Online Assignment and Placement of Cloud Task
Requests with Heterogeneous Requirements

Mehiar Dabbagh, Bechir Hamdaoui, Mohsen Guizani’ and Ammar Rayes*
Oregon State University, Corvallis, OR 97331, dabbaghm,hamdaoub@onid.orst.edu
T Qatar University, mguizani@ieee.org | * Cisco Systems, San Jose, CA 95134, rayes@cisco.com

Abstract—Managing cloud resources in a way that reduces
the consumed energy while also meeting clients demands is a
challenging task. In this paper, we propose an energy-aware
resource allocation framework that: i) places the submitted tasks
(elastic/inelastic) in an energy-efficient way, i:) decides initially
how much resources should be assigned to the elastic tasks, and
tit) tunes periodically the allocated resources for the currently
hosted elastic tasks. This is all done with the aim of reducing
the number of ON servers and the time for which servers need
to be kept ON allowing them to be turned to sleep early to
save energy while meeting all clients demands. Comparative
studies conducted on Google traces show the effectiveness of our
framework in terms of energy savings and utilization gains.

Index Terms—Resource allocation, cloud computing, energy
efficiency, convex optimization, VM placement.

I. INTRODUCTION

Energy efficiency is a problem of a primal concern in cloud
centers due to financial [1] and environmental [2] concerns.
The main reason behind the large energy consumption of these
centers is due to the fact that cloud servers operate, most of the
time, at between 10% and 50% of their maximal utilizations,
and that idle/under-utilized ON servers consume more than
50% of their peak power [3]. Therefore, to minimize cloud’s
consumed energy, one needs to reduce the number of ON
servers, increase the servers utilization and reduce the duration
for which servers are left ON while meeting clients’ demands.

A cloud center is made up of a huge number of servers
called physical machines (PMs). These PMs are grouped into
multiple management units called clusters that are distributed
in different geographical locations. Cloud clients may, at any
time, submit a request to one of these clusters specifying the
amount of computing resources they need in order to perform
a certain task. For each received task request, the cluster’s
scheduler creates a virtual machine (VM), allocates certain
amounts of resources to it, and assigns it to one of the PMs
in the cluster. The VM is reserved for a period of time, called
the execution time, after which the task is accomplished and
the VM is released.

Prior resource allocation schemes focused on how to save
energy in cloud centers by making efficient VM placements.
The fact that the virtualization technology allows scheduling
multiple VMs to the same PM was exploited in order to
consolidate the submitted requests on fewer PMs, resulting in
saving energy by turning to sleep as many redundant PMs as
possible. The authors in [4] treated the VM placement problem
as the classical online Bin Packing (BP) optimization problem,

which views VMs as objects with certain sizes (CPU demands)
and PMs as bins with certain capacities (CPU capacities) and
where the objective is to pack these objects in as few bins as
possible. Since the online BP problem is NP-hard [5], the Best
Fit (BF) heuristic was used in [6] to make efficient placements.
Dynamic consolidation techniques were also suggested in [7]
where VM migration was adapted to perform periodic VM-
PM remappings with the objective of producing more compact
packing over time. Enhancements over these heuristics were
proposed to reduce communication costs [8,9]. We refer the
reader to our prior work [10] for a complete overview on
energy efficiency techniques in cloud centers.

Although prior work techniques lead to energy savings, they
all handle task requests of the form (w; “?,¢;“) where w;“?
is task ¢’s requested amount of CPU resources and ¢;“? is the
duration for which these resources are needed. Such requests
are referred to by inelastic task requests as they require a
fixed amount of CPU resource during their whole execution
time and as increasing their allocated resources at any time
would not decrease their execution times. An example of an
inelastic task would be a task that is responsible for replying
to queries received during a certain period. We define the
requested computing volume v; “? for an inelastic task ¢ as:
VT = 7% 479,

On the other hand, the submitted task requests to the cloud
cluster could be elastic, i.e, the amount of allocated resources
for these tasks can be increased or decreased during their exe-
cution time. Increasing the allocated resources for these tasks
would reduce their execution time and vice versa. An example
of such tasks would be any task with thread parallelism where
the number of allocated threads (CPU resources) determines
how fast the task terminates. An elastic task request ¢ is defined
by (v “4, w"e* tMe*) where v; “? is the requested computing

[t}
volume, w!*** is the maximum amount of CPU resources

K2
that can be allocated to the task and depends primarily on
its maximum amount of parallelism, and ¢]*** is a duration
period by which the requested task should complete.

