn to reflect the original probability density function. Hence, it could be
approximated by

f(a(t)|R1:n(0 : t)) =

Ns∑
k=1

wk(t)δ(a(t)− ak(t)), (11)

where Ns is the number of samples, ak(t) is the kth sample and wk(t) is
the correspondent weight. But, since we will apply the particle filter distribu-
tively, instead of estimating a(t), user i estimates only its channel selection
ai(t) by considering a local density function known as importance density
f(ai(t)|Ri(0 : t),ai(t−1),a−i(t)). In this case, the particles, aki (t), are composed
by the other users’ selections, a−i(t), and a possible selection of user i. User i
forwards its optimal selection ai(t) to the other users to be considered in their
particles. Although this importance density is optimal [15], its implementation
is challenging, and hence, we instead consider the following

π(ai(t)|a(t− 1)) = f(ai(t)|ak(t− 1),a−i(t)). (12)

The weight at each sample is deduced from the previous weight and by taking
into consideration the new observation. From the importance function in (12),
it follows that

wki (t) = wki (t− 1)f(Ri(t)|ak). (13)

These weights are then normalized.
Over time, the weights of the different particles at each user become negli-

gible, i.e., wki (t) ≈ 0 ∀ k except for a few particles whose weights become very
large. This problem is often known as the samples degeneracy. This implies that
huge computations will be dedicated to update particles with very minor con-
tributions. The idea of re-sampling is to make the particles with large weights
more dominant while rejecting the particles with small weights [16]. This results
in Algorithm 1.
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Algorithm 1 Distributed particle filtering for fair spectrum assignment in large-
scale DSA systems.

INPUT: The available bands: m.
OUTPUT: The assigned spectrum for each user: {ai}1≤i≤n

Initialization At the first time slot t = 0
for all DSA user i do
– Generate random samples of the possible channel assignment {ak

i (0)}Ns
k=1;

– Set the weights to be equal {wk
i }Ns

k=1 = 1
Ns

;
– Select the best band;
– Exchange the received throughput and the selected band with other users;
end for
for all time slot t do

for all DSA user i do
1. Prediction: Compute possible particles using (12);
2. Decision: Select the band of the particle giving the highest reward;
3. Start the transmission on the selected bands;
4. Update the channels estimation;
5. Weighting: Compute possible particles using (13);
6. Normalizing the weight:
7. Re-sampling: Apply re-sampling to avoid degeneracy;
8. Exchange the received throughput and the selected band;
end for

end for

5 Simulation results

We consider a DSA system with n = 100 agents communicating over m = 10
bands. We assume that at the beginning of each time episode, the sensing process
is performed and the available bands are determined. The channels between the
transmitter and its correspondent receiver as well as the other receivers are

assumed to be Rayleigh fading channels with an average channel gain
[
d
dki

]η
where d = 1Km is a reference distance, dki is the distance between the ith

transmitter and the kth receiver and η is the path-loss exponent that is set
to 3. We set the average gain of the direct channel link to be 3 dB stronger
than the average gains of the interference channels. The number of particles at
each user is set to Ns = 20 particles. We assume that each user uses an elastic
traffic model [6]. In this model, each user i has its own throughput requirement
threshold, Rth

i (t), which is uniformly distributed in the interval [0, 10kbit/s]. The
power budget for all the users is set to 4dBm. We rely on this model to allow each
user to specify its own QoS requirements, which can be different across different
users. Hence, instead of considering Ri(t) in the observation, we consider the
reward ri(Ri(t)) that follows the elastic model.

To study the performance of our scheme, we investigate the per-agent
achieved throughput at each time slot. Fig. 2 shows that the distributed particle
filtering approach achieves better per-agent throughput, on the average, when
compared to the minimum throughput approach. This could be explained by the
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fact that the minimum scheme tends to penalize the users with good channels
at the expense of favoring those users with poor channels to achieve the same
level of throughput. On the other hand, the sum objective approach achieves, as
expected, the highest throughput among the other approaches.
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Fig. 2. Achievable throughput under the studied schemes: sum throughput, minimum
throughput, and the proportional fairness.

Now, in order to evaluate the fairness of the proposed distributed approach,
we use and measure the Jain’s fairness index [17], defined in Eq. (14), under each
of the studied approaches, and compare that achieved under our scheme with
those achieved under the other ones.

J(t) =

(∑n
i=1Ri(t)

)2
n
∑n
i=1R

2
i (t)

. (14)

In Fig. 3, we plot the Jain’s index J(t). We first notice that our proposed fair
distributed approach achieves better fairness than the two other approaches.
The total sum throughput has the lowest fairness index since the objective is to
select the best channels that allow to reach the highest total throughput rather
than accounting for every user’s satisfaction. Recalling Fig. 2, we conclude that
ensuring fairness comes at the expense of lowering the total throughput that the
network as a whole can achieve. The figure also illustrates that our approach
outperforms the minimum fairness when different users have different QoS re-
quirements. Although the latter achieves better fairness performance when users
have the same requirements, for non-homogeneous environment, our approach is
more suitable.
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Fig. 3. Achievable Jain’s fairness index under the studied schemes: sum throughput,
minimum throughput, and the proportional fairness.

For completeness, we also show in Fig. 4 the achievable Jain’s fairness indexes
under different numbers of available bands.
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Fig. 4. Achievable Jain’s fairness index when varying the number of bands.
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6 Conclusions

This paper proposes a particle filtering-based technique for fair and distributed
spectrum allocation in large-scale DSA systems. When compared with other
approaches, the technique is shown to ensure the best fairness among users while
still achieving a reasonably high network throughput.
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