Unlike prior work that considered only inelastic tasks, we
propose in this paper a resource-allocation framework that
handles both elastic and inelastic task requests. Our main
contributions are in proposing a framework that:

1) places the submitted tasks (elastic and inelastic) in a way
that avoids turning new PMs ON while also reducing the
PMs’ uptimes (i.e. the duration for which PMs need to
be kept ON to serve the hosted tasks).

Requests

| VM Placement |

[

v v v
PM; PM, PMp|
[Resource] [Resource] [Resource]
Managmnt Managmnt Managmnt

Fig. 1: Proposed Resource Allocation Framework.

2) decides what amount of resources should be assigned
initially to the elastic tasks while guaranteeing that their
deadlines will be met.

3) tunes the amount of allocated resources for the elastic
tasks over time by solving a convex optimization problem
whose objective is to reduce the PMs’ uptimes while
meeting tasks’ requirements.

The remainder is organized as follows. Section II presents
our proposed energy-aware allocation framework. Section III
describes the optimization problem solved by our framework
to tune the allocations over time. Section IV evaluates our
framework on real traces from a Google cluster. Finally,
section V provides conclusions and future work directions.

II. THE PROPOSED FRAMEWORK

As illustrated in Fig. 1, our proposed resource allocation
framework has a two-level control structure as it is made up
of a front end VM Placement module connected to all the PMs
in the cloud cluster and an autonomous Resource Management
module dedicated to each PM in the cluster. We explain next
each one of these control modules:

A. VM Placement Module

Upon receiving a task request (elastic or inelastic), this
module creates a VM for the submitted task and decides what
PM in the cluster the created VM should be assigned to. These
placement decisions are made depending on the current states
of the PMs in the cluster and on two task-related quantities: the
amount of CPU resources assigned initially to the created VM,
and the time after which the VM is expected to be released. In
the case of an inelastic task, these two quantities are directly
specified by the client to be w; “? and ¢;“? respectively. On the
other hand, there is flexibility in these quantities if the task
is elastic as they are only bounded above by w;"** and ¢]***
respectively. Thus, the module needs to decide the quantity
of resources that should be assigned initially to the elastic
task in order to make efficient PM placement. Our module
allocates w™"™ = v “4 /t™** amount of resources to the elastic
task initially. This represents the least amount of resources
needed so that the task is accomplished exactly in the client’s
maximum tolerable period ¢[***. The intuition behind this
choice is the following. If we allocate less than w!*" initially,
then at some point in time we need to increase these resources
so that the task terminates within ¢;***. However, the PM’s

capacity constraint and the constraints from the remaining

hosted VMs may prevent us from doing that and thus we may
risk to miss the task’s deadline. Thus at least w™"™ amount
of resources should be allocated initially to avoid that. On
the other hand, if an amount of resources larger than w{"’m
is assigned to the VM, then there may be no ON PM with
enough slack to fit that VM and we will be forced to switch
a new PM from sleep to fit this VM. This switch has a high
energy overhead [11,12] and also increases the number of
ON PMs which leads to high energy consumption. This costly
switch will be unnecessary if an ON PM with a slack of only
w™™ is already available in the cluster. Thus w!™" is initially
allocated to the elastic task in order to guarantee meeting its
deadline while also saving energy. It is worth mentioning that
these are only initial assignments for the elastic tasks and
will be later tuned in order to maximize the energy savings
as will be explained later. Having determined the amount of
resources that should be allocated initially to the submitted
task’s VM and when the VM is expected to be released, we
now explain the PM preference criteria that is adapted for
efficient placement selection. Based on our preference criteria,
the PMs in the cluster are divided into the following disjoint
groups:

1) Group 1: contains all the PMs that are currently ON and

that have an uptime larger than the VM’s release time.
2) Group 2: contains the remaining ON PMs (the ones with
an uptime smaller than the VM’s release time).
3) Group 3: contains all the PMs in the sleep state.

The module tries first to place the new task’s VM in one of the
PMs of Group 1. These PMs are mostly favored as their uptime
will not be increased after placing the new VM. If multiple
PMs of Group 1 can fit the VM, then the one with the least
CPU slack is chosen. The intuition behind this preference is to
leave larger slacks on the remaining ON PMs so that VMs with
larger CPU demands can be supported by these PMs in the
future without needing to wake new PMs from sleep. If non of
the PMs in Group 1 have enough space to fit the VM, then the
PMs of Group 2 are considered. If multiple PMs from Group
2 can fit the VM, then the one whose uptime will be extended
the least after placement will be chosen. This is to reduce the
extra time for which the PM will be kept ON. Finally, if no
fit is found in Group 2, then Group 3 is considered. Thus our
preference criteria switches a new PM ON to accommodate
the VM only if we have no other choice. The PM in Group 3
with the largest capacity is chosen in that case so that requests
with larger demands can be supported by this PM in the future.

B. Resource Management Module

The main role of this module is to make resource and
power management decisions for the controlled PM. A PM
P;’s module performs the following procedures:

1) Resource Allocation: A flag is dedicated to indicate
whether or not the allocated resources for the tasks hosted
on the controlled PM need to be retuned. This flag is
set true whenever the PM’s uptime is increased due to
assigning a new elastic task request, or whenever one

of the hosted VMs is released from P;. The resource
management module checks this flag periodically every
T, period. If the flag is true, then the amount of resources
w; to be allocated to each task ¢ hosted on P; is tuned.
This is done by solving an optimization problem with
the objective of minimizing the time after which the
PM can be turned to sleep while guaranteeing that all
tasks’ requirements are satisfied. Details on the resource
allocation optimization problem are provided in section
III. The flag is reset to false after updating these alloca-
tions. Ideally, to maximize energy savings, new resource
tuning needs to be calculated anytime the PM’s uptime is
increased due to assigning a new elastic task or anytime
a VM is released from the PM. However, this has a
high computation overhead. The flag is thus introduced
for practical uses in order to limit the number of times
the optimization problem is solved and the resources are
retuned per PM to be once at most every 7T, period.
The choice of T}, is left to the cloud provider depending
on how much computation overhead it can afford. The
smaller the selected value for this parameter, the higher
the energy savings but also the higher the computation
overhead. In our implementation, 7, is set to 5 minutes
as evaluations revealed that great energy savings can be
achieved for such choice while keeping the calculation
overhead low.

2) Remaining Time/Volume Tracking: for each elastic task
i hosted on P;, the module tracks ¢7°", the amount of
remaining time before which the task should be accom-
plished. The remaining time is initially set to ¢*** when
the task is first scheduled on the PM and is decremented
as time goes by. For each elastic or inelastic task ¢ hosted
on P;, the module also tracks the amount of remaining
computing volume still needed to accomplish each one
of these tasks. The remaining computing volume for task
1, referred to by v ™, is initially set to be equal to
the task’s requested computing volume v; “? when the
task is first scheduled on P;. Let w; be the amount
of resources allocated to task ¢ for period 7', then the
remaining volume will be updated after the 7' period is
over to be: v « v — (w; x T).

3) VM Termination: a task is accomplished once it is
allocated all of its requested computing volume. Thus the
module releases the allocated resources for VM ¢ hosted
on the PM once its remaining volume v “™ reaches zero.
If no other VM is still hosted on the PM after this release,
then the PM is switched to sleep to save energy.

III. PM RESOURCE ALLOCATION

Consider a PM P; in the cloud cluster which has a certain
CPU capacity C;. Let E; and I; be respectively the sets of all
elastic and inelastic tasks currently hosted on P;. We explain
in this section how to tune w;, the amount of CPU resources
to be allocated to each task i hosted on PM P;, where
w; € RTT which is the set of positive real numbers. The
allocated resources w; allows, in turn, to determine t; € RT+,

the time needed to accomplish the i" task. Our framework
allocates resources to the requests assigned to P; by solving
the following optimization problem.

Objective Function: The objective of our resource allocation
strategy is to reduce the amount of time for which the PM
will be left ON. This allows to switch the active PM into the
power-efficient sleep state early so as to save energy. Since P;
needs to be kept ON until its last hosted task is accomplished,
then our objective is to minimize the accomplishment time of
the task with the maximal accomplishment time among those
assigned to P;, i.e., we seek to:

Minimize max{¢; :i € E; UL;}

Constraints: The optimization problem is solved subject to
the following constraints. One,

S w<q M

i€, Ul

which states that the aggregate allocated resources for all the
VMs hosted on P; must not exceed the PM’s capacity.
Two,
w;=w; " Viel; 2)

1

which states that any inelastic VM request must be assigned
the exact amount of requested CPU resources. Three,

Vi € E, 3)

w; < W

which states that the allocated resources for any elastic VM
must not exceed the maximum amount of resources that the
VM’s task supports. Four,

t; < t:em Vi € Ej (@)

which states that the accomplishment time of each elastic VM
should be within ¢]°™, the remaining duration before which
the task should be accomplished.

Five,
rem
i

t; X w; = v ViGEjU]Ij (®)]

which states that the resulting allocations should provide the
remaining computing volumes v; “? required by the hosted
tasks.

Equivalent Problem: We introduced so far the objective and
the constraints of the formulated resource allocation optimiza-
tion problem where the decisions variables are w; € R*T
and ¢; € RTT. We show now how to perform simple trans-
formation on the above introduced original problem in order to
transform it into an equivalent problem whose optimal solution
can be obtained easily. The transformation consists basically
of performing a variable renaming by letting t; = 1/f;.
This variable renaming changes the optimization problem as
follows. First, the objective of the original problem becomes:

Minimize max{1/f;:i € E; UL;}

where the decision variables are now f; € RTT and w; €
R™". The objective function after the variable change be-
comes a convex function as for any given i, the function 1/ f;

is convex on Rt and as the maximum of a set of convex
functions is a convex function [13].

Constraints 1, 2, and 3 remain the same after the variable
renaming as they are each a function of w; only. Note that all
of these three constraints are affine functions with respect to
W;j.

Constraint (4) becomes the following affine constraint after
renaming:

1< fz X t;‘em Vi €]E]

Observe that constraint (5) in the original problem is not
affine as the decision variables w; and ¢; are multiplied by each
other. However, after renaming the variables, the constraint is
now transformed into the following equivalent linear (and thus
affine) constraint:

rem
7

’LUZ':fiXU V’L.EEJ'UH]‘

As a result, by letting ¢; = 1/f;, the original problem

transforms into a convex optimization problem as the new
objective function is now convex (which we aim to minimize),
and as all equality and inequality constraints of the new
equivalent problem are now affine. The optimal solution for
such problems can be found easily and quickly using convex
optimization solvers such as CVX [14], which is the one used
in our implementation.
An Illustrative Example: Having explained the formulated
optimization problem, we now provide an example of how a
feasible and an optimal resource allocation would look like for
a set of tasks that are hosted on P; that has a unit capacity (i.e.
C; = 1). The hosted requests are three elastic tasks (R, Ra,
R3) and one inelastic task (R24). The specs of these tasks are
shown in Table I. w™?* and w"®? are reported as a percent of
the PM’s capacity, the remaining time ¢"*"* and the duration
for which the inelastic task is needed ¢t"? are reported in hours,
and the remaining computing volume v"*™ is reported in CPU
percent times hours.

Fig. 2 shows two allocations for these requests: (a) a feasible
allocation and (b) the optimal allocation obtained by solving
the formulated problem. Both allocations in (a) and (b) satisfy
all tasks constraints. However, the allocation in (a) provides
more resources to R3 whereas low resources are allocated to
R; and Ry. This allocation is not energy efficient as the PM
will be kept ON for six hours and can be turned to sleep only
after that. Whereas the optimal allocation in (b) allocates more
resource to R; and R, and lower resources to I3 allowing
the PM to be turned to sleep to save energy earlier (after four
hours) while all requests still meet their deadlines.

IV. PERFORMANCE EVALUATION

The experimental evaluations presented in this section are
based on real cluster traces [15] that were released by Google
in November 2011. These traces were collected during a 29-
day period from a Google cluster that is made up of more
than 12K PMs. The PMs within the cluster have three types
in terms of the supported CPU capacity. Table II shows the
number of PMs for each one of these types along with their

TABLE I: Specs of the requests in the illustrative example.

Elastic prem wmar trem
Request | (CPU percentxhour) (CPU percent) (hour)
Ry 120 30 6
Ra 100 30 6
R3 90 45 3
Inelastic prem w’ed tred
Request | (CPU percentxhour) (CPU percent) (hour)
Ry 30 15 2

1,
R4 (15%)
0.85
2
S R3 (45%)
8
0.4
z R2 (20%)

R1 (20%)

.3
Time (Hour)

(a) Feasible Allocation

R4 (15%) \

R3 (30%)

R2 (25%)

PM Capacity

R1 (30%) Gained Idle Time

3
Time (Hour)

(b) Optimal Allocation

Fig. 2: Resource Allocations for the illustrative example.

CPU capacities normalized with respect to the PM with the
largest capacity in the cluster. Since the size of the Google
traces is huge (> 39 GB), we limit our evaluations to a chunk
of the traces that spans 30 hours.

TABLE II: Configurations of Google cluster PMs.

Number of PMs | CPU Capacity

798 1.00
11658 0.50
126 0.25

For each task request ¢ found in the traces, Google reports:

¢ a timestamp that indicates when the task was submitted.

o w!r the task’s reserved amount of CPU resources.

o tirace the duration after which the task was accomplished
based on the reserved resources.

Unfortunately the traces do not reveal the type or the nature
of the submitted tasks and thus we could not infer the elastic
tasks from the inelastic ones. In our evaluations, p percent
of the tasks found in the traces are picked at random and
are assumed to be elastic. We use the information revealed
by the traces to determine the requested demands of these
tasks. For each task 7 in the traces that is treated as inelastic,
the requested amount of computing resources w; ! and the

duration for which these resources are needed t;“? are taken

from the trace numbers and are set to be equal to w!"*“¢ and

tirace respectively. For each task ¢ in the traces that is treated
as elastic, the requested computing volume v; “? is calculated
from the traces numbers to be v;“? = wlrece x ¢lrace,
The duration ¢7*** within which the elastic task must be
accomplished is set to t£7*“¢ (i.e. the elastic tasks have a worst
case accomplishment time equal to the one reported in the
traces). Finally, we had to make assumptions about w;"**, the
maximum amount of resources that can be allocated to task ¢,
as no information is revealed about the nature of these tasks. In
our experiments, w!"* is set to: w4 = w4+ \ x wlreee
where A is the elasticity factor. This makes w;"** proportional
to wi"*® where the assumption here that the higher the
reserved resources for the tasks in the traces, the higher the
maximum range of resources that these tasks can be allocated.
In our experiments, p is set to 50% meaning that half of the
tasks found in the traces are assumed elastic. The elasticity
factor for these tasks is set to A = 0.5.

Our framework is compared against the following schemes:

« BF with Min Allocation: the BF heuristic [6] is used to
make PM placement decisions where a submitted request
is placed on a PM in sleep only if it can’t be fitted in any
ON PM and the PM with the largest capacity is chosen
in that case for placement. If multiple ON PMs can fit
the task, then the one with the least slack is selected for
placement. The minimum amount of resources w™" is
allocated for the elastic tasks throughout their lifetimes
so that they finish exactly in t™%* period.

o BF with Max Allocation: the BF heuristic is used to
make PM placement decisions, and the maximum amount
of the task’s supported resources w** are allocated to
the elastic tasks throughout their lifetimes so that they
are accomplished as fast as possible.

« BF with Random Allocation: the BF heuristic is used
to make PM placement decisions, and for each requested
elastic task i, a value between w!™" and w!™* is selected
at random with an equal probability and gets assigned
to the elastic task throughout its whole lifetime. It is
worth mentioning that any selected value within that
range guarantees that the task finishes within ¢;*** period.

We next discuss our results in terms of the number of active
PMs, utilization gains and energy savings.

A. Number of Active PMs

We analyze first the number of ON PMs that were needed
to serve the submitted tasks as this number has a direct
impact on the amount of consumed energy. Fig. 3 shows
the number of ON PMs in the Google cluster over time
when different schemes were used to manage the traces tasks.
Observe that the BF with Max Allocation scheme used the
largest number of ON PMs most of the time. This is due to
the fact that by allocating the maximum amount of resources
for the elastic tasks, it is true that these tasks were released as
quickly as possible, however, they required a large amount of
CPU resources all the time and thus the scheme faced many
instances where it was forced to switch new PMs ON as there

2000~

1]

z

> 1500r

(e}

© 1000¢

Q

Qo

1S f .. 3

3 500 o _ - —
—BF with Max Allocation BF with Min Allocation
---BF with Random Allocation -- Proposed Framework

G L L L L L

5 10 20 25 30

15
Time (Hour)
Fig. 3: Number of ON PMs over time for the different resource
allocation schemes.

100,
g
- 80
2
8 60
5
D 40 -~ Proposed Framework
& BF with Min Allocation
o 20 ---BF with Random Allocation -
5: —BF with Max Allocation

0 L L L L L

5 10 20 25 30

15
Time (Hour)
Fig. 4: Average Utilization over time for the different resource
allocation schemes.

was no enough slack on any of the currently ON PMs to fit
the coming requests. The BF with Random Allocation had a
similar performance where many ON PMs were also needed
to serve the submitted task requests. This clearly shows that
allocating random amount of resources to the elastic tasks is
not energy efficient. Observe that the BF with Min Allocation
scheme used lesser number of PMs most of the time. Although
elastic tasks in that case took longer time to be released,
they were allocated smaller amounts of CPU resources leaving
larger slacks to support the coming tasks which reduced the
need for switching new PMs from sleep. Observe that our
framework used the least number of ON PMs all the time
compared to all the other schemes. Both the VM placement
and the resource management modules were making efficient
placement and tuning decisions in order to reduce both the
number of ON PMs and the duration for which PMs need to
be kept ON.

B. Utilization Gains

We compare next the utilization gains that are achieved
by the different resource allocation schemes where the CPU
utilization of a PM (referred to by 7) is the aggregate amount
of CPU resources reserved for all of its hosted VMs divided
by the PM’s capacity. Fig. 4 shows the average utilization
for all of the ON PMs in the cluster over time under the
different resource allocation schemes. Observe that the BF
with Max Allocation and the BF with Random Allocation had
the worst average utilization. This clearly shows that not only

100

= Il BF with Max Allocation
> BF with Rand. Allocation
> 80 [CIBF with Min Allocation
< [IProposed Framework
[}
&
— 60r 4
©
it
)
'_
o 40r i
)
N
©
g 20r 4
o
b4
0

Fig. 5: Total Energy Costs for the different schemes (normal-
ized w.r.t. BF with Max Allocation costs).

those two schemes used a large number of ON PMs, but also
the resources of those ON PMs were not utilized efficiently.
Although the BF with Min Allocation allocated the least
amount of resources for the elastic tasks, it had an improved
average utilization over time compared to those schemes as it
used less number of ON PMs. Finally, our framework achieved
the highest average utilization among all the other schemes.
In fact, our framework reached in some cases an average
utilization level that is very close to 100%. This is attributed
to the VM placement module which packs the submitted
tasks tightly and to the resource management module which
reduced the wasted resource slacks by increasing the amount
of allocated resources for the elastic tasks whenever possible.

C. Energy Savings

We assess next the energy savings that our framework
achieves. Experiments in [3] show that the consumed power,
P,,, of an active PM increases linearly from Pjje t0 Pyeqk
as its CPU utilization, 7, increases from 0 to 100%. More
specifically, Pon(7) = Pigie + 1(Ppeak — Pidie), Where
Ppear = 400 and P;gq = 200 Watts. On the other hand, a
PM in the sleep state consumes about Pge., = 100 Watts.
Switching a PM from sleep to ON consumes F,_,, = 4260
Joules, whereas switching a PM from ON to sleep consumes
E,_., = 5510 Joules. All of these numbers are based on real
servers’ specifications [16].

We calculate the total energy to run the cluster under the
different resource allocation schemes where the total energy
is the summation of the energy consumed by both ON and
sleep PMs in addition to the switching energy (from sleep to
ON and vice versa). Fig. 5 shows these total costs throughout
the whole 30-hour period normalized with respect to the total
energy cost of BF with Max Allocation scheme. Observe that
our proposed framework met the demands of all of the requests
within the traces while consuming the least amount of energy
compared to all other resource allocation schemes. This proves
the efficiency of our framework and highlights how important
it is to make efficient placement and resource tuning decisions
in cloud centers. It is worth mentioning that we also evaluated
our framework and the remaining resource allocation schemes
on the Google traces for different values of p and A. In all of
those cases, our framework consumed less energy compared to

all the remaining schemes. Due to space limitation, we limited
our analysis to the case where p = 50% and A = 0.5.

V. CONCLUSIONS AND FUTURE WORK

We propose in this paper an energy-aware allocation frame-
work for elastic and inelastic task requests. Our framework
makes allocation decisions in a way that reduces the number
of ON PMs and the time for which PMs need to be kept
ON while meeting all tasks’ demands. Evaluations based on
real traces from a Google cluster show the effectiveness of
our framework when compared to other schemes in terms of
energy savings and utilization gains. For future work, we plan
to modify the framework in order to handle elastic tasks with
different priorities where not only are tasks required to finish
before a deadline, but also the faster the task’s completion
time, the higher the client’s satisfaction level and charged cost.

VI. ACKNOWLEDGMENT

This work was made possible by NPRP grant # NPRP 5-
319-2-121 from the Qatar National Research Fund (a member
of Qatar Foundation). The statements made herein are solely
the responsibility of the authors.

REFERENCES

[1] D. Kliazovich, P. Bouvry, Y. Audzevich, and S.U. Khan, “Greencloud: A
packet-level simulator of energy-aware cloud computing data centers,”
in Proceedings of IEEE GLOBECOM, 2010.

[2] C. Pettey, “Gartner estimates ICT industry accounts for 2 percent of
global co2 emissions,” 2007.

[3] L. Barroso and U. Holzle, “The case for energy-proportional comput-
ing,” Computer Journal, 2007.

[4] Y. Zhang and N. Ansari, “Heterogeneity aware dominant resource
assistant heuristics for virtual machine consolidation,” in Proceedings
of IEEE GLOBECOM, 2013.

[5] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Release-time
aware VM placement,” in Proc. of IEEE GLOBECOM Workshop on
Cloud Computing Sys., Networks, and Applications (CCSNA), 2014.

[6] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing,” Future Generation Computer Systems, 2012.

[7] J. Xibo, Z. Fa, H. Songlin, and L. Zhiyong, “Risk management for
virtual machines consolidation in data centers,” in Proceedings of IEEE
GLOBECOM, 2013.

[8] M. Alicherry and T. V. Lakshman, “Network aware resource allocation
in distributed clouds,” in Proceedings of IEEE INFOCOM, 2012.

[91 M. Shojafar, N. Cordeschi, D. Amendola, and E. Baccarelli, “Energy-

saving adaptive computing and traffic engineering for real-time-service

data centers,” IEEE ICC Workshop on Cloud Computing Systems,

Networks and Applications, 2015.

M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Towards energy-

efficient cloud computing: Prediction, consolidation, and overcommit-

ment,” IEEE Network Magazine, 2015.

M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Energy-efficient

resource allocation and provisioning framework for cloud data centers,”

IEEE Transactions on Network and Service Management, 2015.

M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Energy-efficient

cloud resource management,” in Proceedings of IEEE INFOCOM

Workshop on Mobile and Cloud Computing, 2014.

S. Boyd and L. Vandenberghe, “Convex optimization,”

University Press, 2004.

Inc. CVX Research, “CVX: Matlab software for disciplined convex

programming, version 2.0,” 2012.

http://code.google.com/p/googleclusterdata/ .

M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “’efficient dat-

acenter resource utilization through cloud resource overcommitment’,”

in Proceedings of IEEE INFOCOM Workshop on Mobile Cloud and

Virtualization, 2015.

[10]

(11]

[12]

[13] Cambridge
[14]

[15]
[16]

